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Abstract
Purpose – The purpose is using generative adversarial network (GAN) to solve the problem of sample
augmentation in the case of imbalanced bearing fault data sets and improving residual network is used to improve
the diagnostic accuracy of the bearing fault intelligent diagnosismodel in the environment of high signal noise.
Design/methodology/approach – A bearing vibration data generation model based on conditional GAN
(CGAN) framework is proposed. The method generates data based on the adversarial mechanism of GANs and
uses a small number of real samples to generate data, thereby effectively expanding imbalanced data sets.
Combinedwith the data augmentationmethod based on CGAN, a fault diagnosismodel of rolling bearing under the
condition of data imbalance based on CGANand improved residual networkwith attentionmechanism is proposed.
Findings – The method proposed in this paper is verified by the western reserve data set and the truck
bearing test bench data set, proving that the CGAN-based data generation method can form a high-quality
augmented data set, while the CGAN-based and improved residual with attention mechanism. The diagnostic
model of the network has better diagnostic accuracy under low signal-to-noise ratio samples.
Originality/value – A bearing vibration data generation model based on CGAN framework is proposed.
The method generates data based on the adversarial mechanism of GAN and uses a small number of real
samples to generate data, thereby effectively expanding imbalanced data sets. Combined with the data
augmentation method based on CGAN, a fault diagnosis model of rolling bearing under the condition of data
imbalance based on CGAN and improved residual network with attention mechanism is proposed.
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1. Introduction
Railway transportation has the advantages of strong carrying capacity, fast transportation
speed, high safety, punctuality, high efficiency and environmental protection. Therefore, rail
transit plays an irreplaceable role in many countries. Safety is the premise of rail
transportation and the core competitiveness of the rail system. However, factors such as
high-intensity and -density use and changing environments will inevitably reduce the safety
of railway train operations. Train wheelset bearings are one of the key components of trains.
If the bearing fails, it will have very serious consequences. Regularly dismantling,
inspecting and reassembling the bearings requires a lot of work. In addition, this method not
only requires the maintenance personnel to have rich experience and professional
knowledge but also has the possibility of missing bearing faults between two inspection
intervals, resulting in operational accidents. Therefore, it is necessary to study the fault
diagnosis technology of real-timemonitoring of train wheelset bearings.

With the development of deep learning technology, data-driven fault diagnosis technology
has attracted more and more researchers’ attention because it does not require artificial design
features and has good generalization ability. Zhao et al. (2018) developed dynamically weighted
wavelet coefficients to improve the performance of ResNet-based diagnostic models and
obtained higher fault diagnosis accuracy for planetary gearboxes in severe noise environments
compared to other deep learning-based methods. Qiao et al. (2019) proposed an adaptive
weighted multiscale convolutional neural network for more accurate fault diagnosis under
complex working conditions. Udmale et al. (2019) realized intelligent recognition of bearing
faults based on spectral kurtosis and convolutional neural network. Chen et al. (2019) used
continuous wavelet transform to preprocess the data, then used a convolutional network to
extract features and finally used an extreme learning machine as a strong classifier to achieve
high-accuracy bearing fault diagnosis. Liu et al. (2020) integrated the two problems of fault
diagnosis and remaining useful life prediction and designed a joint loss convolutional neural
network, which effectively improved the performance of the convolutional model for the two
tasks. Xiong et al. (2020) implemented the wavelet packet transform in the form of convolution
and embedded it in the convolutional neural network, which improved the performance of
model diagnosis while ensuring end-to-end fault diagnosis. You et al. (2020) improved the
activation function of the fault diagnosis model based on convolutional neural network, making
the gradient easier to propagate, and achieved excellent results. Kou et al. (2020) used a
convolutional neural network for multisensor data fusion and feature extraction and realized
fault diagnosis of the train bogie rotatingmechanism.

However, the application of these algorithms to practical engineering still faces the
following challenges:

� In the actual train operation, the fault samples are far less than the normal samples,
resulting in data imbalance. At present, most of the fault diagnosis models in
research need to be trained with balanced data sets to achieve better results, and the
impact of unbalanced data sets on fault diagnosis based on deep learning has not
been fully considered.

