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Abstract
Purpose – This paper aims to propose an enhanced densely dehazing network to suit railway scenes’
features and improve the visual quality degraded by haze and fog.
Design/methodology/approach – It is an end-to-end network based on DenseNet. The authors design
enhanced dense blocks and fuse them in a pyramid pooling module for visual data’s local and global features.
Multiple ablation studies have been conducted to show the effects of each module proposed in this paper.
Findings – The authors have compared dehazed results on real hazy images and railway hazy images of
state-of-the-art dehazing networks with the dehazed results in data quality. Finally, an object-detection test is
taken to judge the edge information preservation after haze removal. All results demonstrate that the
proposed dehazing network performs better under railway scenes in detail.
Originality/value – This study provides a new method for image enhancing in the railway monitoring
system.
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1. Introduction
Railway has taken an important role in the economic and social development of modern
countries. Boosting railway mileages and high-level requirements of speed, transport
capacity and service quality have led railway security maintenance into a crucial research
field. Railway intelligent transportation system (RITS) (Li et al., 2003) is broadly applied
nowadays in railway daily operation. The system is integrated by electronic techniques,
communication, artificial intelligence and information techniques for keep railway operation
safety.

Railway monitoring system (Sacchi and Regazzoni, 2000) has been taken an important
place in RITS, based on developments of visual equipment and network transmission
bandwidth. The system could capture visual data by cameras, which are always used along
railway tracks or on UAVs. It is designed to serve for railway operation department for 24 h
to monitoring dramatic changes of facilities and environment around the railway and
analyze visual data to help railway operation and dispatch department on railway planning,
dispatching, interlocking, etc. It is helpful to avoid railway operation accidents, provide
alarms and show real-time situations of the railway operation site.

Haze (Nayar and Narasimhan, 2002) is one kind of severe weather phenomena, which is
caused by polluted atmospheric aerosol. It would cause light absorbing and scattering
during the way between the original illumination source and receivers. For human visual
tasks, haze would degrade visibility badly, which interrupts human judgments of the
surrounding environment. For computer visual tasks, the quality of visual data captured by
camera-lens in hazy days would be degraded in hue, saturation and value. Hazy visual data
would lose important pixels information and is hard to be directly processed in high-level
visual tasks, such as image segmentation and detection.

In recent years, haze has been constant around industrial cities, which have dense
railway networks. It declines the railway monitoring system’s efficiency and degraded
railway drivers’ visibility hardly. Railway operation apartment has to make decisions such
as railway outage and speed reduction in hazy days to decline railway operation accidents.
Haze has threated railway operation safety seriously. Therefore, haze removal has been
more and more important for railway monitoring systems (Cao et al., 2020; Liu et al., 2020;
Wu et al., 2020).

Because of development of computer vision and artificial intelligence techniques in
recent years, railway monitoring system has taken a more intelligent role in daily railway
operation with the help of deep learning, high-definition cameras and graphics processing
unit (GPU) computing power. Visual data captured by the Railway monitoring system has
the most various information in RITS. Researchers and practitioners have got remarkable
achievements of visual objects classification, detection and segmentation techniques in
automatic driving and traffic operation. However, visual data captured in foggy or hazy
days usually suffers bad data quality, which affects the efficiency and precision rate of
visual tasks such as image detection and recognition in railway monitoring systems badly.

Image dehazing algorithm has been a crucial challenge to enhance hazy and foggy
images’ qualities and restore blurred pixel information in computer vision. Multi-image haze
removal and single image haze removal are two main directions in this field. Multi-image
haze removal (Jiang and Lu, 2018; Li et al., 2015) needs images from multiple sources to
estimate climate parameters. However, equipment limitations and running time of multi-
image haze removal methods are not suitable under railway scenes. Most cameras are
monocular and deployed in distances of over 150 m. Multi-image haze removal methods are
hard to collect data set and take experiments in the railway monitoring system. Single image
haze removal (Ancuti and Ancuti., 2013; Fattal, 2008; Tan, 2008; He et al., 2011) is an
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ill-posed problem that estimating climate parameters for dehazing from single images is
difficult. However, single image haze removal methods have achieved great results in recent
works. In addition, their technical characters fit monocular railway scenes better (Plate 1).

