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Abstract

Purpose — Resilience concepts in integrated urban transport refer to the performance of dealing with
external shock and the ability to continue to provide transportation services of all modes. A robust
transportation resilience is a goal in pursuing transportation sustainability. Under this specified context,
while before the perturbations, robustness refers to the degree of the system’s capability of functioning
according to its design specifications on integrated modes and routes, redundancy is the degree of duplication
of traffic routes and alternative modes to maintain persistency of service in case of perturbations. While after
the perturbations, resourcefulness refers to the capacity to identify operational problems in the system,
prioritize interventions and mobilize necessary material/ human resources to recover all the routes and modes,
rapidity is the speed of complete recovery of all modes and traffic routes in the urban area. These “4R” are the
most critical components of urban integrated resilience.

Design/methodology/approach — The trends of transportation resilience’s connotation, metrics and
strategies are summarized from the literature. A framework is introduced on both qualitative characteristics and
quantitative metrics of transportation resilience. Using both model-based and mode-free methodologies that
measure resilience in attributes, topology and system performance provides a benchmark for evaluating the
mechanism of resilience changes during the perturbation. Correspondingly, different pre-perturbation and post-
perturbation strategies for enhancing resilience under multi-mode scenarios are reviewed and summarized.

Findings — Cyber-physic transportation system (CPS) is a more targeted solution to resilience issues in
transportation. A well-designed CPS can be applied to improve transport resilience facing different
perturbations. The CPS ensures the independence and integrity of every child element within each functional
zone while reacting rapidly.

Originality/value — This paper provides a more comprehensive understanding of transportation resilience
in terms of integrated urban transport. The fundamental characteristics and strategies for resilience are
summarized and elaborated. As little research has shed light on the resilience concepts in integrated urban
transport, the findings from this paper point out the development trend of a resilient transportation system for
digital and data-driven management.
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1. Introduction

The word “resilience” originates from the Latin word “resiliere” which means “bounce-back”
or “flexibility.” Holling (1973) first conceptualized “resilience” in the context of ecological
systems and classified the distinction between resilience and stability. The concept of
resilience has been introduced to different disciplines, including economics (Rose and Liao,
2005), social science (Barnett, 2007), system science and engineering (E. Hollnagel et al.,
2006). The concept of resilience has been introduced and expanded in the transportation
discipline, especially in recent years. Thus, there are no universal definitions for
transportation resilience. While addressing the detailed resilience concept in transportation,
there are two mainstream ways of defining transportation resilience (Perrings, 1998). One
focused the disruption that could be absorbed before the transportation system is degraded
to a worse state. According to Holling (1973), this way is not determined whether the system
itself is near an equilibrium state or not. The other evaluated the ability to maintain regular
operation after a disruption, which is usually described as the decrease in system
performance (Chopra et al., 2016; Murray-Tuite, 2006a, 2006b; Ta, Goodchild et al., 2009).
Hence, transportation resilience could be described covered both pre-disaster impact
absorption and post-disaster. The definition of resilience corresponds to the swift recover
ability as “the ability of transportation system to respond to, absorb the incoming
perturbations to maintain its basic functions, and recover the service level at an appropriate
cost” (Wan et al., 2018).

Perturbation influences transportation resilience by influencing its performance metrics
such as robustness, flexibility and reliability. Perturbations could be either routine
systematic fluctuation or rare catastrophic events. Those challenge the ability of
disturbance resistance and performance recovery inevitably. For the rare and immense
natural disasters like tornados or earthquakes, the transportation system would inevitably
deviate away from the equilibrium states so far. The performance of the system to reduce
efficiently both the magnitude and duration of deviation from designed performance levels
is the most significant connotation of resilience (Chopra et al., 2016). However, in response to
the everyday small-scale perturbations, a well-organized transportation system that bears
the initial shock and maintains its overall function could make a real difference.

With the development of modern society and technology, transportation systems grow
more complex, unpredictable and independent. Thus, the vulnerability of the system rises
and unexpected perturbations such as extreme weather, congestions, accidents and
infrastructure failures are more easy to penetrate and affect its functionality. Therefore, its
resilience concept has developed more precise implications, varying from various levels
involved by the urban multi-mode transportation system. On the design level, it implies that
the entire system has been designed with several specific features to deal with unexpected
circumstances. On passengers’ level, transportation resilience implies the capability
to continue their traveling and remain productive even if suffering from traffic breakdown,
congestion, infrastructure failure or other incidents. On the network level, it implies that
the transportation network is accessible and available so that traffic can proceed under the
effects of accidents, emergencies, seasonal construction projects or special events. On the
mode level, it implies that various public and private modes could keep functioning
smoothly in the same roadway, but every mode has independence itself. On the futurity
level, it implies that a thorough system is ready to transform and upgrade for the possible
usage and new pattern. It also has the potential to accommodate the incoming trends.

No matter on whichever level, transportation resilience would be the most significant
concern to individuals and communities. It has a great significance for us to research the
blueprint to enhance resilience, as it is critical to the sustainability development of



infrastructure, commuters and the Integrated Urban Transportation system. These metrics
could be great indicators of measuring the variation of resilience when the system suffers
failure, such as severe congestion. Also, while turning into the countermeasure chapter, each
corresponds to an aspect of transportation resilience.

In general, a word cloud has been created over all reviewed papers of transportation
resilience as shown in Figure 1. Reviewing and unifying these papers were a considerable
effort, because they appeared in various venues of transportation resilience.

The general outline of this paper is listed in Figure 2. In Section 2, a literature review is
conducted on the distinctive characteristics of multi-mode transportation resilience, followed
by qualitative and quantitate categorization and interpretation. In Section 3, the quantitative
metrics and assessment methodology are conducted on the operational mechanism of the
resilience under different modes. In Section 4, the strategies related to the cyber-physical
transportation system in improving transportation resilience are classified and researched
in various mode scenarios. Section 5 discusses the potential future trends and research
directions in the last section.

2. Characteristics framework of urban transportation resilience

The characteristic of transportation resilience proposes an intuitionistic representation of its
definition and should be simplified, well-investigated and measurable. Bruneau et al. (2003)
first presented a resilience framework, indicating that resilience could be characterized by
four typical characteristics of resilient systems, which covered both phases in defining
transportation resilience. This “4R” characteristic framework named by Tierney and
Bruneau (2007) for transportation resilience contains four core properties: robustness,
redundancy to describe the ability to maintain functionality at the disruption phase,
resourcefulness and rapidity to describe the speed of recovery at the recovery phase.

Rest:ﬁtion
\
\ <

/ || Seismic
Recovery .