� In the current fault diagnosis extraction research of deep learning method, the
vibration signal feature extraction work needs to consider how to further extract
high-dimensional features under large noise conditions to meet the diagnostic
requirements.

� To solve the above problems, the following research is carried out in this paper.
� A bearing vibration data generation model based on the conditional generative

adversarial network (CGAN) framework is proposed. The method generates data
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based on the adversarial mechanism of generative adversarial networks (GAN) and
uses a small number of real samples to generate data, thereby effectively expanding
imbalanced data sets.

� Combined with the data augmentation method based on CGAN, a fault diagnosis
model of rolling bearing under the condition of data imbalance based on CGAN and
improved residual network with channel attention mechanism is proposed.

The method proposed in this paper is verified by two data sets, proving that the CGAN-
based data generation method can form a high-quality augmented data set. At the same
time, the diagnostic model based on CGAN and the improved residual network with channel
attention mechanism has excellent diagnostic accuracy under low signal-to-noise ratio.

2. Theoretical basis
2.1 Data imbalance problems and solutions
In practical engineering, bearings are in normal operation most of the time. Data collection for
failed bearings is often difficult. It leads to an imbalance in the number of normal samples and
fault samples in the actual engineering data set. This imbalance in the data may lead to poor
diagnostic performance of the model. Therefore, more and more researchers have begun to
focus their research on bearing fault diagnosis under data imbalance. At this stage, the data
imbalance problem ismostly solved from the data and algorithm levels.

At the data level, various data augmentation techniques are used on the original data set
to augment the sample size of quantitatively disadvantaged classes and, finally, achieve the
balance of various classes of samples in the model training data set. Such methods include
synthetic minority over-sampling technique (Raghuwanshi and Shukla, 2020), adaptive
synthetic sampling (Gonzalez et al., 2019), etc. However, the synthetic minority over-
sampling technique is prone to cause the problem that the generated samples overlap with
the original samples. And adaptive synthetic sampling is susceptible to outlier interference.
The available information supplemented by these traditional methods is very limited and
does not contribute significantly to the improvement of fault diagnosis accuracy.

At the algorithm level, in the case of imbalance, the improvement of the algorithm is mainly
based on ensemble classification and sample weighting. For instance, Chen et al. (2021)
proposed a weighted balanced distribution adaptation method (MC-W-BDA), in which enough
base classifiers are obtained by random sampling with different training sample sets trained in
the replicated kernel Hilbert space. Multiclassifier ensemble, by integrating appropriate base
classifiers into strong classifiers through a multiclassifier ensemble strategy, to solve the data
imbalance problem. Lin et al. (2020) proposed a novel loss function to make the deep model pay
more attention to the classes with a small number of samples during the training process.

2.2 Conditional generative adversarial network
The GAN is a network architecture based on the idea of a zero-sum game (Goodfellow et al.,
2014). As an unsupervised data generation model, GAN does not rely on any prior
assumptions and can generate high-quality new data that conforms to the sample
distribution, attracting attention from both academia and engineering. Its basic
frame diagram is shown in Figure 1. The model mainly includes two parts: generator (G)
and discriminator (D). The random noise z generates samples after passing through G, and
the discriminator D recognizes real samples and generated samples as much as possible. In
this process, the purpose of G and D are opposed to each other. By continuously training
separately and alternately, G and D optimize their parameters in the process of playing
against each other, and finally,G andD are in nash equilibrium.
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CGAN is an improvement of GAN (Ahsan et al., 2022). By introducing label information into
the GAN’s generator and discriminator, the generated results can be controlled by adjusting
the labels as samples are generated. The network architecture diagram of the CGAN is
shown in Figure 2. The objective function of CGAN can be expressed in the form of
equation 1, where G and D represent the conditional probability obtained after adding
additional conditional information. In this paper, CGAN is introduced to solve the problem
of data imbalance because CGAN can directionally expand a certain minority class data
while avoiding the loss of computational cost caused by training multiple GANs:

arg min
uG

max
uD

LD uG; uDð Þ ¼ 1
n

Xn

k¼1

logD xjy; uDð Þ þ 1
m

Xm

i¼1

log 1� D G z �ð Þjy; uG
� �jy; uD

� �� �

(1)

