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Abstract

Purpose – This study proposes a machine learning framework to predict customer complaints from
production line tests in an automotive company’s lot-release process, enhancing Quality 4.0. It aims to
design and implement the framework, compare different machine learning (ML) models and evaluate a
non-sampling threshold-moving approach for adjusting prediction capabilities based on product
requirements.
Design/methodology/approach –This study applies the Cross-Industry Standard Process for Data Mining
(CRISP-DM) and four MLmodels to predict customer complaints from automotive production tests. It employs
cost-sensitive and threshold-moving techniques to address data imbalance, with the F1-Score and Matthews
correlation coefficient assessing model performance.
Findings – The framework effectively predicts customer complaint-related tests. XGBoost outperformed the
other models with an F1-Score of 72.4% and a Matthews correlation coefficient of 75%. It improves the lot-
release process and cost efficiency over heuristic methods.
Practical implications –The framework has been tested on real-world data and shows promising results in
improving lot-release decisions and reducing complaints and costs. It enables companies to adjust predictive
models by changing only the threshold, eliminating the need for retraining.
Originality/value – To the best of our knowledge, there is limited literature on using ML to predict customer
complaints for the lot-release process in an automotive company. Our proposed framework integratesMLwith
a non-sampling approach, demonstrating its effectiveness in predicting complaints and reducing costs,
fostering Quality 4.0.

Keywords Machine learning, Quality 4.0, Lot release, Cost-sensitive learning, Imbalanced data,

Threshold-moving

Paper type Research paper

1. Introduction
Industry 4.0 (I4.0) companies rely on digitisation, automation and real-time operations to
improve customer service (Rojko, 2017). This movement is driven by big data and artificial
intelligence (AI) tools, which are the core components of improving manufacturing processes
and service quality (Escobar et al., 2021). Quality 4.0 (Q4.0) addresses this challenge and can
be seen as a digital transformation strategy in which quality and performance goals are the
top priority (Radziwill, 2020).
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Project Scope (No. UIDB/00319/2020 and the project scope: PD/BDE/150502/2019, the latter
corresponding to a PhD grant for Armindo Lobo (first author).

Disclosure statement: The authors report that there are no competing interests to declare.

The current issue and full text archive of this journal is available on Emerald Insight at:

https://www.emerald.com/insight/1754-2731.htm

Received 25 October 2023
Revised 3 March 2024

16 May 2024
Accepted 17 May 2024

The TQM Journal
Vol. 36 No. 9, 2024

pp. 175-192
Emerald Publishing Limited

1754-2731
DOI 10.1108/TQM-10-2023-0344

http://creativecommons.org/licences/by/4.0/legalcode
https://doi.org/10.1108/TQM-10-2023-0344


The lot-release decision process in industrial operations can significantly impact
efficiency and service quality. Typically governed by heuristic rules, integrating machine
learning (ML) can optimise it, enhancing lot-release decision quality and customer
satisfaction by minimising complaints. To do this, managing imbalanced data from
diverse sources is crucial for effective implementation (Fathy et al., 2021). This is the case for
the studied company’s software application, which currently relies on heuristic rules and
must deal with heavily imbalanced datasets.

Several studies have proposed frameworks and models to improve quality control in
manufacturing. Villanueva Zacarias et al. (2018) introduce a framework for selecting and
configuring ML-based data analytics solutions, considering factors such as data quality and
algorithm selection. Cho et al. (2022) focus on data preprocessing, using different methods to
address missing values and data imbalance. This paper proposes a framework that
integrates an ML model to improve the lot-release decision process, reduce quality costs and
contribute to the adoption of Q4.0. This approach focusses on the last stage of the production
line, gathering information from automatic production tests and repairs generated along the
different production stages. Based on this information, four ML algorithms XGBoost (XGB),
LightGBM (LGBM), CatBoost (CatB) and Random Forest (RF)) were conceived, tuned,
evaluated and compared to classify the occurrence of a customer complaint. Two non-
sampling approaches (cost-sensitive learning and threshold moving) were considered to deal
with imbalanced data.

The remainder of this paper is organised as follows. Section 2 presents the related work
and background. Section 3 describes the methods used to deal with imbalanced datasets, the
ML algorithms considered, the evaluation metrics and how the data were collected and
preprocessed. Section 4 describes the experiments carried out, and Section 5 discusses the
results obtained. Finally, in Section 6 are given the main conclusions and future work
directions.