To improve visual data’s quality in hazy days under railway scenes, an enhanced
densely dehazing network is proposed for single image haze removal in this paper. Because
of complex monitoring scenes and railway visual data’s features, the paper makes the
following contributions:

First, a novel end-to-end densely dehazing network is proposed. Enhanced dense blocks
(EDBs) have taken in DenseNet (Huang et al., 2017) structure. EDBs can capture feature
tensors of haze images more efficiently than original dense blocks. The network is an end-to-
end structure without human guidance and prior information.

Second, adding a pyramid pooling module (PPM) (He et al., 2015; Han et al., 2017) tends to
fuse localize and global image features well. Multi-scale average-pooling results of hazy
image feature tensors concatenate with original feature tensors. Fusing features are helpful
to avoid dehazing results with a non-uniform style.

Finally, an edge-preserving loss function is proposed for restoringmore edge information
of hazy images. Image dehazing methods under railway scenes need to enhance image
quality and prepare data for high-level visual tasks. This loss function could increase the
accuracy of foreign objects detection in the railway monitoring system.

The structure of this paper is following:
In Section 2, the research background and related works are introduced. Railway

monitoring system, railway hazy images’ features and single image haze removal methods
have been discussed. In Section 3, an enhanced densely dehazing network and its modules
are proposed. In Section 4, extensive experiments are taken on synthetic data sets and
railway hazy images data set. Ablation tests, image dehazing tests and image detection tests
have demonstrated our proposed network’s improvements for railway hazy images
dehazing. The conclusion would be discussed in Section 5.

2. Background and related works
Railway monitoring systems now is broadly applied in daily railway operations. Because of
computer vision techniques such as image recognition and image detection have got great
development in recent years, visual data is getting much more helpful to keep railway
operation safety.

These high-level vision models’ training needs high quality image data sets to match the
precision ratio demands, but visual data captured by monitoring cameras in railway
monitoring systems on hazy days would be degraded seriously. A typical haze image under
the railway scene is shown in Plate 2. The objects, which are far from the camera lens, are
blurred and difficult to be detected and recognized by human or computer vision algorithms.

Plate 1.
Haze removal sample
under railway scene
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The data flow of visual data in railway monitoring system needs to be optimized like in
Figure 1.

The visual data captured in railway monitoring system should be first addressed by the
low-level vision tasks, such as classification (judging whether the input data needs to be
dehazed), data enhancement (expanding size of data sets to assure neural networks’
efficiency) and image enhancement algorithms (image dehazing, deraining and deblurring).
In this paper, a novel single image haze removal method is proposed for the railway
monitoring system.

For a good description of hazy removal progress, Nayar and Narasimhan (2002)
proposed the atmosphere scattering model, which can explain the image degradation caused
by haze and fog in math. The model is formulated as:

I xð Þ ¼ J xð Þt xð Þ þ A xð Þ 1� t xð Þð Þ

where I is the hazy image, J is the true scene radiance, A is the global atmospheric light, t is
the transmission map and x is one pixel. The transmission map can be expressed as t(x) =
e�bd(x), where b is the attenuation coefficient of the atmosphere and d is the scene depth. In
a haze removal task, the I is given to estimate the J.