Optimization

Design

Simulation
Uncertainty

=
Transportation: ork - ¥

N 5

-/~ Disruption’ -

%

Rel@nhﬂts{ Z Management

Links Sustainability
\

Vulnerabiligy Analysis/ %
¥ % Infrastructﬁr‘e‘\, 3

L capacity”
Road Network W >

Robl‘lesé_ // Y

e

L ik %

: -/ Transportation
VST A./,,~’ < \ /
W Accesgiilty ’Vuln‘nity
Cen&!ity

Impacts Adaptation

Climate Change
ComplexiNetworks 8

& vosviewer

Integrated
urban
transport

107

Figure 1.
Bibliometric analysis
map papers reviewed

in the study, created
by Vos viewer




SRT
4.2

108

Figure 2.
Research framework
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Robustness represents the ability to respond to or withstand various disruptive events
without significant network or infrastructure functional degradation. Specifically, the
concept of robustness embodies the critical nodes in the transportation network (e.g.
network connectivity) and demand or capacity level in the realistic operation (e.g. route
capacity and travel time). Redundancy means the duplication of critical functions of the
system applicating back-up functional modules (Leobons et al, 2019). For instance, more
alternative routes between origin-destination pairs (ODs) in transportation network and
more transportation modes indicate a higher redundancy level of the system.
Resourcefulness represents the availability of materials, supplies and crews in
transportation system to restore its original functionality. The availability of
resourcefulness also represents the enrichment of assets (e.g. people and materials) in the
system and the power to spare those assets to the appropriate places in the proper timing,
while rapidity, which is a very straightforward characteristic, evaluates the transportation
system’s speed to restore functionality. More rapidity indicates the system has a more vital
ability to retrieve its normal service level in a timelier manner.

Also, Bruneau et al. (2003) introduced the resilience triangle to elaborate further their
framework in Figure 3: the idea of the resilience triangle indicates that the perturbation
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causes the sudden decrease of system performance at the time point 773; then, the system
performance gradually increases from the minimum performance level at the time point 75,
where time interval [Ty, T»] corresponds to robustness and redundancy; finally, the system
retrieves at a time point 73, where time interval [ T3, T5] corresponds to resourcefulness and
rapidity. The resilience triangle focuses on its three edges: the first edge represents the time
to reach the worst state, the second means the recovery time of functionality and the third
edge indicates the recovery speed to normal condition (rapidity).

In addition to the classical “4R” characteristic framework, the subsequent scholars and
researchers continue to add new connotation to the framework. At the disruption phase from
the disaster begins to it ends, Berle ef @l (2011) introduced preparedness as to “prepare
certain measures before perturbation happens.” It is subdivided as emergency preparedness
and response preparedness; it improves transportation resilience by lessening potential
negative impacts of certain types of perturbation (Jin, Tang, Sun, and Lee, 2014). Also,
Asbjernslett and Rausand (1999) introduced vulnerability as “the susceptibility to damage
or perturbation, especially those that are enormously destructive.” It is also regarded as the
property of a transportation system that may weaken or constrain its ability to endure,
handle and survive threats and disruptive events that originate both within and outside the
system boundaries (Blockley et al, 2012). Bhamra et al (2011) proposed adaptability (or
adaptive capacity) to reflect the system’s flexibility to respond to new pressures. Its
essences lie in response to changes in different magnitudes, reflecting the dynamic and
complex nature of transportation systems’ operational mechanisms (Dalziell and McManus,
2004; Fiksel, 2003). Similarly, flexibility is the capacity to respond and adjust to any changes
during the perturbation. According to Berle ef al (2013), flexibility is also referred to as a
transportation system to reconfigure resources and cope with uncertainties. Thus, the
connotation of flexibility contrasts with that of robustness because flexibility emphasizes
the aspect of withstanding or sustaining any changes by perturbation instead of the aspect
of adapting to them (Cox et al., 2011; Goetz and Szyliowicz, 1997).

Besides, at the recovery phase from the disaster ends to system recovery ends, Baroud
et al. (2014a, 2014b) emphasized the idea of recoverability, which is discussed in many
studies. Like rapidity, it refers to the ability to recover an acceptable proportion of
functionality from the existing perturbation at the minimum cost. Furthermore, they define
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“survivability” as the ability to withstand sudden perturbations persistently until meeting
the original demand (Baroud et al, 2014a, 2014b). Related to the vulnerability concept,
survivability techniques have been considered as an access to dealing with the vulnerability
issues of a transportation network (Faturechi and Miller-Hooks, 2014). Barker et al. (2013)
referred to reliability as another characteristic to the probability that a system or specific
network remains operative given the occurrence of a perturbation. It can be converted to
either a pre- or post-perturbation metric for measuring resilience performance (Faturechi
and Miller-Hooks, 2014).

3. Assessment of urban transportation resilience

There are two main steps in the process of measuring transportation resilience. The first
introduces metrics for measurement, and the second calculates the metric with various
evaluation approaches. Therefore, we will review the metrics and measurement approaches
in this section.

3.1 Metrics of transportation resilience

The quantification resilience has been challenging since Murray-Tuite (2006a, 2006b)
suggested some qualitative dimensions or characteristics are difficult to quantify; thus, no
widely accepted quantification of them is available for the transportation system. Therefore,
choosing appropriate resilience metrics is the most critical step before measuring
transportation resilience. The spectrum of suitable qualitative characteristics can be
expanded to use investigated or easily accessible metrics used for these components, such as
vulnerability and reliability (Faturechi and Miller-Hooks, 2015, Gu et al., 2020; Ahmed et al.,
2019).

Leonbons et al. (2019) interpreted the selection processes of the resilience metrics of
transportation systems from one or both of the following two perspectives: the ability to
maintain functionality under disruptions and the time and resources required to restore
performance level after perturbations. Zhou et @l (2019) summarized various quantitative
metrics research and concluded that those metrics could be roughly divided into three
different categories with different levels of complexity, representativeness, effectiveness and
depth: attribute-, performance- and topology-based metrics of transportation resilience.

3.1.1 Attribute-based metrics. As mentioned in Section 2, the classical framework to
describe transportation resilience consists of four attributes: robustness, redundancy,
resourcefulness and rapidity. In addition to that, much research extends the framework with
other attributes. Attribute-based metrics directly quantify some attributes on the
performance only at special periods.

In the pre-perturbation (disruption) phase, Hua and Ong (2017) used total unaffected
passenger flow to describe the extent of robustness. Beiler et al (2013) calculated
redundancy as the alternative routes between critical ODs and mentioned a travel time
index as “travel time in peak hours under normal conditions,” while Soltani-Sobh et al. (2016)
proposed the operational cost and expected failure cost as indicators to distinguish the
influence caused by a specific perturbation. Besides, Yoo and Yeo (2016) introduced
adaptive capacity metrics by calculating the number or area in which adjacent nodes can
replace an attacked node. Murray-Tuite (2006a, 2006b) quantified adaptability by the
atypical uses of the transportation system, safety by the number of traffic incidents and
mobility by the networkwide efficiency.