2. Literature review
Improving the quality of products and services is an essential component of competitiveness
for every company. I4.0 promotes the digitisation of processes to create autonomous systems
and integration throughout the supply chain. This environment poses new challenges that
are addressed by Q4.0. The implementation of Q4.0 can be seen as a digital transformation
strategy where quality and performance are crucial (Radziwill, 2020). In this sense, customer
satisfaction and product-related complaints are two of the four vital quality objectives that
must be improved with Q4.0 (Dror, 2022). Compared to traditional quality, regarding quality
and performance goals, Q4.0 focusses on minimising or eliminating appraisal costs by
detecting problems before they occur, which has a positive impact on quality costs
(Radziwill, 2020).

2.1 Related work
Over the years, the prediction of anomalies in different stages of production lines using
different ML techniques has been studied thoroughly; however, this is not the case for the
prediction of customer complaints (Abdelrahman and Keikhosrokiani, 2020). There is little
literature on the use of ML techniques to predict them based on the results of tests carried out
along production lines.

Chen and Lin (2020) address this topic in a textile company, creating a system to predict
the probability of complaints about a new production order based on its inherent
characteristics. As customer complaints are relatively rare, they must deal with
imbalanced datasets to train the classifiers; to deal with this, they propose an
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upsampling approach. To evaluate the results of the three ML classifiers tested (Decision
Trees, RF and XGB), they use balanced accuracy, which is the arithmetic mean of
sensitivity and specificity. In their pipeline, they also consider grid search to find the best
hyperparameters. The results show that when upsampling, the grid search, the area under
the roc curve (AUC) metric, and the XGB classifier were coupled, the balanced accuracy
during validation was maximised and the gap between balanced accuracies during
training and validation was minimised.

Yorulmuş et al. (2022) use quality data from a brake assembly line of an automobile
manufacturer to develop a predictive quality model to recognise products that passed quality
inspection operations without defects but are problematic. To achieve this, they considered
several ML algorithms and chose the specificity and negative prediction values to compare
them. The values obtained show that the gradient boost and CatB algorithms achieved the
best results in detecting rare events. However, despite analysing the classification results of
rare events that appear in imbalanced datasets, it is not clear what approach was used to deal
with them.

The viability of using ML techniques to predict compliance quality from data of multiple
processes was confirmed by Sankhye and Hu (2020). In their study, they focus on analysing
data from a large-scale appliance manufacturing plant to design ML-based classification
methods to predict manufacturing compliance quality according to the results of quality
inspections. They compare RF and XGB, with Cohen’s Kappa as the reference metric and use
synthetic minority oversampling technique (SMOTE) to implement an oversampling
approach to deal with the imbalanced dataset. They also analysed the impact of the feature
engineering process and concluded that the results improved when certain features were
created by applying prior domain knowledge to the datasets nature. Overall, the best results
were obtained with XGB.

Product quality is vital for customer satisfaction and cost reduction in the
automotive industry. Current research primarily targets anomaly prediction at specific
production stages, overlooking predicting customer complaints during lot release, which can
impact reputation and profitability. This paper addresses this gap by proposing an ML
framework that uses production line data to predict customer complaints in the lot-release
process, thereby promoting Q4.0 adoption and reducing quality costs. The framework
incorporates algorithmic-level methods like cost-sensitive learning and threshold moving to
handle imbalanced data effectively. Threshold-moving enables efficient model adjustments
without retraining, offering practical and cost-effective solutions. The framework also
leverages state-of-the-art tools for automatic feature creation and hyperparameter
optimisation, enhancing the predictive model’s robustness and performance.

2.2 Quality 4.0
The concept of Q4.0 has been a subject of considerable debate and discussion amongst
researchers and practitioners (Oliveira et al., 2024). Q4.0 incorporates advanced
technologies to improve the quality of manufacturing and services, in the context of
increasing digitisation of industries (Javaid et al., 2021). It combines quality management
with I4.0 to improve organisational performance, innovation and new business models
(Antony et al., 2021). The critical success factors (CSFs) associated with the implementation
of Q4.0 are in line with I4.0. These include investing in technology, developing the right
skills, providing adequate training and knowledge, addressing cybersecurity concerns,
having management support, fostering a supportive organisational culture and effectively
managing resistance to change ( Antony et al., 2023). This is reflected in the eight identified
key ingredients for an effective implementation of Q4.0: handling big data, improving
prescriptive analytics, using Q4.0 for effective vertical, horizontal and end-to-end
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integration, using Q4.0 for strategic advantage, leadership in Q4.0, training in Q4.0,
organisational culture for Q4.0 and, top management support for Q4.0 (Sony et al., 2020).
These key ingredients play a crucial role in the ability of companies to embrace Q4.0 and are
aligned with the five readiness factors for Q4.0 identified by Zulfiqar et al. (2023): top
management commitment and support, leadership, organisational culture, employee
competency and presence of an ISO Quality Management System (QMS) standard.
Integration of I4.0 technologies and digitisation of quality management have a substantial
effect on quality technology, processes and people (LNS Research, 2017). LNS Research
proposes a framework with 11 axes for Q4.0 that outlines how it can enhance existing
capabilities and initiatives whilst providing a perspective on traditional quality methods.
Included in these 11 dimensions are analytics and data.