Figure 1.
Framework of GAN

Figure 2.
Framework of CGAN
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2.3 Residual network
Deep residual network solves the problems of gradient dispersion, gradient explosion or
network degradation in neural networks by introducing shortcut connections (He et al.,
2016). The original input information, or the output of a certain layer, can be directly passed
to the bottom layer of the network through identity mapping, which makes the training of
deep networks easier and more stable. The residual block is the basic structure of the
residual network, as shown in Figure 3. A deeper model means a stronger nonlinear
expression ability of the model, which helps to improve the feature extraction and
recognition ability of the convolutional model. Therefore, the diagnostic model proposed in
this paper introduces the residual structure.

2.4 Channel attention mechanism
By simulating the characteristics of the human brain, the attention mechanism makes the
model pay more attention to the features that contribute more to the task and ignore the
features that contribute less to the task (Niu et al., 2021). Among them, squeeze-and-
excitation networks (SENet) are currently widely used in various convolutional neural
networks (Hu et al., 2020). The basic unit of SENet is the SE Block, and its structure is shown
in Figure 4. SE Block mainly includes three parts: squeeze, excitation and reweight. In the
squeeze part, feature compression is performed within the channel. In the excitation part,
calculate the importance of each channel. In the reweight part, the implementation weights
the channels based on importance. Considering the importance of each channel helps to
improve the recognition ability of the recognition model. Therefore, in the diagnostic model
proposed in this paper, the SE Block is introduced.

3. Solution to the data imbalance problem based on conditional generative
adversarial network
In this paper, a CGAN-based model for generating vibration signals of train wheelset
bearings in the time domain is proposed. The model trains the generator and discriminator
of CGAN by inputting the time-domain vibration data under different fault states of the
rolling bearing and its corresponding fault type labels. The trained generator can generate
high quality time-domain vibration signals by inputting fault state labels to effectively

Figure 3.
Framework of the
residual block
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expand data samples and achieve the purpose of equalizing the number of samples. The
structure of the model is shown in Figure 5. The loss function of the model is shown in
equation 1, and the optimizer can use Adam.

The generator of CGAN consists of four fully connected layers. The first three layers are
activated using the Leaky Relu function, and the batch normalization layer is introduced to
accelerate the model convergence. The last layer uses linear activation. The input to the
generator is a 1 � n random noise, where n is usually a large positive integer. And the
output of the generator is a 1�m signal, wherem is the length of the signal to be generated
that corresponds to the true sample.

The discriminator of CGAN is also composed of four fully connected layers, using the
Leaky Relu activation function and introducing the dropout layer to alleviate overfitting.
The discriminator is connected to the output layer, which can also be regarded as a fully
connected layer, containing two neurons and activated using the softmax function. The
input to the discriminator is a 1 � m sample. The input samples include real samples and
samples generated by the generator. The output layer outputs a vector containing two

Figure 4.
Framework of the SE

block

Figure 5.
Model structure of

CGAN
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elements, and the elements in the vector represent the probability that the discriminator
considers the current sample to be the real sample and the generated sample.

4. Bearing fault diagnosis model based on fusion residual network and SE
blocks
The vibration signal of real train wheelset bearing often has a much larger noise than
the experimental data. And when using CGAN for data augmentation, the noise is not
filtered out. Because of this situation, the fault diagnosis model of train wheelset
bearings may require better signal feature extraction capability. When using the
residual network to build an end-to-end fault diagnosis model, by deepening the
network structure, high-dimensional features with richer fault information can be
extracted from the input signal, and there is no need to worry about the gradient
problem. The SE block is a simple and effective channel attention mechanism block,
which has the advantage of low complexity. It can realize adaptive weighting of the
feature maps of each channel and make the model pay more attention to the key
features that affect the accuracy of fault diagnosis. Based on the above ideas, this paper
proposes a novel bearing fault diagnosis model, which combines the residual network
and SE attention mechanism structure. Its specific structure is shown in Figure 6.