In the post-perturbation (recovery) phase, the resilience triangle in Figure 1 indicates
T5-T5 as the restoration time, P(77) as the maximum performance, P(75) as the robustness of
the system and [P(T5) — P(T%))/(T5-T5) as the rapidity of recovery, which are the outcome of



robustness, redundancy and resourcefulness (Tierney and Bruneau, 2007). Wang et al. (2015)
represented rapidity as the speed of the system returning to the normal state and recovery
as the time required to alleviate the systematic disarray. Furthermore, D’Lima and Medda
(2015) emphasized recoverability on the cost and speed of returning to a new equilibrium.

3.1.2 Performance-based resilience metrics. Unlike attribute-based metrics, performance-
based metrics aim to assess the performance of the transportation system during the whole
affected period. Zhou et al. (2019) identified and sort out three of the most widely used
performance-based metrics in previous literature. The first one is the time-based
degradation of system performance proposed by Twumasi-Boakye and Sobanjo (2018). The
second is the time-dependent ratio of recovery on quantifying performance loss by Liao et al.
(2018). The third is the expected fraction of demand satisfied in post-perturbation phase
using the recovery costs algorithm introduced by Chen and Miller-Hooks (2012).

The resilience index is first defined by Reed et al. (2009) equation (1), and it is based on the
concept of the resilience triangle. According to Figure 1, where R(7) is the resilience index at
time point 7, 73 is the time point when the perturbation begins. Similarly, as displayed in
equation (2), Q(7) is the performance percentage of the specified transportation system, # is the
timestamp when perturbation first occurs and ¢ + « is the timestamp when the system’s
performance completely recovers. Their theory described resilience by the metric of
performance loss from the full system performance during the whole disruptive event. It is not
surprising that the value of Q(7) is equal to the area of the resilience triangle in Figure 1.

T T
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t

Then this algorithm of system performance was modified and improved by Bocchini and
Frangopol (2012) and Adjetey-Bahun et al. (2016). As shown in equation (3), the metric of
performance loss in equation (1) is divided by the time interval « between perturbation first
occurs and system’s performance completely recovers. In the modified algorithm, resilience
is measured by the metric of average performance loss over the specified time interval a.

100 - QU)lat
Ref TS

o

®)

Liao et al (2018) introduced five system states in the whole perturbative event in Figure 4:
original stable state, system disruption state, disrupted state, recovery state and stable
recovered state. The five states are the important watershed for the time-dependent metric of
transportation resilience. The metric is the ratio of recovery at the time # to function loss at
other specified time points. As shown in equation (4), R (4; | p;) is the resilience metric at the
time £; under the resilience perturbation p;, while F (¢; | p)) is the function of system performance
at the time point # with the perturbation p;. #, is the function of the system at original stable
state. I (£, | p;) is the minimum function. In this algorithm, transportation resilience is treated
as a more dynamic concept and is more consistent with the ability to bounce back.
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Chen and Miller-Hooks (2012) proposed another widely used metric which is usually used in
the resilience in road and metro networks. The expected fraction of demand satisfied in the
post-perturbation phase using the recovery costs is calculated in equation (5), where d,, is
the maximum demand satisfied with the OD pair w at the post-perturbation phase and D,, is
the demand satisfied with the same OD pair at the pre-perturbation phase.

Re (Y, i) 6

we WDw

Furthermore, Omer et al. (2012) used the travel time as a critical metric for transportation
system performance. Similar to Twumasi-Boakye’s algorithm, the dynamic trends of
resilience over time are represented in equation (6), Where #; yeperurbation) T€Presents the
travel time during the pre-perturbation phase between node i and j, while #; post-perturpation)
indicates the travel time during the pre-perturbation phase between node 1 and j. Also, in the
rail transit system, days of lost service (LSDs) are used to measure its resilience (Chan and
Schofer, 2016). LSD can be generalized to study the resilience of public transportation
systems facing severe perturbations such as extreme weather events (Zhou et al., 2019).
Equation (7) shows how LSD is calculated, where RVMp represents revenue vehicle miles
per day at disrupted state, RV, is that at the original stable state, #; is the time point when
perturbation first occurs and ¢ is the time when the system retrieves its normal service level.

t
P 0 Lij(post—perturbation)

t ©
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In addition to the metrics that measure time costs above, Vugrin et al. (2014) tried to specify
the amount of resource expenditures required for recovery using two metrics. In
equation (8), the recovery effort in total (E) is calculated as the sum of resource expenditures
on recovery task j on the route ¢ in mode k at the time point t. b, is a binary variable
judging if this certain recovery task is successfully completed. Then, the impact of
perturbation on system performance (SI) is represented by the total cost because of
insufficient flow capacity in equation (9), where C; is the cost on route i and C; is the cost at
the pre-perturbation phase. agp is a coefficient of extra penalty costs; Dgp is the portion of
travel demand exceeding current capacity at the OD pair 1-m. Finally, the resilience could be
represented as the sum of £ and S7in equation (10), where 8 is a weighting coefficient.

E= ZiZjZthREifk * Dijit ®)
ST = Z; {Zl G-G) - Zlmalm D] O

R=E+pB«SI (10)

Compared to the attributed-based metrics, performance-based metrics are more reasonable
for describing the transportation resilience because they have fully covered the performance
of the transportation system since the perturbation first occurred. Some of the metrics also
cover time cost and resource expenditure and the ability to sustain during the disruptive
event, which all make them more robust and comprehensive.

3.1.3 Topology-based metrics. Topology-based metrics focus more on the transportation
network structure than its internal dynamic nature. They are built up with the basic graph-
based properties such as nodes and traffic flow links of the transportation network. Thus,
they are also called “centrality metrics.” Schintler et al. (2007) and Berche et al. (2009)
proposed two widely used topology-based network parameters: average shortest paths and
size of giant components. Both reflect the capacity that the transportation network keeps
connected during the perturbation. According to Schintler ef al (2007), average shortest
paths assess the strength of transportation network connection. The size of giant
components reflects the percentage of links and nodes that remain functional during the
perturbation. Besides, Aydin et al. (2018) introduced the concept of network betweenness
centrality and efficiency. Osei-Asamoah and Lownes proposed network efficiency further as
ametric in equation (11), where L;; is the length of shortest path of node i—j.