Most haze removal algorithms are based on the atmosphere scattering model.
Estimating global atmospheric light, attenuation coefficient and image depth into
transmission map is an ill-posed problem. During the past two decades, single image
haze removal methods are broadly divided into two main groups, namely, prior-based
methods and learning-based methods. Prior-based methods need prior character
information to estimate climate parameters for image dehazing, such as dark-channel
prior, color-lines prior and haze-lines prior methods. As the convolutional neural
networks (CNNs) have got great development in the computer vision tasks, the
learning methods are able to estimate atmosphere light and transmission maps
directly without priors. It makes the dehazing methods more general to fit different
scenes and decrease the difficulty of algorithms. Some important works are
introduced as follows:

Plate 2.
Haze image under

railway scene

Dehazing
network

221



� Prior-based methods: Researchers in this field are trying to build physical models
for describing hazy images and concluding image features. Fattal (2008) proposed a
physical-based method based on assumption that transmission maps and pixel
colors are uncorrelated in the local region to estimate the albedo of haze images’
background. Tan (2008) proposed a patch-based contrast-maximization method
based on Markov random fields to enhance hazy images’ color contrast. He et al.
(2011) proposed a dark channel prior model, which depends on the observation that
RGB outdoor images have at least one low intensity channel called dark channel, to
estimate the transmission maps for image dehazing. Berman et al. (2017) proposed a
haze-line method based the color-line method and depth estimation.

� Learning-based methods: Learning-based single image haze removal methods are
data-driven to estimate transmission maps without prior information. Cai et al.
(2016) has firstly introduced an end-to-end CNN network with a novel BReLU unit
for image dehazing. Ren et al. (2016) proposed a deep neural network with the multi-
scale structure to estimate hazy images’ transmission maps. Li et al. (2017a)
proposed a image dehazing network named all-in-one, which estimated the
transmission map and the atmosphere light into one variable K. More recently, Ren
et al. (2018) proposed a gate-mixed method, which is an end to end network
mixing the contrast, white-balance and gamma corrections features together.

Figure 1.
Data flow of railway
monitoring system
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Zhang and Patel (2018) proposed a single image dehazing network, which added a
multi-level PPM to estimate transmission maps.

Haze removal methods are helpful to deal with the degradation problem in hazy images.
However, haze images under railway scenes are different from samples in popular haze
images data sets. The challenges can be confronted as follows:

� Isolated background scenes. The hazy images’ backgrounds are isolated under
railway scenes. Most visual data’s upper background is the sky and lower
background is railway infrastructures. Two parts are quite different from the main
color and pixel distribution. Image dehazing methods must overcome local-
concentration results. Uniform image style is important for visual data quality. In
addition, hazy images under railway scenes are hard to be collected on the internet
without open-source data sets. It is hard to train a data-driven railway image
dehazing network based on the above methods.

� Depth information. The image depth under railway scenes is hard to be estimated
(Li et al., 2017b; Ummenhofer et al., 2017). Most kinds of depth images camera, such
as TOF, stereo cameras and Kinect are limited in distance between 5 m and 30 m.
However, cameras in railway monitoring systems have huge image depth over the
range. Lidar is the most popular solution for detecting depth of field in long
distance, such as auto-driving and robots. While the expensive cost makes the
employment plan hard to be taken in the railway monitoring system. All above
means haze removal methods based on atmosphere scattering model are not very
suitable for hazy images under railway scenes.

� Precision rate of image segmentation and detection algorithms in haze removal
results. The images under railway scenes always contain obvious edge information.
The center regions of hazy images are blurred seriously by aerobics, which are
always treated as the most far points along railway tracks. The edge information
needs to be restored after the haze removal in the railway monitoring system, which
serves for high-level visual tasks (Eitel et al., 2015). Image dehazing method under
railway scenes should be able to improve images’ quality and restore edge
information at the same time.

Because of the observations above, recent single image haze removal methods based on the
atmosphere scattering model to estimate climate parameters and transmission maps
are hard to be applied in the railway monitoring system. To tackle the problems above, a
single image haze removal method without transmission maps is necessary. CNNs for image
style transfer, image de-blurring and image de-raining have archived developments in
directly building non-linear links between inputs and targets. Proposed image dehazing
method should complete the transformation between hazy images and clear images, restore
edge information and keep the whole dehazed image plane in a uniform style matching
human perceptual-satisfied demands.

