To read this content please select one of the options below:

Advanced wastewater treatment of micropollutants – state of the art

Linne Marie Lauesen (Vand og Affald, Svendborg Municipality, Svendborg, Denmark)

Technological Sustainability

ISSN: 2754-1312

Article publication date: 21 January 2022

Issue publication date: 19 September 2022

703

Abstract

Purpose

Micropollutants in the aquatic environment pose threats to both ecosystems and human health. Traditional wastewater treatment plants (WWTP) reduce some micropollutants, especially those who adhere to sludge or suspended matter. The hydrophilic micropollutants, on the other side, which may be non-biodegradable and resistant to UV-treatment etc. are typically transported untreated into the water recipients. This paper contains a literature study on the state of the art of advanced wastewater treatment technologies for reducing micropollutants such as pharmaceutical degradation products, personal care products, surfactants and industrial chemicals including heavy metals.

Design/methodology/approach

This literature study is completed using the most extensive and expansive literature database in the World to date, Google Scholar (GS). Published papers in recognized scientific journals are sought out in GS, and for relevance for this literature study, papers published here from 2016 and onwards (the last 5 years) have been chosen to eliminate irrelevant studies.

Findings

The result of the study is that there are many promising technologies on the market or emerging; however, no one solution treats every micropollutant equally well. Since advanced technologies often require expensive investments for municipalities and companies, it is important to identify which micropollutants pose the highest risk towards human health and the environment, because choosing systems to eliminate them all is not economically wise, and even choosing a system combining the existing technologies can be more expensive than states, municipalities and private companies are capable of investing in.

Research limitations/implications

The research is limited to published papers on GS, which may omit certain papers published in closed databases not sharing their work on GS.

Practical implications

The practical implications are that practitioners cannot find go-to solutions based on the conclusions of the research and thus need to use the results to investigate their own needs further in order to make the wisest decision accordingly. However, the paper outlines the state of the art in advanced wastewater treatment and explains the benefits and downsides of the technologies mentioned; however, more research in the field is required before practitioners may find a proper solution to their specific issues.

Social implications

The social implications are that the consequences of introducing a removal of micropollutants from the water environment can ultimately effect the citizens/consumers/end-users through added costs to the tariffs or taxes on advanced wastewater treatment, added costs on everyday goods, wares and products and added costs on services that uses goods, wares and products that ultimately produces micropollutants affecting the water environment.

Originality/value

This paper presents a much needed state of the art regarding the current advanced technologies to mitigate micropollutants in wastewater. The overview the paper provides supports politics on national as well as international levels, where larger unions such as the EU has stated that advanced wastewater treatment will be the next step in regulating pollutants for aquatic outlet.

Keywords

Citation

Lauesen, L.M. (2022), "Advanced wastewater treatment of micropollutants – state of the art", Technological Sustainability, Vol. 1 No. 2, pp. 101-120. https://doi.org/10.1108/TECHS-09-2021-0007

Publisher

:

Emerald Publishing Limited

Copyright © 2021, Emerald Publishing Limited

Related articles