1 1
E= oD 2, (11)

In addition, Ip and Wang (2011) introduced a metric using the weighted number of reliable
passageways to calculate the reliability of a certain node and the network resilience.
In equation (12), w; and W; are, respectively, the population weight and self-exhausted
weight of the node i—j and P, (z, /) is calculated as the reliability of a passageway of the node
i-j. Hartmann (2014) proposed the algorithm of network backup capacity (Cy) of node i—j in
equation (13), where AB;; is the increase of edge-betweenness after the removal of the edge of
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with largest edge-betweenness. Testa et al (2015) enriched the theory on betweenness
centrality and further calculated network redundancy in equation (14), where NIP is the
number of independent paths between node 7 to condition of the complete graph, 7 (z, j) is the
number of independent paths between node i and af is the neighborhood of the vertices in
the neighborhood of i. In conclusion, these metrics are defined in different ways and forms,
but their essence concentrates mostly on comparing the topological details of the
transportation system with the corresponding complete graph.

n 7 . B
k= Zi:l wizjzl, J# VI]jZVk node(i.j)P ) 12)
G = max(AB ]) 13)
Redundancy = \N]P| 2 ZVJEU'Z i.7) (14)

Sun et al. (2020) explored the cities’ resilience in the global air transportation network to
single airport perturbations. They used two types of passenger-focused topological metrics
to quantify the impact on the resilience of cities’ air transportation: The unaffected
passengers and the reroutable passengers on aggregated (airport) links. A large fraction of
unaffected passengers indicates that the airport perturbation has a small effect on the
travelers, while a large fraction of reroutable passengers indicates that the airport disruption
has a smaller effect on the travelers (Sun et al., 2020).

3.2 Methodology of assessment approaches

Though assessment methodologies may differ because of the available data, researchers’
backgrounds and the level of network complexity they should address (Serdar et al., 2022),
they gave an in-depth assessment of transportation resilience. The methodology could be
summarized as follows.

3.2.1 Performance optimization model. The performance optimization model aims to
promise the best results in the system’s performance under multiple constraints. According
to Liao et al. (2018), mathematical modeling and optimization methods in the performance
optimization model are efficient and promising tools for measuring resilience. They could be
either dynamic or static and can cover different modes. However, the suggested methods
have limitations because the recovery measures’ effectiveness is highly based on human
judgment. The threats need to be identified using a yet-to-be-developed disaster database
(Liao et al., 2018).

The dynamic traffic assignment (DTA) is a widespread and effective optimization model.
Sommer ef al. (2016) introduced only an optimization-based adaptive traffic signal system on
vehicular modes. Its optimal objects are increasing the vehicular performance of the
transportation system, controlling flow to provide a more stable traffic network and
reducing congestions and vehicular stops. (Sommer et al., 2016). Geroliminis and Sun (2011)
used a macroscopic fundamental diagram in the model to optimize the linking space-mean
road traffic flow, density and speed existing in a large urban area. Their models both used
the average vehicular flow on a network as a function of the number of vehicles with
independent trip OD pairs and route choices inside a selected road system to evaluate its
robustness and redundancy level.



For the multi-mode DTA, Nogal et al. (2016) introduced the dynamic system optimal
equilibrium to a restricted DTA time-travel cost optimization model on all modes. An
optimization model for multi-mode traffic is introduced by Ye and Ukkusuri (2015) for the
recovery of the transportation system network calculating the most optimal sequence for
recovery nodes, links and routes to optimize resilience in the maximum recovery rate and
minimum recovery expenditures, while the effect of their model is highly depended on the
post-perturbation resource priority management and systematic budget allocation. Feixiong
et al. (2012) introduced the Supernetwork model to optimize travelers’ choice of all modes.
This model considers the real-world activity and trip chain and embedded travelers’
preferences for transport modes and locations in the model. All the multi-mode models have
their functions of interaction between modes to ensure optimization accuracy.

Though optimization models for multi-mode traffic are helpful in the recovery strategies
at the post-perturbation phase, they also require a considerable number of computational
resources, accurate mathematical formulation and strategic policy-supported goals to ensure
their effectiveness (Serdar ef al., 2022). The limitations of their model are the dependence on
the network impedance value that is selected and quantified based on a series of questions in
the user travel survey. This nature makes the model difficult to be extended to a large scale
and significantly relies on the accuracy of the survey conducted (Nogal et al., 2016).

3.2.2 Traffic simulation model. The traffic simulation model examines the system’s
performance under both hypothetical and actual scenarios with precedented parameters. It
is beneficial for detecting the critical functional components, systematic vulnerabilities and
any other unexpected weak points. However, Nkenyereye et al. (2019) pointed out that its
substantial processing capacity required the magnitude of what can be assessed, making the
method difficult to scale up to the magnitude of urban transportation.

In most research, simulation is suitable for assessing unique characteristics of different
modes of the transportation network. It is explicitly implemented to assess the performance
metrics instead of tracking the changes of topological and other changes of the
transportation network.

For road system simulation, Murray-Tuite (2006a, 2006b) the traffic assignment-
simulation methodology DYNASMART-P generated system user equilibrium traffic
assignments for a test network are sound to assess adaptability, mobility, safety and
rapidity. Duy et al. (2019) combined the hydrological data with operational data of local road
networks into the traffic simulation model to assess the resilience in a coastal city’s
transportation system under the impact of a flood disaster. Ganin et al. (2019) conducted a
simulation model evaluating the selected intelligent traffic signals in the road system under
cyber-attacks, and the resilience of the system under different scenarios is simulated. They
formulated the data input such as transportation network density and average delay into the
model of traffic signals effectiveness. The simulation result showed how much loss that the
locking of signals could cause to the resilience than the normal infrastructure failure. (Ganin
et al., 2019). The simulation outcome of this mode reflects the real process accurately, and
the resilience change of the road system is examined under precedented metrics.

For railway system simulation, Osei-Asamoah and Lownes (2014) used a traffic
simulation model to assess the resilience of railway transit in the urban transportation
system by comparing the model outputs under normal situations and that with
perturbations. The input performance metrics selected are travel time delay and ridership
by hours (passengers entering each station in each hour). They assumed that these
passengers were all to take the shortest way to the destination. The outcome of this mode is
a little subjective based on its assumptions; the comparison between scenarios has a certain
level of deviation.
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The method is suitable for predicting future scenarios and detecting inconspicuous
resilience problems. But its main limitation is resource-intensive and difficult to scale to
accommodate urban or larger magnitude networks, while a more precise calibration
transportation performance is also required.

3.2.3 Topological model. Corresponding to the topological metrics mentioned before,
topological models focus on calculating the shortest paths and the size of giant components.
Berche et al. (2009), Osei-Asamoah and Lownes (2014) and Ta et al. (2009) applied the
topological model to calculate the shortest paths by the distribution of node degree. Dunn
and Wilkinson (2016) and Yoo and Yeo (2016) calculated the size of giant components and
network efficiency by detecting the proportion of nodes or links that is connected as a
cluster under different perturbation scenarios. Unlike optimization models and simulation
models, topological is simpler in form. It simplifies transportation systems into quantities of
links (representing the direct routes between adjacent nodes) and nodes (representing
intersections and OD points). It has wide applications in urban transportation, but it is best
suited for water or air logistical transportation.