3. Enhanced densely dehazing network
The proposed enhanced densely dehazing network architecture is illustrated in Figure 2.
The network consists of the following three modules, namely, EDBs, PPM and edge-
preserving loss function. For building the direct transformation form hazy images and clear
images, the network structure is end-to-end without prior information and using an auto
encoder and decoder.
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The network backbone is based on DenseNet (Huang et al., 2017), which is introduced by
Huang. DenseNet could increase network layers by concatenating features and require
fewer parameters than former convolutional networks. To ensure maximum information
flow between layers, each layer in DenseNet has direct access to gradients from loss
functions and original input. These advantages mean that DenseNet is easier to train and
has smaller parameter sets. In addition, image feature maps could be kept in the data flow in
feed forward progress. Therefore, the DenseNet is taken as auto-encoder’s backbone in this
work.

3.1 Enhanced dense blocks
A densely encoder is proposed to extract more features from input hazy images. Original
dense blocks just consist of bottleneck layers with Conv layers, Conv (1� 1) and Conv
(3� 3), in kernel sizes of one and three. The Conv layers mean a batchnorm (Ioffe and
Szegedy, 2015) layer, a ReLU layer and a convolutional layer. To build direct non-linear
transformation from hazy images to clear images, the network must have more efficient
feature extraction layers. Conv (1� 1) layer based on the optimization method of ResNet (He
et al., 2016) is increased into the dense block. In addition, only the first batchnorm layer is
retained. EDBs can be described in Figure 3. The transition blocks are the same to the
original DenseNet module. To boost network training, three former dense blocks’
parameters are taken from pre-trained densenet-101 model. EDBs can refined network
dictionaries based on them. The feature sizes are transformed in the range of 512 and 16.
The whole progress contains five EDBs and five responding refined transition blocks are
prepared for the decoder.

Figure 2.
The architecture of
Enhanced Densely
Dehazing Network

Figure 3.
The structure of
enhanced dense
blocks
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3.2 Pyramid pooling module
To fuse localize and global image features, a PPM (He et al., 2015; Han et al., 2017) is taken
into our decoder. In the encoder, the network is focused on features extraction as the layers
increase. However, for a better result for image dehazing, the global features of image planes
need to be considered. They are important for restoring a uniform image style. Without
different scales of global image features, image dehazing results could avoid localize haze
concentration. To address this issue efficiently, a multi-scale PPM is adopted to make sure
that features from different scales concatenate with encoder results. This idea is inspired in
image classification and segmentation tasks for efficient use of global context information.
The encoder results are tackled by average-pooling layers to 1/4, 1/8, 1/16 and 1/32 sizes of
inputs. These features would be up-sampled to the original encoder results’ size and
concatenated back with the encoder results before the final image translation.

3.3 Edge-preserving loss function
It is important to restore more edge information of hazy images under railway scenes for
high-level visual tasks. Inspired of previous methods, the Euclidean loss (L2 loss) (Huang
et al., 2014) leads to blur the final result and the results lose the details, leading to the halo
artifacts in the images. However, L2 loss is helpful to keep structure consistency during
images translation. To overcome this problem, image dehazing methods in railway
monitoring systems need other loss functions to restore edge information. The edge
information can be captured from the following two observations. The images’ gradients
can characterize the image intensities and when the gradients change sharply, the lines of
edges can be captured. As the low-levels of CNN’s structure has been found that the features
in these levels are the simple features, such as edges and contours, the first few layers can be
treated as the edge detector in the deep learning network. The pre-trained VGG-16 model’s
output of layer relu1_2 can capture the edge information clearly. The perceptual loss based
on the pre-trained VGG-16 model in low-level vision tasks is proposed by Johnson et al.
(2016).