The evolution of quality management has progressed from inspection to total quality
management (TQM), with tools aimed at enhancing industrial processes and services
(Broday, 2022). This evolution has culminated in the emergence of Q4.0, which builds upon
TQM by integrating Big Data and AI (LNS Research, 2017; Escobar et al., 2021). Q4.0
represents a digital transformation strategy focussed on leveraging digital tools to
consistently deliver high-quality products. These tools encompass AI, Big Data,
Blockchain, Deep Learning, ML, Statistics and Data Science, alongside enabling
technologies such as Internet of Things (IoT), Virtual and Augmented Reality, Data
Streaming, Sensors and 5G (Radziwill, 2018). Considering the evolution of quality
approaches, these tools are instrumental in shaping Q4.0 as a discovery approach:

(1) Inspection: Quality assurance was based on inspection, with the use of Walter A.
Shewhart’s statistical process control methods.

(2) Design: Integration of quality into operations to proactively prevent quality issues,
based on W. Edwards Deming’s suggestions.

(3) Empowerment: Use of TQM and Six Sigma, where quality is a shared responsibility
and people are empowered to participate in continuous improvement.

(4) Discovery: In an adaptive environment, quality relies on the quick identification of
new data sources, root cause analysis and discovery of new knowledge (Radziwill,
2018).

It is clear that Q4.0 involves a shift from traditional quality methods to a more data-driven
approach (Grandinetti et al., 2020; Carvalho et al., 2021). This includes the use of data analytics
and ML to identify patterns and trends in quality data, which can be used to improve
processes and make better decisions. This also means that Q4.0 places greater emphasis on
data collection and analysis, as well as the use of digital tools to manage and track quality
metrics (Thekkoote, 2022).

Amongst the technological advancements driving industrial transformation, business
analytics stands out as a pivotal enabler of I4.0, playing a crucial role in this process. It is
rooted in theoretical concepts like absorptive capacity, dynamic capabilities and data-driven
decision-making (Duan et al., 2020). Almazmomi et al. (2021), underscore its significance in
fostering a competitive advantage, particularly through nurturing a data-driven culture and
enhancing product development within I4.0. Business analytics, by providing data
intelligence and expert system components, is instrumental in facilitating the successful
implementation of Q4.0 within the broader context of I4.0 (Silva et al., 2021). It extracts
meaningful insights from vast industrial data, contributing to digital market transformation
(Duan et al., 2021). It is also a key element for Q4.0 alongside data, connectivity and leadership
(Thekkoote, 2022). The integration of advanced analytics and big data necessitates the
development of an I4.0 analytics platform, transcending mere tools and technology
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(Gr€oger, 2018). This alignswith the view that business analytics serves as a strategic resource
for gaining a competitive edge in the industrial sector during the I4.0 era. Additionally, Ehret
and Wirtz (2017) highlight how the Industrial Internet of Things (IIoT) drives new business
models and services, emphasising analytics, including big data and AI as enablers of
innovative information and analytical services. Additionally, Fernando et al. (2018)
underscore practical big data analytics for predicting market preferences from diverse
data sources, particularly in enhancing supply chain performance, an essential aspect of
industrial transformation in the I4.0 era.

Q4.0 implementation enhances customer satisfaction, product quality, service quality and
competitive advantage (Antony et al., 2023). I4.0 objectives mirror those of the early to mid-
1990s but with two shifts: data volume surge and accelerated achievement of quality goals
through emerging technologies (Radziwill, 2020). Due to rising customer expectations in the
I4.0 and Q4.0 landscape challenge, companies deliver high-quality products at competitive
prices (Keller et al., 2014). This underscores the relevance of understanding and managing
quality costs.