Calibrating the network’s connectivity from nodes to links is the key for topological
model to assess transportation resilience through topological metrics. For instance, Zhenwu
et al. (2019) implemented the “percolation theory” to the network of Chinese cities through
clusters of nodes to identify its vulnerable connections (Zhenwu et al, 2019). Cerqueti,
Ferraro and Iovanella (2019) used weighted links in the model to investigate the failure
propagation (Cerqueti ef al., 2019). Testa et al. (2015) applied the connectivity to assess the
resilience of a topological transportation network during the random disconnections of
nodes and links. Then, an integrated program (SLOSH) was applied to detect the damaged
links and nodes in the network and measure the resulting resilience under a storm surge
(Testa et al., 2015). Only when the connectivity calibrating is precise can the model be
efficient in assessing the topological metrics of the network.

Though the topological model is relatively simple to develop and apply, it has certain
limitations compared to optimization and simulation models. It cannot account for any
accidents in the links, especially for accidents that could severely affect the network’s
capacity. It also ignores the different modes of traffic as well as their available alternatives
in the nodes and links.

In addition, Zanin et al. (2018) urged that there are four major common pitfalls while
applying the network theory to measure the topology of transportation systems. 1) The
scale-freeness, which is the most important topological properties, requires both large
enough networks and the application of suitable statistical tests to avoid obtaining biased
results. 2) Beyond that, another pitfall that stems from topological metrics is highly
associated with the number of nodes and links in the selected network. Thus, comparing
different networks using same set of such metrics will lead to unreliable results. 3)
Inappropriate choices of node sequence will result in unfounded conclusions comparing to
the actual condition of real-world networks. Thus, there is a trade-off between the
assessment of high-quality attack sequence and run time of the model, because the quality
and run time both relate to the number of network nodes. The computation of variant
betweenness needs to be appropriate in the large network. 4) Comparisons between random
and targeted attacks have to be performed with care when specific metrics do not represent
the node importance very well for the network (Zanin et al., 2018).

3.2.4 Data-driven model. In recent years, because of data collection and storage
development, data-driven methods have become a more efficient way to assess
transportation resilience. Unlike the three mentioned methodologies, the data-driven method
focuses on the direct data collected to calculate and assess the change of the system’s



properties under different scenarios. However, it ignores the operation mechanism of the
transportation system during the entire process. The essence of the data-driven model is
choosing proper and representative data such as ridership, service frequency and vehicle
miles traveled of different modes. Statistical methods are sometimes used to pre-process the
data before being used as performance indicators (Zhou et al., 2019).

One essential requirement for a data-driven model to assess transportation
resilience is tracking the operational status and the performance of the system
responding to perturbations. Donovan and Work (2017) built up their data-driven
model to assess resilience by GPS data records from taxi sensors. The data they
collected was travel distance and time of taxies. They used specific rules to remove
some outliers and then normalized the trips by calculating the travel pace based on
the travel distance and time changes throughout the week. Then the statistical
Mahalanobis distance was applied to detect how the resilience is affected by special
events (Donovan and Work, 2017). The tracking of system status is not only critical
for assessing resilience but also one core requirement of cyber-physic transportation
system (CPS).

Another critical requirement of the models to investigate the outcomes of perturbations
is analyzing several types of data representing transportation systems. Diab and Shalaby
(2019) applied the statistical analysis and filtering of metro line service records to assess
resilience in terms of the “Lost Days of Service” because of the impact of perturbations (Diab
and Shalaby, 2019). They collected time series data of metro series and retrieved data of
metro networks and travelers’ behavior. Roy et al. (2019) used data from the social media
platform in their data-driven model to assess how resilience was affected by earthquakes
and storms. The diversity of data allows the model to comprehensively represent the system
trends, where data from performance and topological aspects are helpful.

The efficiency and accuracy of the data-driven model depend on the data source
availability, data filtering, data processing and data analytics. Any misrepresenting
network properties, such as topography, capacity and actual physical damage, might lead to
entirely opposite outcomes, misleading future performance predictions.

4, Strategies of enhancing resilience under various scenarios

Integrated urban transport perturbations vary in characteristics, impact scope, hazard
degree, duration and randomness (Serdar et al, 2022), as shown in Table 1. However,
perturbations can be assigned to seven main categories: severe weather, natural disasters,
terrorist attacks, transportation facilities collapse, traffic congestion, road construction and
epidemic. Hence, the strategies for enhancing transportation resilience are reviewed based
on different perturbations at different modes.

In addition to external perturbations, the current transportation system faces internal
challenges in achieving resiliency. First, the primary structure of the transportation system
is difficult to deconstruct, which indicates the sophisticated and coupling structures of the
transportation system. Second, the real-time and historical traffic situation is difficult to
deduce because of the uncertainties in perturbations. Third, the system controller is difficult
to coordinate because there are few intra-system co-operational control methods to apply.
Fourth, the resilient components of the transportation system are difficult to deploy because
they are not applicable in various complex scenarios. Hence, the goal of these strategies
below is to construct a new transportation system with an excellent ability on swiftly state
perception, capacity expansion and network reconfiguration.

The requirement is summarized as four “could”: traffic status could be monitored,
network operation could be highly controlled, reaction process could be tracked and the CPS
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system could be implemented. Furthermore, it is also to set a new benchmark for the
transportation planning, design, operation management, renewal and reconstruction of a
new generation of transportation infrastructure which is dependable and robust under
normal fluctuations and fast recovery under perturbations.

4.1 Pre-perturbation strategies of enhancing resilience

4.1.1 The road traffic scenario. According to the schematic of performance of a resilient
system (Wan ef al., 2018), road system resistance to disturbance mainly goes through two
stages: pre-perturbance and post-perturbance. In the pre-perturbance stage, the disturbance
resistance strategies aim to maintain the system running in the original state and to keep the
system capacity and demand unchanged according to the plan.

@

Demand management

Macro demand management plays a vital role in improving the system’s resilience
in advance, and it is one of the most effective ways. Specific measures include
releasing timely information (Brudny and Krawiec, 2013), encouraging the choice
of different modes of transportation (Liu ef al, 2017) and increasing relevant
incentive policies (Chen ef al, 2020). This strategy can effectively prevent the
impact caused by transportation facilities collapse, traffic congestion and other
disturbances.

Variable message sign (VMS) is a main platform to release guidance
information. Yi et al. proposed a method for location optimization of urban VMS
(Yi et al, 2019). They also gave an evaluation model for existing VMS and the
recommended frontal distance and the height of characters. Bus bridging or taxi
bridging has been widely used to connect stations affected by disruptions which
help passengers resume their journeys. A two-stage model was developed to
optimize the bridging plan and its allocation to buses, with the goal of balancing
operational priorities between minimizing bus bridging time and reducing
passenger delays (Gu et al., 2018). In addition, park and ride service is a part of
comprehensive demand management. It has been proved that despite the
complexity of finding parking spaces in the city center, park and ride services have
made progress in alleviating traffic congestion (Memon et al., 2014).