The model uses the raw vibration data folded into two dimensions as model input
(such as the vibration signals of 100 sample points reshaped into a 10� 10 matrix).
Fault features are efficiently extracted by stacking 2D convolutional layers activated
by the Relu function. And the batch normalization layers are introduced to speed up
the training process of deep learning to avoid overfitting. Pooling layers reduce the
number of parameters to speed up the training process. Dropout layers avoid
overfitting. And two fully connected layer constructs a classifier. Among them, the
last fully connected layer is activated by the softmax function, and the number of
neurons in this layer is determined by the number of classes of samples in the
recognition task. In the model, residual blocks and SE blocks are used alternately. On
the one hand, the gradient problem in model training is effectively avoided, and on the
other hand, valuable features are enhanced by weighting the features to achieve
better diagnostic performance. The diagnostic model can use multiclass cross-
entropy as the loss function and be trained using the Adam optimizer. The fault
diagnosis model can be used in conjunction with the CGAN data generation model to
solve the bearing fault diagnosis in the case of data imbalance and low signal-to-noise
ratio of data.

Figure 6.
Model structure of the
fault diagnosis model

SRT
5,1

34



5. Experiments and results
5.1 Experimental data set
To verify the quality of the data generated by the CGAN model and the performance of the
improved residual network model with SE attention mechanism in the task of bearing fault
diagnosis in a high-noise environment under the data augmentation of the CGAN model,
experiments are carried out. In the experiment, the current mainstream bearing vibration
data set of Case Western Reserve University (CWRU) and a vibration signal data set
collected from an actual train fault bearing (QDSF) were used.

Case Western Reserve University data set: This data set is an industry-recognized
standard data set for bearing fault detection. It contains a large number of rolling bearing
vibration signals in normal and fault conditions. In recent years, a large number of data-
driven bearing fault diagnosis algorithms have used this data set for algorithm training and
validation (Neupane et al., 2021; Zhang et al., 2021; Liu et al., 2022). Deep groove ball
bearings use electron discharge machining single point damage to artificially form faults.
The data in the data set is divided into four states: normal, inner race fault, outer race fault
and ball fault. There are three diameters of artificial faults, 0.007, 0.014 and 0.021 inches to
represent minor, medium and serious faults, respectively. So, data can be labeled with ten
kinds of labels. And the ten labels can be noted as: “0.007-IRF,” “0.007-ORF,” “0.007-BF,”
“0.014-IRF,” “0.014-ORF,” “0.014-BF,” “0.021-IRF,” “0.021-ORF,” “0.021-BF” and “Normal.”
The data acquisition process includes four load conditions (respectively, corresponding to
1,797, 1,772, 1,750 and 1,730 rpm), simulating real changing conditions. The acceleration
vibration signal comes from the drive end and the fan end. This paper uses the drive end
data, and the sampling frequency is 12 KHz.

QDSF data set: The data in this data set is from vibration signals collected from the
Qingdao Sifang freight train bearing test platform. The faulty bearings used in the data set
collection are collected from the actual freight trains. The bearings are SKF197726 type
double row tapered roller bearings. The data set includes different degrees of ball faulty,
inner race faulty, outer race faulty, cage faulty and normal bearing vibration signals. The
photos of the four faults are shown in Figure 7. According to the width of the fault, the
rolling element fault has two degrees of 0.001 and 0.0105mm, the inner ring fault has two
degrees of 0.135 and 0.45mm and the outer ring fault has two degrees of 0.3 and 0.45mm.
Therefore, there are eight kinds of data with different labels, denoted as: “0.001-BF,” “0.0105-
BF,” “0.135-IRF,” “0.45-IRF,” “0.3-ORF,” “0.45-ORF,” “CF” and “normal.” The vibration
signal was collected using the experiment platform shown in Figure 8. The experimental
platform is mainly composed of the drive motor, transmission device, axle, support bearing,
axial force loading device, radial force loading device, experimental axle box assembly,
cooling fan and other parts. During the experiment, the bearing rotation speed was set to
three levels, which were 90 (589 rpm), 120 (786 rpm) and 150 km/h (983 rpm). Based on the
vertical loads applied by the train under no-load, half-load, full-load and 20% overload
conditions, the corresponding vertical loads under these conditions are 56, 146, 236 and
272 kN, respectively. To simulate the turning state of the train, the lateral load is set as a
cycle from 0 to 20 to 0 kN. The sampling frequency of the signal is 12.8 KHz. Compared with
the CWRU data set, this data set is closer to the real situation and contains more noise.