Schiffauerova andThomson (2006) analysed the differentmodels that have been proposed
to quantify the Cost of Quality (CoQ), each with its unique cost or activity categories. PAF
model categorises costs into Prevention, Appraisal and Failure. Crosby’s model splits quality
costs into conformant and non-conformant. Opportunity or Intangible cost models extend the
PAF model to include opportunity costs. The Process Cost model provides a systematic
approach to identifying and analysing process-related costs. Activity-Based Costing (ABC)
models categorise costs into value-added and non-value-added activities. I4.0’s digital
technologies and data analysis drive a transformation impacting quality costs and quality
management. These technologies improve customer satisfaction and reduce quality costs
(Saihi et al., 2021). Antony et al. (2023), Sony et al. (2020) and Zulfiqar et al. (2023) highlight
technology investment and employee skills as key to Q4.0. Maganga and Taifa (2023),
reinforce this, identifying investment in Big Data handling, enabling technologies and human
resources skills as main enablers. These costs could be offset by reduced failure costs and
increased customer satisfaction, leading to greater market share (Margarida Dias et al., 2021).
Tools like IoT, Cyber-Physical Systems (CPS), big data and AI contribute to predictive
maintenance implementation, reducing costs and preventing failures (Lee et al., 2019). Q4.0
provides a management framework based on increasing customer loyalty and decreasing
costs (Javaid et al., 2021).

Figure 1 represents the evolution of quality costs until the Q4.0 objectives were fully
achieved (right column) (DeFeo, 2018). As shown, appraisal costs areminimised or eliminated,
as well as internal and external failures. In general, Q4.0 can be seen as a holistic approach to
quality that uses advanced technologies to improve efficiency, reduce costs and enhance
customer satisfaction.

Advancements in quality management, though significant, bring new challenges.
Digitisation of manufacturing processes alters communication, consumption patterns and
value creation, influencing market strategies and product life cycles (Paritala et al., 2017).
Organisations must comprehend and adapt to these changes, analysing their impact on
quality management (Corti et al., 2021; Antony et al., 2023). This ensures effective utilisation
of Q4.0 to enhance customer satisfaction, enterprise efficiency and competitiveness (Liu and
Gu, 2023). Q4.0, which is related to the digitalisation of quality work in the context of I4.0, is a
relatively new and evolving area. Corti et al. (2021) and Ranjith Kumar et al. (2021) highlight
this transition challenge and opportunities, with Corti providing a comprehensive framework
for Q4.0 adoption and Kumar proposing a conceptual framework for quality in the digital
transformation context. Margarida Dias et al. (2021) stress the need for a unified Q4.0
definition. Sureshchandar (2022) underscores the critical role of traditional quality elements
such as leadership, customer focus and data-driven decision-making in the digital
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transformation journey, which aligns with the 11 axes of Q4.0 proposed by LNS Research
(2017). These authors collectively suggest that whilst digitalisation presents new challenges,
it also offers significant potential for enhancing quality management.

3. Materials and methods
This section details the materials and methods used in this study. The methodology,
proposed framework, data preparation, data exploration, ML models used and evaluation
metrics are described below.

3.1 Lot-release challenge
An automotive company is committed to minimising customer complaints, reducing costs
and improving overall quality on its way to Q4.0. During different stages of its production
line, different tests are performed. The products are packed in pallets that the company
defines as a lot. The decision to release the lot is made in the last stage before shipping the
products. This can have a great impact on customer satisfaction. Currently, the company uses
a software application that manages this process by applying a set of rules that were defined
heuristically. The lot is locked by default, and it is the software system that decides to release
them by applying a set of rules that were manually defined by quality engineers based on
their perception and knowledge. The actual rules are related to the following.

(1) Total repairs by part number, station and type of defect

(2) Faults detected in critical stations

(3) Part number blocked by quality team

After unlocking the lot, risk analysis is performed to decide whether it can be sent to
customers.

Taking into account this manual system and given the vast amount of data that needs to
be processed, an efficient method of handling it is crucial. Another factor to consider is the
promotion of Q4.0 adoption in an effective manner. With these considerations in mind, the
proposed framework incorporates an ML model to address these problems (Sarker, 2021).
This will allow companies to improve their process, reduce costs and easily adjust their
predictive models efficiently. Figure 2 reflects this by adding an ML module that collects
information from tests and repairs at different stages to predict the probability of customer

Figure 1.
Evolution of quality
costs distribution
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complaints before the lot is shipped to customers. In this phase, it is proposed to maintain
existing manual rules to promote better decisions. The framework has been tested with real-
world data and has shown promising results in terms of its ability to predict customer
complaints and its efficiency. Based on the ML results and with continuous training, a more
automated process can be evaluated that relies only on the ML model.