Variable speed limits control

Variable speed limits (VSLs) have a positive impact on improving highway traffic
safety and efficiency, especially for dealing with severe weather, traffic congestion
and other disturbance types. VSL control adopts advanced traffic flow and traffic
environment detection technology and automatically adjusts the current speed
limit value based on the preset control strategy. It reflects the changing road traffic
environment characteristics in real-time and releases the information to road users
in real-time.

Based on the traffic flow theory, some scholars have studied the potential
impact of VSLs on the traffic operation efficiency of the expressway, including
using this technology to eliminate the shock wave (Popov et al., 2008) in case of
congestion in the bottleneck section, so as to maintain the traffic operation in the
working area in a more uniform and stable state (Kwon et al.,, 2007) and reduce the
delay of isolated confluence area and confluence area (Carlson et al., 2010).

The academic circles have not reached a unified understanding of the impact of
VSL control on traffic capacity. The study of Dutch highway data showed that
VSLs could not improve the capacity. In some recent studies, Karimi ef al. (2004)
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believed that the VSLs control is only to replace the part of the flow occupancy
curve lower than the key occupancy rate with a straight line segment, and its slope
represents the speed after the implementation of VSL. Its theory is that there is no
improvement in traffic capacity. Papageorgiou (Carlson ef al., 2010) observed the
traffic flow of a two-way six-lane road for 27 days, obtained the traffic flow
characteristics under different speed limits and drew two conclusions: First, when
the upstream occupancy rate of the mainline is lower than the key occupancy rate,
the implementation of VSL control will reduce the average speed and increase the
density, which can reduce the traffic flow to the bottleneck area, so as to delay or
even eliminate the decline of traffic capacity in the downstream bottleneck area.
Second, too low speed limit will reduce the capacity, and too high-speed limit will
not affect the capacity.

Infrastructure monitoring and maintenance

After long-term use, transportation infrastructure is constantly worn, resulting in
deficient performance and diverse types of distress or damages (Hadjidemetriou
et al, 2020). Infrastructure maintenance management has become an effective
means to alleviate transportation facilities collapse and other related disturbances.
A World Bank study revealed that every 10% increase in road roughness led to a
5-20% reduction in road life (Janoff ef al, 1985; Smith et al, 1997) and an
additional 0.5-4.1% increase in fuel consumption (McLean and Foley, 1998).
Therefore, early comprehensive performance inspection of road, bridges, culverts
and tunnels together with the disposal of specific damages can bring sizable
economic benefits as well as ensure facility operation quality and serviceability.

Maintenance units regularly patrol transportation infrastructure in jurisdictions
to determine performance in time and consider disposal plans. However, on the one
hand, traditional labor-based inspections are unsuitable for application in a wide
range of transportation network considering their low efficiency and operational
complexity. The timeliness of the inspection data is unable to meet the coverage
rate. On the other hand, the increase in total facilities puts forward higher
requirements for maintenance (Hormozabad et al., 2021). It costs more efforts for
the maintenance management department to effectively track and predict the
decay trend of conditions. Although the compound growth rate of infrastructure
maintenance investment has increased, it is difficult to ensure the rational
distribution of huge maintenance funds.

4.1.2 The subway traffic scenario. As a large-volume transportation method in the city,
subway traffic has high autonomy and operational complexity, which leads to its
vulnerability (BeSinovi¢, 2020). Under various emergencies such as natural disasters,
equipment failures and man-made damages, it is prone to cascade failures and requires more
time to recover. Therefore, the enhancing strategies of subway traffic resilience have been
widely studied. Considering the resilience characteristics of subway traffic, strategies for
pre-perturbance focuses on improving network vulnerability to unexpected changes. The
overall resilience is improved by enhancing local resistance. Therefore, strategies for pre-
perturbance can be categorized as influencing factor analysis, vulnerable elements
identification and reinforcement and network structure optimization.

Influencing factor analysis

Identifying the key influencing factors for subway traffic to resist perturbation is
of great significance to ensure the normal operation of the subway and can help



managers to take corresponding protective measures. Previous studies have
explored the influencing factors of resilience from the perspectives of
comprehensive evaluation, scenario simulation analysis and control measures
analysis.

Influencing factor analysis research are concerned with scenario specific.
Researchers delved into weather-related disruptions and disasters in subway
traffic, such as fire (Rie and Ryu, 2020; Giachetti et al., 2017), earthquakes (Fan
et al.,, 2021), hurricanes (Zhu, Yuan, et al., 2016; Zhu, Yuan, et al., 2017) and weather
conditions (Chan and Schofer, 2016; Diab and Shalaby, 2020; Wang et al., 2020).
Quan et al. (2011) used scenario simulation to focus on the impact of rainstorms
with different return periods on the Shanghai Metro. Lyu (2018) conducted a flood
risk assessment of Guangzhou’s subway system, considering 12 factors such as
rainfall, altitude, slope and subway line density. Aoki et al (2016) analyzed the
impact of different flood control equipment on the flood control capacity of subway
stations. They concluded that the subway station entrance is the station most
affected by heavy rain.

Usually, these studies estimated the frequency and duration of service
interruptions. Moreover, the temporal and spatial distribution of disruptions and
recovery processes under various perturbances are uncovered to provide planners
with useful system design information. The influencing factor analysis strategy is
based on historical data or simulation methods, which can accurately describe the
resilience changes of system interruptions and provide a reference for future
resilience regulation. However, there are problems of incomplete consideration
factors and unrealistic model estimation. The reliability is supposed to be
improved through more comprehensive data.

Vulnerable elements identification and reinforcement

Vulnerable elements identification aims to find out the critical elements in the
subway traffic system, which could lead to severe impacts when being failed. It
usually requires evaluating the functional loss of the system based on assuming
the failure of elements. The greater the loss, the higher the importance of the
evaluated element. The corresponding reinforcement measures are applied to those
vulnerable elements.

Vulnerable elements identification is conducted through topology analysis.
Deng et al. (2015) proposed a new framework based on network theory and The
Failure Mode, Effects and Criticality Analysis method to analyze network
efficiency by network theory and risk matrix in The Failure Mode, Effects and
Criticality Analysis method. King ef al (2020) used a combination of quantitative
methods founded in Graph Theory to quantify the resilience of the transit network
and identified the critical stations in Toronto’s subway network. Jing et al. (2020)
developed a new method to determine the critical stations in metro systems based
on route redundancy. The results indicated that the critical stations are not
necessarily transferred stations or large node degree stations. Regarding the
vulnerability of network components, Bababeik ef al. (2018) proposed a bi-objective
location and allocation model for relief trains in the rail network, determining
the optimal location and allocation of relief trains to enhance the resilience level of
the rail network.