5.2 Quality of the vibration signal generated by the conditional generative adversarial
network model
In this experiment, a CGAN model is first constructed. The input of the generative model is
128-dimensional Gaussian noise and fault class label information. The output is a one-
dimensional generated vibration signal of length 10,000 that conforms to the label. The
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input of the discriminant model is the pseudo vibration signal generated by the generator
with label information and the real vibration signal of the same label. These signals all have
a length of 10,000. When the number of iterations reaches 3,000 and the loss function value
of CGAN is less than the convergence threshold of 0.5, the model training is considered
complete. By comparing the squared envelope analysis spectrum of the generated signal and
the real signal, the quality of the signal generated by the CGAN model can be evaluated
(Antoni, 2007).

Figure 7.
Details of bearing
failures

Figure 8.
Photograph of the
experiment platform
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For the CWRU data set, 1,000 samples of each fault class were randomly intercepted in
the experiment to train CGAN. Figures 9–11 show time-domain plots and spectrograms
from squared envelope analysis of the CGAN-generated signals and real signals (labeled
“0.007-IRF,” “0.007-ORF,” “0.007-BF,” respectively). It is not difficult to see that the
amplitude of the pseudo vibration signal generated by the CGAN model is slightly different
from the real signal in the time domain, but the general characteristics of the signal are
consistent. Besides, in the frequency domain, it can be seen that the CGAN-generated signal
has peaks similar to the real signal at the fault characteristic frequency and the multiplier
frequency.

For the QDSF data set, 1,000 samples of each fault class are randomly intercepted in the
experiments to train the CGAN. Figures 12–14 show the time domain and spectrograms
from squared envelope analysis of the real signals and CGAN-generated signals (labeled
“0.45-IRF,” “0.30-ORF,” “0.105-BF,” respectively). The conclusions drawn from the results of
this group of experiments are consistent with the CWRU data set. Observed in the time and
frequency domains, it can be seen that the quality of the generated signal is excellent. It
should be noted that, in terms of the consistency of fault feature frequencies, CGAN’s ability
to generate the QDSF data set is worse than that of the CWRU data set. It is because the
QDSF data is closer to the ground truth and contains a lot of noise, making the faulty
features of the CGAN-generated signals less obvious.

5.3 Performance of fault diagnosis model
In this experiment, considering the characteristics of the data, under the guidance of
experience and hyperparameter fine-tuning results, a bearing fault diagnosis model based

Figure 9.
Time domain and
frequency domain

waveforms of “0.007-
ball” type vibration

signals generated by
CGAN in Case

Western Reserve
University bearing

data set
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Figure 10.
Time domain and
frequency domain
waveforms of “0.007-
inner” type vibration
signals generated by
CGAN in Case
Western Reserve
University bearing
data set

Figure 11.
Time domain and
frequency domain
waveforms of “0.007-
outer” type vibration
generated by CGAN
in CaseWestern
Reserve University
bearing data set
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Figure 12.
Time domain and
frequency domain

waveforms of “0.30-
outer” type vibration

signals in real
railway wheelset
bearing database

Figure 13.
Time domain and
frequency domain

waveforms of “0.45-
inner” type vibration

signals in real
railway wheelset
bearing database

Unbalanced
dataset

39



on an improved residual network with the channel attention mechanism is constructed. The
network structure parameters of the diagnostic model are shown in Table 1. The diagnostic
model is implemented by PyTorch. The batch size is 20, the number of training iterations is
2,500 and the initial learning rate is 0.01.

Figure 14.
Time domain and
frequency domain
waveforms of “0.105-
ball” type vibration
signals in real
railway wheelset
bearing database

Table 1.
Network structure
parameters of the
diagnostic model

Serial no. Layer Parameters (convolution kernel, stride)� no.