The development and evaluation of thisMLmodule followed the Cross-Industry Standard
Process for Data Mining (CRISP-DM) methodology (Wirth and Hipp, 2000). This is widely
recognised as the standard for implementing data mining projects (Schr€oer et al., 2021). This
structured approach breaks down the life cycle of a data mining project into six phases:

(1) Business Understanding: Define project objectives and requirements from a business
perspective and formulate a data mining problem definition.

(2) Data Understanding: Collect and familiarise with data, identifying quality issues and
forming hypotheses for hidden information.

(3) Data Preparation: Construct the final dataset from raw data, including selection,
transformation and cleaning tasks.

(4) Modelling: Select and applymodelling techniques, calibrating parameters for optimal
performance. Certain techniques have specific data format requirements, which may
require revisiting the data preparation phase.

Figure 2.
Framework to improve
the lot-release decision

process
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(5) Evaluation: Assess model quality and effectiveness, ensuring alignment with
business goals before deployment.

(6) Deployment: Structure and present knowledge for customer utilisation, varying in
complexity from report generation to recurring data mining procedures.

Figure 3 illustrates these phases and the approach adopted in the studied company, where
management and team commitment played a crucial role in navigating each phase.

3.2 Data exploration
Production tests and repair databases of an automotive company were used as data sources
for this study, considering the period between January 2019 and April 2020. Millions of
automatic tests are produced every day; to handle them, the company stores the data in a
Hadoop cluster. The initial dataset has 2,076,529 records and 40 features, 31 related to
production tests and 9 related to repairs. Table 1 lists some of them:

Field id Description

product Product ID number (type of product)
serial Unique ID of a product
stationid Unique station ID
gof status Result of test sequence (GOF- “Good or Fail”)
cause classid Type of defect fixed in repair
cause_flawid Flaw identification fixed in repair

Source(s): Table by authors

Figure 3.
CRISP-DM
methodology used to
implement the project

Table 1.
Some features of
interest in the original
dataset
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3.3 Data preparation
The following constraints were implemented to ensure a representative dataset that includes
tests related to complaints and tests without complaints in the period analysed.

(1) Select the top 10 products with more complaints.

(2) Select a subset of 2 million tests without complaints.

To improve the performance of the MLmodels, feature engineering was carried out based on
the insights gained from the data exploration. Throughout this process, some features were
manually created, such as hascomplaint, classified as the target to determine whether a test is
related to a complaint or not, hasrepair, which identifies whether a test has a repair or not and
srepair, which identifies a specific type of repaired flaw.Most of the new featureswere created
automatically using Featuretools, which implements the concept of deep feature synthesis
(Kanter and Veeramachaneni, 2015).

In the data cleaning process, the rowswithmissing valueswere dropped. Spearman’s rank
correlation coefficient was used to evaluate correlation amongst features, excluding the
target and dropping highly correlated ones to avoid multicollinearity.

After this operation, the final dataset comprises 1,552,324 records and 44 features,
including 15 new aggregation and transformation features that were automatically created.
The distribution of the two classes is as follows: 1.7% come from the class of tests related to
customer complaints, and 98.3% come from the other class.

3.4 Evaluation metrics
Due to the need to deal with imbalanced data when predicting customer complaints based on
repair and production tests, classification is assessed with a confusionmatrix (He and Garcia,
2009). Tailored performance metrics are essential for effectively addressing imbalanced
datasets. Precision, Recall, F1-Score and Matthews Correlation Coefficient (MCC) are
recognised as suitable measures for evaluating model performance on such datasets (Chicco
and Jurman, 2020; Bhadani et al., 2023). These metrics are calculated according to the four
categories of confusion metrics: True Positives (TP), True Negatives (TN), False Positives
(FP) and False Negatives (FN).

Precision is the fraction of relevant results.

Precision ¼ True Positive

ðTrue Positiveþ False PositiveÞ (1)

Recall is the fraction of positive labels correctly identified by the model.

Recall ¼ True Positive

ðTrue Positiveþ False NegativeÞ (2)

The F1-Score is the harmonic mean of precision and recall. It provides the model’s ability in
identifying both classes.