Vulnerability analysis strategies identify critical subway stations by modeling
the service network. It could assist in a cost-effective resource allocation for
strategically protecting the subway network and informed decision-making for
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emergency evacuation planning. Note that because of the heterogeneity of the
network and different importance evaluation criteria, analysis models should be
robust against the failure and removal of randomly chosen network elements.
(3) Network structure optimization

Optimizing the topology of the subway traffic network is one of the effective ways
to improve network resilience and mitigate network damage. Based on different
perspectives, researchers evaluated the network structure from the aspects of
network connectivity, service level, operational reliability and so on, which aimed
to enhance the resilience through structure optimization.

Measure coefficients are taken as objective functions, and the construction cost
is the constraint function to establish the network structure optimization model.
When evaluating the reliability of network connectivity, most researchers choose
the relative size of the largest connected subgraph (Wang, 2008), the connectivity
probability of a node pair (Liu et al, 2020) or the network efficiency (Zeng et al,
2021) as the measurement parameters. The network service level can be measured
by the increase rate of passenger travel cost (Hua and Ong, 2017) and network
transmission capacity saturation (Liu et al, 2020). Operational reliability usually
refers to the reliability of network travel time, which can be measured by the
average shortest travel time of the network and the rate of change of network
nodes to the shortest travel time (Shi ef al., 2019).

Network topology optimization is to increase the number of backup nodes or
lines to improve connectivity or increase the capacity of key nodes or lines to adapt
to the distribution of passenger traffic. However, considering that the geographical
location of subway network nodes often depends on passenger flow demand, this
method’s application is relatively limited.

4.2 Post-perturbation strategies of enhancing resilience

4.2.1 The road traffic scenario. In the post-perturbance, after system performance of road
traffic declines, recovery strategies involve rebuilding system accessibility and restoring its
functionality as quickly as possible.

(1) Variable lane management

Variable lane control has become an effective means to alleviate traffic congestion,
road construction, epidemic and other disturbances in various countries. The variable
lane control scheme is applied to tidal traffic flow on urban roads. In this scenario, the
traffic flow in one direction is large or even congested. In contrast, the traffic flow in
the other direction is small, resulting in idle road resources, waste of road resources
and low traffic capacity. The network-based variable lane control method is analyzed
theoretically in the existing research on variable lane (Pan et al, 2022). By establishing
a bilevel programming model (Meng and Khoo, 2008) based on the optimal system
performance, the corresponding solution method is designed to calculate the attributes
of variable lane control nodes (Wang et al, 2013).

The main objects of variable lane management include road channelization,
information control scheme and social vehicles. However, most of them only
consider the variable lane control for a certain section to adjust the traffic flow of
some tidal sections and do not improve the system capacity from the overall point
of view. At the same time, this kind of technology is relatively slow to solve. For
the variable lane adjustment under accident conditions, the focus is on the traffic
evacuation speed after the accident, so the application scenarios are limited.



(2) Ramp control
From the perspective of system control, ramp control can be divided into three
types: timing control, single point dynamic control and dynamic coordination
control. They have a positive impact on dealing with severe weather, traffic
congestion, epidemic and other disturbance types.

Timing control is the simplest ramp control method, which is a static control.
The regulation rate of timed ramp control is one or more fixed values, which is
determined based on analyzing the historical traffic information of the road
section. Timed ramp control has the advantages of a simple algorithm, easy
operation and convenient implementation, but it cannot correct the ramp
regulation rate according to the real-time road traffic conditions.

To make up for the defects of the timing control algorithm, many scholars have
studied single-point dynamic control. In this dynamic control, the detector should be used
to detect the traffic information on the road in real-time, and on this basis, the adjustment
rate of the matching road should be adjusted in realtime for dynamic control. Among
them, ALINEA control is the most widely used method. This control method was
proposed by Greek scholars (Frejo and De Schutter, 2019). In this method, a critical value
of mainline occupancy is given in advance. If the detected occupancy is different from the
given value in each detection cycle, then the original adjustment rate is adjusted.

Dynamic cooperative control is to regard several corresponding lanes on a fast road
as a whole and determine the optimal regulation rate of each ramp through the road
traffic information collected in real-time. The purpose of dynamic cooperative control is
not to optimize the traffic operation of a ramp but to maximize the overall traffic benefit.
Responding to traffic events or normal traffic phenomena can avoid or quickly eliminate
frequent and occasional congestion. The main algorithms are ZONE (Geroliminis ef al,
2011), BOTTLENEC and HERO (Papamichail ef al, 2010).

Ramp control is equivalent to the regulator of traffic demand of expressway
and ground roads, mainline and branch line of the expressway. It has a significant
effect when the demand pressure is slight, but when the traffic pressure increases,
this method will cause a vicious circle of queue extension. Therefore, a more global
consideration method is needed for overall control.

4.2.2 The subway traffic scenario. The independence and openness of the subway traffic make
it highly dependable in operation. At the same time, it is vulnerable to disturbance and damage
from various emergencies such as natural disasters, equipment failures and artificial damages.
Compared with other modes of transportation, the subway traffic takes longer to recover (Chen
et al, 2007). To prevent disturbances within the system from being further spread to road traffic,
the immediate priority is passenger evacuation. While maintaining the service capacity of urban
traffic leaves necessary space and time for the recovery of subway traffic. Given the above,
strategies for post-perturbance can be bus-bridging and optimum recovery sequence decisions.
(1) Bus-bridging
Bus-bridging is an effective strategy in the contingency plan for subway
emergencies and provides substantial support for passenger evacuation with its
characteristics of rapidity, flexibility and accessibility. It can offer backup and
continuation functions for the subway traffic during the reaction and recovery
phase after an emergency.
The European Commission (2004) regarded the coordination of services, network
layout and emergency support between rail transit and public transport as the
technical basis for implementing combined public transport. In the research report of

Integrated
urban
transport

123




SRT
4.2

124

)

®)

TRB (2007), it was proposed that in the response and evacuation stages and the repair
and service restoration stages after rail transit emergencies, the linkage support role of
ground public transport should be imported to empower. Researchers studied the
design of bus-bridging routes (Kuah and Perl, 1988; Martins and Pato, 1998; Deng
et al, 2018), the scheduling model (Kepaptsoglou and Karlaftis, 2009; Jin et al, 2016;
Itani and Shalaby, 2021), position of interchange stations (Tang et al, 2021; Derrible
and Kennedy, 2010a, 2010b), emergency bus capacity and site selection (Teng and Xu.,
2010; Gu et al., 2018) to introduce resilience enhancement in subway traffic.

Current studies emphasized the research on the emergency connection of public
transport in the case of subway operation failure, and the optimization objectives
and constraints considered are different. Most of them focused on the emergency
rescue of trapped passengers after the subway traffic operation was interrupted.
The collaboration of multi-mode transportation might be a future research hotspot.
Optimum recovery sequence decisions

The damage of different components in the subway network has distinct effects on
the network. Moreover, the recovery of damaged components often requires
different amounts, types of recovery resources and costs a certain amount of repair
time and economic costs. Therefore, when multiple components in the network are
damaged, the repair sequence of different components plays a crucial role in
improving network resilience.