1 Input –
2 Conv_2D_1 (3*3, 1*1)� 8
3 MaxPooling_1 (2*2, 2*2)
4 SE Block_1 –
5 ResBlock_1_1 (1*1, 1*1)� 8
6 ResBlock_1_2 (3*3, 1*1)� 16
7 ResBlock_1_3 (1*1, 1*1)� 16
8 Conv 2D_2 (3*3, 1*1)� 16
9 Maxpooling_2 (2*2, 2*2)
10 SE Block_2 –
11 ResBlock_2_1 (1*1, 1*1)� 16
12 ResBlock_2_2 (3*3, 1*1)� 32
13 ResBlock_2_3 (1*1, 1*1)� 32
14 Conv 2D_3 (3*3, 1*1)� 32
15 SE Block_3 –
16 FCþDropout 100, 0.1
17 Output –
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The model was trained and tested using the vibration signal at 1,730 rpm in the CWRU data
set. The signal is segmented into nonoverlapping sample segments of length 784 data
points, converted into a two-dimensional signal (28� 28) and fed into the network. To
simulate the imbalanced state of data, the fault samples are artificially reduced. The
experimental design has 12 different imbalance scenarios (Table 2). Column 2 in the table
gives the proportion of sample imbalance. Columns 3–6 in the table give the number of
samples in each class. The last column in the table gives the number of test set samples. The
output of the model is a 1� 10 vector activated by the softmax function. The elements in the
vector correspond to the probabilities that the samples belong to various classes (“0.007-
IRF,” “0.007-ORF,” “0.007-BF,” “0.014-IRF,” “0.014-ORF,” “0.014-BF,” “0.021-IRF,” “0.021-
ORF,” “0.021-BF” and “Normal”).

To demonstrate the superiority of this method by comparison, the following diagnostic
methods were implemented:

� Nosampling CNN: This method does not handle data imbalances. And the diagnosis
model removes the residual blocks and SE blocks based on the diagnosis model
proposed in this paper.

� Nosampling SE_Res: This method also does not deal with the data imbalance
problem. And the diagnostic model uses the model proposed in this paper.

� SMOTE SE_Res: This method handles data unbalances by SMOTE. And the
diagnostic model uses the model proposed in this paper.

� ADASYN SE_Res: This method handles data unbalances by ADASYN. And the
diagnostic model uses the model proposed in this paper.

� CGAN SE_Res: This method handles data unbalances by CGAN proposed in this
paper. And the diagnostic model uses the model proposed in this paper.

In the experiment, training and testing were repeated ten times, and then, the average
diagnostic accuracy of the test set was calculated as the evaluation metric of the methods’
diagnostic performance. Table 3 shows the experimental results. To avoid the injustice of
the accuracy metrics because of the unbalanced samples and to visualize the performance of
several methods more intuitively, a confusion matrix is also drawn (Figure 15). Specifically,
analyzing the experimental results, it can be found that:

Table 2.
Details of 12 different
imbalance scenarios
of CWRU data set

Serial no. Proportion Normal

0.007IRF
0.014IRF
0.021IRF

0.007ORF
0.014ORF
0.0210RF

0.007BF
0.014BF
0.021BF

Test
data

1 20:1 1,000 50/50/50 1,000/1,000/1,000 1,000/1,000/1,000 500
2 10:1 1,000 100/100/100 1,000/1,000/1,000 1,000/1,000/1,000 500
3 5:1 1,000 200/200/200 1,000/1,000/1,000 1,000/1,000/1,000 500
4 2:1 1,000 500/500/500 1,000/1,000/1,000 1,000/1,000/1,000 500
5 20:1 1,000 1,000/1,000/1,000 50/50/50 1,000/1,000/1,000 500
6 10:1 1,000 1,000/1,000/1,000 100/100/100 1,000/1,000/1,000 500
7 5:1 1,000 1,000/1,000/1,000 200/200/200 1,000/1,000/1,000 500
8 2:1 1,000 1,000/1,000/1,000 500/500/500 1,000/1,000/1,000 500
9 20:1 1,000 1,000/1,000/1,000 1,000/1,000/1,000 50/50/50 500
10 10:1 1,000 1,000/1,000/1,000 1,000/1,000/1,000 100/100/100 500
11 5:1 1,000 1,000/1,000/1,000 1,000/1,000/1,000 200/200/200 500
12 2:1 1,000 1,000/1,000/1,000 1,000/1,000/1,000 500/500/500 500
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� By comparing the diagnostic accuracy of Nosampling SE_Res and CGAN SE_Res, it
can be found that if the data imbalance problem is not dealt with, the diagnostic
accuracy of the model will be significantly reduced.