Based on these observations and inspired by the gradient loss used in depth estimation
and image segmentation, the edge-preserving loss is proposed and contains three different
parts, namely, two-directional gradient loss, perceptual loss and smooth L1 loss:

Le ¼ aLg þ bLf þ cLs

where Le indicates the edge-preserving loss, Lg indicates the gradients loss, Lf indicates the
edge feature loss and Ls indicates the smooth L1 loss. a, b and c are parameters trained by
the network:

Lg ¼
X

w;h
jj Gx Ið Þð Þw;h � Gx J 0ð Þð Þw;hjj2 þ jj Gy Ið Þð Þw;h � Gy J 0ð Þð Þw;hjj2

where Gx and Gy are the gradients in horizontal direction and vertical direction and the w
and h indicate the width and height of the output feature map. I and J’ are the input and
output of the network:

Lf ¼
X

c;w;h
jj V Ið Þð Þc;w;h � V J

0� �� �
c;w;hjj2

whereV represents the edge detector, the layers before relu1_2 from the pre-trained VGG-16.
c,w and h are the dimensions of the corresponding low-level feature inV:
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Ls ¼ 0:5 I � J
0� �2

; if jI � J 0j < 1
jI � J

0 j � 0:5; otherwise

(

Smooth L1 loss has replaced L2 loss in Faster-RCNN (Ren et al., 2017), for it is less sensitive
to outliers than L2 loss. It means the training with a smooth L1 loss would have more
robustness.

4. Experiments
In this section, the experimental details and evaluation results on synthetic hazy data sets,
real-world hazy data sets and railway hazy data sets have been introduced. Enough ablation
tests have been taken to demonstrate the improvements of our proposed enhanced network
architecture. The dehazing performance on the synthetic data set and real data set is
evaluated in terms of peak signal to noise ratio (PSNR) and structure similarity (SSIM).
Image dehazing results of the proposed method are compared with other state-of-the-art
dehazing methods’ results. The image detection experiment tests the dehazed outputs in
railway data set by the Faster R-CNNmodel for edge-preserving loss function.

4.1 Data sets
Now learning-based dehazing methods are mostly data-driven. In theory, it is extremely
hard to make hazy images data set that clear and hazy images are in the same illumination
and environment conditions in large scale. Researchers have to make synthetic hazy images
data set. Similar to the existed learning-based haze removal methods, the synthetic hazy
data set is based on the NYU-depth 2 data set (Silberman et al., 2012) by the method
proposed by Li et al. (2017a). Each pair of clear images and their depth matrices generate
four corresponding hazy images. During the synthesis progress, atmosphere light
conditions are random in the range ofA[[0.4,1] and the scattering coefficients are random in
the range of b [[0.4,1.6]. A random set of 1,200 images are selected from the NYU-depth 2
data set to generate the training and valuation data set. In addition, another 300 images are
made into synthetic test data set in a similar way. Training data set and test data set have
been ensured with no duplicate images.

Outdoor hazy images data set in NTIRE challenge are chosen for outside hazy images
test. Hazy images in this data set are made by the fogging machine to simulate haze climate
close to real world. However, the data set’s scale is small with only 25 indoor images and 35
outdoor images. It would be a good test data set for image dehazing methods without image
depth information. In addition, the high-resolution clear and hazy images in pair are easy for
image quality assessment in PSNR and SSIM.

Finally, image dehazing test and image detection test under railway scenes are based on
railway hazy images collected on the internet. The dehazing algorithm proposed in this
paper has been optimized for railway hazy images’ features. While there is no open-source
railway hazy data set, railway hazy images would be only used for the test in this paper.