F1� Score ¼ 2 *
Precision *Recall

Precisionþ Recall
(3)

The MCC assesses the correlation between predicted and observed binary classes in
classification, yielding a high score when both positive and negative predictions are accurate.

MCC ¼ TP *TN � FP *FN
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðTP þ FPÞ * ðTP þ FNÞ * ðTN þ FPÞ * ðTN þ FNÞp (4)
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3.5 Machine learning algorithms selected
Given the problem’s imbalanced nature, three gradient-boosting (XGB, LGBM, CatB) and a
bagging (RF) algorithm were studied. These algorithms are effective in handling imbalanced
datasets (Shumaly et al., 2020). Specifically, XGB, LGBM and CatB are efficient, accurate and
have a large set of hyperparameters that can be tuned (Bent�ejac et al., 2021). All selected
algorithms have shown good results using a non-sampling approach to deal with imbalanced
datasets (Johnson and Khoshgoftaar, 2022).

3.5.1 Gradient boosting. Boosting is an ensemble learning technique that consists of
sequentially applying a number of weak learners (models that performmarginally better than
random guessing) to create a strong learner (Sagi and Rokach, 2018). A boosting algorithm
assigns varying weights to the output of its estimator and optimises a loss function. In
gradient boosting, which combines the gradient descent algorithm and the boosting method,
predictors are created consecutively rather than independently, where each tree corrects the
error caused by the prior tree (Daoud, 2019).

XGB, LGBM and CatB are all advanced gradient-boosting algorithm implementations.
XGB employs innovative regularisation techniques for controlling overfitting, enhancing
scalability and speed whilst conserving computational resources (Chen and Guestrin, 2016).
LGBM introduces Gradient-based One Side Sampling and Exclusive Feature Bundling
techniques, enhancing efficiency and suitability for large-scale data processing (Ke et al.,
2017). CatB introduces an innovative approach for handling categorical features and
implementation of ordered boosting, improving its effectiveness and performance
(Prokhorenkova et al., 2018).

3.5.2 Bagging. Bagging or bootstrap aggregation is an ensemble learning method. In
bagging, some samples from the original dataset are randomly generated by replacement,
which means that each row can be selected more than once (Breiman, 2001). After multiple
data samples are generated, the outcomes generated by these weak models, which are
trained independently, are evaluated, and based on the type of task (regression or
classification), the average or majority of those predictions result in a more accurate
estimate. RF is an extended implementation of bagging. Unlike bagging, where all features
are taken into account when splitting a node, in RF, only a subset of the total features
is randomly chosen, and the best split feature of the subset is used to split each node in a tree.
It is robust against noisy data and outliers, making it less prone to overfitting
(Breiman, 2001).

3.6 Cost-sensitive learning and thresholding
In addressing skewed class distributions, two primary strategies are employed: data-level
and algorithm-level methods. The latter adjusts the learning algorithm to better manage
imbalanced data, incorporating techniques like cost-sensitive learning and thresholding
(Haixiang et al., 2017).

Cost-sensitive learning employs a cost matrix where the penalties for misclassification
are strategically set higher than those for correct classification. This can be
operationalised by adjusting the “class weight” parameter in the selected algorithms to
reflect the varying importance of each class. Thresholding involves establishing a
decision boundary to predict class membership. For imbalanced datasets, the default
threshold often proves inadequate, potentially skewing results. To counter this,
the threshold is fine-tuned during training to enhance model performance. To perform
this threshold analysis, the Precision-Recall Curve, which illustrates the trade-off between
precision and recall across different thresholds, was considered (Davis and Goadrich,
2006; Lobo et al., 2023).
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4. Experiments
To conduct the study, fourMLmodels were conceived, tuned and evaluated. The dataset was
randomly split using the common ratio of 80% for training, 10% for validation and 10% for
testing (Alazba et al., 2023). Finding optimal hyperparameters is crucial for ML algorithm
performance, but manual search can be time-consuming. Whilst Grid Search and Random
Search are common methods, Bayesian optimisation with the Hyperopt library is more
efficient and effective in terms of both accuracy and time (Putatunda and Rama, 2018). Each
algorithm has specific hyperparameters (Chen and Guestrin, 2016; Ke et al., 2017; Pedregosa
et al., 2011; Prokhorenkova et al., 2018). To improve the F1-Score and control overfitting the
following parameters were considered.