Based on the optimal recovery objectives, the recovery sequence decision is to
determine the optimal repair order of network failure units. Considering limited
resources and costs, reasonable allocation and scheduling to optimize recovery
resilience have received increasing concern. Zhang ef al. (2018) determined the optimal
recovery sequence and recovery time combined with the importance of nodes in the
network. He also considered the performance cost after the subway interruption,
including the loss of operating income and maintenance measures. Lu (2018)
quantified the varying resilience of rail networks with time under different incidents,
and the results showed that critical stations were identified differently depending on
the duration time of different incidents and the characteristics of the failed stations.
Jie-fei et al (2020) and Qingchang et al (2021) proposed resilience indexes to evaluate
the performance of subway network resilience under different restoration schemes and
recommend the scheme with the largest resilience index as the optimal scheme.

Most studies usually build models based on the simplification of subway traffic
networks and determine the optimal recovery sequence with the goal of minimum
performance loss, shortest repair time and minimum recovery cost. But some
practical factors, such as the physical length of tunnels between stations, the time
and route of changing subway lines and subway lines with different volumes, are
not included in the model.

Network self-organization adjustment

The subway network consists of a large number of interacting nodes and links. Any
adverse event that disrupts network component interactions and connectivity can
significantly impact safety and efficiency. Therefore, it is important to maintain the
connectivity of the line after the perturbation and reduce the impact of interruption
caused by the interference without significantly reducing the network service capacity.

Network self-organization is an effective method to increase regional resilience. For
vulnerable nodes like transfer stations, adding an interloop could create redundancy to
these vulnerable segments and improve network resilience by increasing network
efficiency. Saadat et al (2020) examined three alternatives to implanting loops in a



network, each inserted based on subjective considerations such as location criticality,
passenger flow and location connectivity. The results showed that network vulnerabilities
can be significantly reduced by adding loops. Inserting a loop can reduce vulnerability by
24.6% on certain road segments. Derrible and Kennedy’s(2010a, 2010b) research showed
that the number of looping paths available in a network significantly affected network
resilience, which represented whether alternative routes could be used in an outage.

As a post-perturbation recovery strategy, network self-organization adjustment
can restore connectedness and reduce the total cost associated with a disruptive
event. It would play a better control effect by combining bus-bridging and multi-
mode transportation strategies.

4.3 Inspirations of possible cyber-physic transportation system applications on future
resilience enhancement

Performance improvement strategies in the post-perturbance stage are active prevention
and control technology, which is a series of behaviors, to realize active prevention, early
warning, control and treatment of risk sources. Even after the accident, the emergency
handling of perturbations should be regarded as active prevention and control, because if it
is not managed well, then it may lead to secondary accidents. In contrast, performance
improvement strategies in the post-performance stage are passive recovery strategies that
minimize losses through optimization algorithms, node management and control and other
technologies under limited resource supply. To sum up, the impact of the former is more
predictable and estimable, while the impact of the latter is difficult to predict and control. A
broken transport network may isolate a community, and long-term recovery will worsen the
situation. Therefore, researchers and practitioners today focused on making transportation
networks resilient and less vulnerable to disasters, not just recovery activities (Safapour and
Kermanshachi, 2021). Therefore, in the future application of CPS, it is suggested to focus on
performance improvement strategies in the post-performance stage, supplemented by
performance improvement strategies in the post-performance stage.

In the closed-loop CPS-T of traffic and information data, real-time dynamic regulation of
bus transit becomes possible. Managers can adjust the resilience of bus fleets based on the
status of the overall system network structure under abnormal perturbances, such as high-
occupancy vehicle lanes implementation and bus headway holding. The mobility and
convenience of bus transit can be fully used, enhancing resilience in terms of recovery in
volume and speed from an extreme event.

The CPS offers a real-time, dynamic and closed-loop collaborative control environment
for the resilience assessment of subway traffic. In the CPS-T, the subway traffic is no longer
a closed and independent mode of transportation. The traffic data of multi-source perception
can provide sufficient data for the resistance analysis of subway operation, which can
accurately deduce the situation of disturbance impact, and then identify vulnerable nodes in
the network. Moreover, the multi-mode bridging can come into effect under the closed-loop
coordination mechanism. More transportation modes participate in resource allocation and
scheduling, and the recovery time and repair efficiency of system resilience are improved.

5. Future trends and research direction

CPS is a more targeted solution to resilience issues in transportation. The cyber-physical
advancements in sensors (e.g. vehicular probe) and the storage and processing of data (e.g. large-
scale database) have made tracking a substantial flow of raw data possible, which is critical for
CPS’s actualization. The future trend of CPS in enhancing the resilience is predicted as follows:
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¢ The theoretical framework of CPS will be substantially developed on the
intersection of transportation and informatics.

» Both data and model will still drive the multi-modal modeling method on CPS’s
polymorphic migration features.

e Closed-loop control techniques for CPS’s functional reconstitution will be based on
the feedback of logic-physics interaction.

» The application of CPS on performance simulation and verification will follow a
unique layered architecture from different functional modules to subsystems.

Four research directions can also be pointed out for the future resilience researchers as
follows:

(1) Under the current framework of multi-mode transportation resilience, the well-designed
CPS could be one strategy to improve the resilience facing different perturbations.
Because the CPS has advancing components such as modularized functional zones
(prefabricated modules) that ensures the independence and integrity of every child
element within each functional zone. Though the CPS requires the high development of
advanced technology such as transportation informatics, parallel simulation and
artificial intelligence, the best future form of CPS will be a heated issue to discuss.

(2) Whether model-data hybrid simulation or other model-free methodology be the
future research methodology that best fits the context of transportation resilience.
All these methodologies have their advantages and drawbacks. Thus, if the hybrid
methodology can precisely interpret the core mechanism of resilience, then a
concrete combination needs further research.

(3) Whether the new strategies for enhancing the resilience are going to come forth
with the occurrence of new travel modes such as autonomous vehicles, because
these new travel modes will dramatically reshape the transportation system, thus
expanding the definition of transportation resilience. The innovative approaches to
achieve a better resilience is worthy of our expectation.

(4) How to assess and then enhance the transportation resilience in the context of an
epidemic. Currently, the COVID-19 has a profound impact of transportation
system. It is increasing the vulnerability on the network and threating the health of
commuters. One urgent task is developing a new assessment method of resilience
during the epidemic (e.g. considering the spread of the virus as an indicator).
Another urgent task is exploring new strategies for enhancing resilience,
especially under the prolonged lockdowns. The new strategy should provide the
necessary mobility while considering the safety of commuters.
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