4.2 Training details
During training, ADAM (Kingma and Ba, 2014) is chosen as the optimization algorithmwith
a learning rate of 5� 10�3 and the batch size of 8. All the training samples are resized to
512� 512 and clear images are pair with hazy images. The model is trained for 100 epochs.
The a, b and c in Le are selected as a= 0.5, b= 0.8 and c= 1. All training and experiments are
done on a PC with an Intel i7-CPU and an NVIDIA TITAN X GPU. The network parameters
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are trained on the deep learning platform, Pytorch and for 400 epochs on the synthetic hazy
data set.

4.3 Evaluation standard
Inspired by other image dehazing methods, PSNR and SSIM index are usually chosen as the
evaluation standard. PSNR and SSIM are defined as follow:

PSNR J
0
; I

� �
¼ 10� log10

2552ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jJ 0 � J j2

q

where J and J’ are the ground truth image and corresponding predicted haze-free image:

SSIM ¼ 2m Jm J 0 þ C1
� �

2s JJ 0 þ C2
� �

m 2
J þ m 2

J 0
þ C1

� �
s 2

J þ s 2
J 0
þ C2

� �

where m J and m J’ are the average value of the ground truth image J and corresponding
predicted haze-free image J’. s J and s J’ are the standard deviations of J and J’.

4.4 Ablation study
To prove each module’s improvement in the proposed dehazing network, a set of ablation
tests is designed like the following experiments:

� Image dehazing network with EDBs and with original dense blocks.
� Image dehazing with and without PPM.
� Image dehazing network trained by L2 loss and by our edge-preserving loss. All test

models are trained in the same conditions for fair comparisons.

4.4.1 Effect of enhanced dense blocks. In our proposed network, EDBs are designed to take
place of original dense blocks for capturing image features. In this experiment, the image
dehazing network would be trained in two different structures, with original dense blocks
and with our EDBs. The PSNR and SSIM test results show proposed EDBs could improve
the image quality of dehazing results on NYU-Depth 2 data set. The PSNR and SSIM ratios
are averages of 300 images (Table 1).

4.4.2 Effect of pyramid pooling module. To demonstrate the improvement by PPM, the
network has been trained in two settings as before, namely, without PPM and with PPM.
The dehazing results in the NTIRE indoor data set have clearly displayed differences
between two networks in Figure 4. The pixels in image c around the blue toy have been in a
more uniform style than pixels in image b.

Table 1.
Average PSNR and

SSIM results for
ablation study for
effect of enhanced

dense blocks

Original dense blocks Enhanced dense blocks

PSNR 19.51 19.72
SSIM 0.8212 0.8346
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4.4.3 Effect of loss functions. In the third ablation study, the effects of using edge-preserving
loss and L2 loss are tested. Image dehazing network is trained with two loss functions
separately. Image dehazing results in Figure 5 could show that tire lines in image c are more
clear than those in image b. It proves using edge-preserving loss function to train dehazing
networks could restore more edge information of hazy images.

4.5 Image dehazing experiments
For verification of the proposed enhanced densely dehazing network, there are three
experiments taken to make comparisons with state-of-the-art single image haze removal
methods in this part. DehazeNet (Cai et al., 2016), MSCNN (Ren et al., 2016) and AODNet (Li
et al., 2017a) are taken in experiments. All of these methods are data-driven and rely on
transmission maps estimation. The experiments are as follows:

� Test on NYU-depth 2 synthetic hazy image data set.
� Test on NTIRE outdoor hazy image data set.
� Test on railway hazy image data set.

4.5.1 Test on NYU-depth 2 synthetic hazy image data set. To evaluate the image dehazing
quality of the proposed method, the first experiment is taken on NYU-depth 2 synthetic hazy
image data set. The proposed method could complete image dehazing directly without
transmission maps estimation. Hazy images in the NYU data set are under indoor scenes
and provide image depth information. In PSNR and SSIM test of 300 synthetic hazy image,

Figure 4.
Image dehazing with/
without pyramid
poolingmodule.