(1) “n_estimators”: Specifies the number of trees or boosting stages. More trees can
improve learning ability but may lead to overfitting.

(2) “max_depth”: Controls overfitting by specifying the maximum depth of a tree.

(3) “learning_rate”: Controls the weighting of new trees. Lower rates may improve
performance but extend training time.

(4) “colsample_bytree”: Controls column subsampling to prevent overfitting.

(5) “min_samples_leaf”: Specifies the minimum number of samples required at a leaf
node, affecting noise capture.

(6) “min_samples_split”: Defines the minimum number of samples required for node
splitting to control overfitting.

To tune and find the best hyperparameters for these models, cross-validation was used
together with Hyperopt. Table 2 depicts the hyperparameter searching space.

This study was implemented using Python, version 3.7, including some libraries such as
Pandas, Numpy,MatPlotlib,Hyperopt and Featuretools. All ML models were conceived using
Scikit-Learn.

5. Results and discussion
Based on the best hyperparameters found for each model, which are shown in Table 3,
four ML models were analysed.

Cost-sensitive learning and thresholding methods were used to deal with an imbalanced
dataset of production and repair tests to predict customer complaints. The results obtained
for each model based on this approach are presented in Table 4. To evaluate the results, the
F1-Score and MCC were the main metrics considered.

Analysing the results, CatB had the best Recall at 66.9% and FN count, whilst XGB
excelled in other metrics, including a 72.4% F1-Score and 75.0% MCC. These results were

Hyerparameter RF XGB LGBM CatB

n_estimators {100,200,300} {70,80,90,100} {70,80,90,100} {70,80,90,100}
max_depth {10,20,30} {3,4,5} {3,4,5} {3,4,5}
learning_rate – [0.1,0.3] [0.1,0.3] [0.1,0.3]
colsample_bytree – {0.5,0.6,0.7,0.8.,0.9,1} {0.5,0.6,0.7,0.8.,0.9,1} –
min_samples_leaf {1,2,4} – – –
in_samples_split {2,4,6} – – –

Note(s): RF: Random Forest; XGB: XGBoosst; LGBM: LightGBM; CatB: CatBoost
Source(s): Table by authors

Table 2.
Hyperparameter
searching space
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achieved through cost-sensitive learning, adjusting the class weight parameter and threshold
moving. The Precision-Recall curve was used to find the optimal threshold for the best F1-
Score (Brownlee, 2020). Optimising this value results in the ideal balance between precision
and recall. Figure 4 illustrates this process for the XGBmodel, showing the trade-off between
increasing Precision and decreasing Recall. The F1-Score identifies the threshold that
achieves the best balance between precision and recall.

Despite limited research on predicting customer complaints from production and repair
data for industrial processes, this study leverages insights from related fields. Prior studies
underscored the role of ML and AI in the automotive industry (Fern�andez-L�opez et al., 2022),
the significance of ML in predicting and analysing customer complaints (Alarifi et al., 2023)
and improving quality prediction (Jung et al., 2021). The obtained results of CatB and XGB

Hyerparameter RF XGB LGBM CatB

n_estimators 100 100 100 90
max_depth 30 5 3 5
learning_rate – 0.2200 0.1168 0.1298
colsample_bytree – 0.5 0.7 –
min_samples_leaf 1 – – –
min_samples_split 2 – – –

Note(s): RF Random Forest; XGB: XGBoost; LGBM: LightGBM; CatB: CatBoost
Source(s): Table by authors

Model Precision Recall F1-score MCC FP FN

CatB 66.7% 67.1% 66.9% 66.6% 545 536
XGB 99.5% 56.9% 72.4% 75.0% 5 703
LGBM 45.9% 46.2% 46.0% 45.5% 888 877
RF 94.1% 41.2% 57.3% 62.1% 42 958

Note(s): RF Random Forest; XGB: XGBoost; LGBM: LightGBM; CatB: CatBoost
MCC- Matthews Correlation Coefficient; FP: False Positives; FN: False Negatives
Source(s): Table by authors

Table 3.
Best hyperparameters
found using hyperopt

Table 4.
Obtained results for
conceived models

Figure 4.
Optimal threshold
determination using
Precision-Recall Curve
with F1-Score
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align with previous research, demonstrating their efficacy in tackling similar problems (Chen
and Lin, 2020; Yorulmuş et al., 2022). Furthermore, we found that LGBMandRFyielded lower
F1-Score and MCC values compared to CatB and XGB. Our findings also demonstrate the
potential of cost-sensitive learning and thresholding methods to enhance the performance of
these models (Petrides and Verbeke, 2022; Coussement, 2014).

The results show that the system can predict a significant number of potential complaints
based on production and repair tests. The F1-Score and MCC values indicate a balanced
precision and recall, reflecting good-quality classification. In the automotive industry, recall
values help reduce 0 km defects, preventing the shipment of faulty products to customers.
High precision minimises false positives, reducing rework and waste and enhancing
production process efficiency and profitability. The F1-Score reflects the balance between
recall and precision. Furthermore, this approach that uses threshold moving allows the
company to adjust its threshold according to specific needs, prioritising Precision to reduce
FP or Recall to reduce FN.

These results show that incorporating an ML model into the lot-release process, as
suggested by the proposed framework, can reduce customer complaints, related quality costs
and enhance efficiency.

6. Conclusion
The transition to Q4.0 requires the integration of IoT, ML and Big Data to improve efficiency,
productivity and innovation. Customer complaints can significantly impact automotive
companies. Proactive management and anticipation of issues before shipping can boost
customer satisfaction, cost savings and increase profitability.

To address this, our study focusses on improving the lot-release decision process by
predicting customer complaints for an automotive company transitioning to Q4.0. We
propose a framework with an ML model that gathers production line data to predict
complaints. Four ML models were developed, tuned, evaluated and compared. To deal with
imbalanced datasets, cost-sensitive learning and threshold-moving approaches were
considered. The F1-Score and MCC were used as the main metrics to evaluate the results.

The results highlight ML’s potential in refining the lot-release decision process, predicting
customer complaints and reducing quality costs. XGB outperformed other algorithms with
an F1-Score of 72.4% and an MCC of 75%, balancing recall and precision effectively.
Compared to the heuristic rule-based system, the framework detected a significant number of
tests related to customer complaints, showcasing ML’s benefits. The proposed framework,
using a non-sampling, threshold-moving approach, allows the prioritisation of false negatives
or false positives reduction according to company-specific needs. This enables efficientmodel
adjustment by modifying the threshold, avoiding retraining. It improves quality
performance, reduces false negatives or positives and increases operational efficiency by
saving time, resources and costs. The study reaffirms the importance of big data handling,
improved prescriptive analytics, a change-receptive culture and top management
commitment to Q4.0. We believe that our study contributes to the field of Q4.0 by
underscoring the potential of ML in transforming industry practices and enhancing quality
control in the era of digital transformation.

From a theoretical perspective, this study enriches the understanding of how ML can be
applied to improve quality control in the context of Q4.0. It also provides insights into the
importance of model evaluation metrics in the context of predicting customer complaints.
Additionally, it contributes to the theoretical knowledge of handling imbalanced datasets
using a non-sampling approach.

From a managerial perspective, these findings can guide strategic ML and big data
investment decisions. They also stress fostering a change-receptive culture, securing top
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management’s Q4.0 commitment and highlighting the need for resource allocation and
employee upskilling.

Leveraging a data-driven approach, a key aspect of Q4.0, the proposed framework holds
several implications for the automotive industry. Contribute to reducing 0 km defects and
customer complaints by preemptively identifying quality issues and enabling proactive
quality control measures. This proactive approachmay lead to decreasedwarranty and recall
costs. Ultimately, it can contribute to cost savings, improved customer satisfaction and
enhanced brand reputation, helping the Q4.0 transition.

Whilst the proposed framework has demonstrated promising results with real-world data,
future research should replicate these findings in larger datasets for better generalisation.
Exploration of alternative ML algorithms, including deep learning models, and an expanded
hyperparameter search space is warranted. Additionally, resampling methods should be
considered for addressing imbalanced datasets. Subsequent evaluation should
comprehensively assess the framework’s performance, potentially leading to the exclusive
adoption of the ML approach and elimination of manual rules. Further research into the
economic implications, contingent upon financial data availability, could elucidate potential
cost savings and efficiency gains. The absence of financial data at this phase constrained our
ability to evaluate this aspect.

Overall, this study contributes to the understanding of how advanced technologies, such
as ML, can be used to improve lot-release decision processes and enhance Q4.0 adoption. The
proposed framework incorporates an ML model with a non-sampling approach into the lot-
release decision process and demonstrates its effectiveness in predicting customer
complaints and reducing quality costs. The insights gained from this study are valuable
for companies seeking to evolve towards Q4.0.
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