Figure 5.
Image dehazing with
L2 loss and edge-
preserving loss.
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proposed method get the best score in PSNR test and AODNet gets the best score in SSIM
test. In addition, the other algorithms are running on matconvnet that cost a longer time.
While dehazing results of these models on traditional real-world test images are different,
results of MSCNN and AODNet have higher image contrast and image distortion.
DehazeNet has halo artifacts around the human body. Proposed method achieve better
visual perceptual results (Table 2 and Figure 6).

4.5.2 Test on NTIRE outdoor hazy image data set. For hazy data in NTIRE outdoor hazy
image data set is made by fogging machine, there is no image depth information. The
proposed method have been trained on the NTIRE outdoor hazy image training data set. As
the other methods rely on the transmission map estimation model, the network parameters
are provided by their authors (Table 3 and Figure 7).

Table 2.
Average PSNR and

SSIM results on NYU-
depth 2 synthetic

hazy image data set

DehazeNet MSCNN AODNet Proposed

PSNR 18.85 19.21 19.68 19.72
SSIM 0.7812 0.8283 0.8401 0.8346

Figure 6.
Dehazing results
evaluated on real-

world images.

Table 3.
Average PSNR and SSIM

results on NYU-depth
2 synthetic hazy
image data set

DehazeNet MSCNN AODNet Proposed

PSNR 16.53 17.56 15.03 24.598
SSIM 0.6312 0.6495 0.5385 0.777
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This test is trying to simulate railway hazy images data set. Without precise depth
estimation, methods based on transmission maps tend to under dehaze results and darker
image planes. Results of proposed methods are closer to the ground-truth and have less
image distortions.

Figure 7.
Dehazing results
evaluated on NTIRE
outdoor hazy images.

Figure 8.
Dehazing results
evaluated on railway
hazy images dataset.
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4.5.3 Test on railway hazy image data set. Finally, above image dehazing methods are
tested on real-world railway hazy images. As the prior experiment, methods based on
transmission maps estimation all archive under-dehaze results. Our proposed methods’
results are muchmore clear andmatch human perceptual demands (Figure 8).

4.6 Image detection experiments
Railway monitoring system now is going to take more high-level visual tasks. Foreign
objects detection by visual surveillance has been a crucial problem now. To evaluate the
edge information preserving ability in our proposed image dehazing method, dehazed
results are taken in an image detection experiment based on Faster RCNN (Ren et al., 2017).

From observation of image detection results in Figure 9, a number of detected objects
does not change in the first pair of hazy and dehazing images, but the precision ratio has
increased from 0.967 to 0.995. In the other pair, a number of detected objects and precision
ratio are both enhanced in dehazing results. These demonstrate proposed image dehazing
method is helpful to enhance the accuracy and efficiency of the image detection algorithm
under railway scenes.

Figure 9.
Foreign objects
detection results

evaluated on railway
hazy images and
dehazing results.
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5. Conclusion
In this paper, an enhanced densely dehazing network for hazy railway monitoring images is
proposed without transmission maps estimation. Different from the existing methods,
which are based on the atmosphere scattering model for transmission maps estimation and
image dehazing, proposed image dehazing method could complete non-linear translation
from hazy images and clear images. The network is efficient in synthetic, real-world and
railway hazy image data sets.

The proposed method has been proved in the following contributions. First, the novel
network architecture could get image dehazing results in an end-to-end way. The EDBs
could capture features more efficiently than original dense blocks.

Second, the PPM is taken to avoid dehazing artifacts to a certain extent. It could fuse
hazy image local features and global features and especially works well in open background
railway images.

Finally, the edge-preserving loss function could help the network to restore edge
information from hazy images. It has been tested by an image detection algorithm. Railway
monitoring system could depend on our dehazing results for complex and precise visual
tasks.

It should be noted that this work provides a new method for image enhancing in the
railway monitoring system. However, the accuracy and running time still cannot match
railway operation demands. For further research, railway image dehazing method needs to
match real-time and robustness requirements in railway monitoring systems for practical
application.
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