� By comparing the diagnostic accuracy of SMOTE SE_Res, ADASYN SE_Res and
CGAN SE_Res, it can be indirectly reflected that the quality of data generated by

Figure 15.
Confusion matrix of
inner ring data with
imbalanced ratio of
10:1 (CWRU data set)

Table 3.
Summary of
diagnostic results of
CWRU dataset

Unbalanced
categories Proportion Nosampling CNN

Nosampling
SE_Res

SMOTE
SE_Res

ADASYN
SE_Res

CGAN
SE_Res

0.007IRF
0.014IRF
0.021IRF

20:1
10:1
5:1
2:1

69.76
70.08
74.64
85.64

70.38
70.92
74.50
88.24

78.70
85.52
92.06
96.72

80.08
86.28
89.96
92.04

81.28
88.58
91.32
99.70

0.007ORF
0.014ORF
0.0210RF

20:1
10:1
5:1
2:1

60.34
69.46
75.08
84.42

69.76
71.50
85.48
88.96

80.58
86.62
92.42
97.50

79.04
82.42
89.96
94.08

82.00
87.68
95.72
99.02

0.007BF
0.014BF
0.021BF

20:1
10:1
5:1
2:1

69.88
73.74
77.28
81.84

71.60
75.64
79.86
90.28

83.10
87.54
93.00
97.06

82.28
86.74
91.46
94.20

86.92
89.84
98.54
99.48
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CGAN is significantly higher than that of traditional data synthesis methods. The
reason may be that the data generation mechanism of CGAN is nonlinear and has a
stronger data generation ability.

� By comparing the diagnostic accuracy of Nosampling CNN and Nosampling
SE_Res, it can be seen that after introducing SE blocks and residual blocks, the
diagnostic performance of the model has been improved. The reason is that the
residual block is conducive to gradient propagation to improve the learning effect,
while SE Block implements adaptive channel weighting to make the model more
flexible, just like the computer version field.

� As the data imbalance problem becomes more severe, the diagnostic performance of
CGAN SE_Res also deteriorates. It is because more real samples help CGAN to
generate higher quality samples. When there are too few real samples, the data
generated by CGAN cannot cover all possibilities.

Furthermore, experiments are conducted using the QDSF data set with a lot of noise that is
closer to the train operating environment. The data (longitudinal load is 146 kN, the lateral
load is 0 and the rotational speed is 120 km/h) are used. Eight data imbalance cases were
designed (Table 4). The experimental method is the same as when using the CWRU data set.
The only difference is that the output of the model becomes a 1� 8 vector because of the
change in the data set. The experimental results are shown in Table 5. It can be seen that the
experimental results on the QDSF data set also show similar laws to the experimental

Table 4.
Details of eight

different imbalance
scenarios of QDSF

data set

Serial no. Proportion Normal
0.135IRF
0.45IRF

0.3ORF
0.45ORF

0.001BF
0.105BF CF

Test
data

1 20:1 1,000 1,000/1,000 50/50 1,000/1,000 1,000 500
2 10:1 1,000 1,000/1,000 100/100 1,000/1,000 1,000 500
3 5:1 1,000 1,000/1,000 200/200 1,000/1,000 1,000 500
4 2:1 1,000 1,000/1,000 500/500 1,000/1,000 1,000 500
5 20:1 1,000 1,000/1,000 50/50 1,000/1,000 1,000 500
6 10:1 1,000 1,000/1,000 100/100 1,000/1,000 1,000 500
7 5:1 1,000 1,000/1,000 200/200 1,000/1,000 1,000 500
8 2:1 1,000 1,000/1,000 500/500 1,000/1,000 1,000 500

Table 5.
Summary of

diagnostic results of
QDSF data set

Unbalanced
categories Proportion Nosampling CNN

Nosampling
SE_Res

SMOTE
SE_Res

ADASYN
SE_Res

CGAN
SE_Res

0.135IRF
0.45IRF

20:1
10:1
5:1
2:1

69.85
71.43
70.04
68.44
86.79

73.52
73.44
73.39
74.06
87.85

81.23
84.68
88.98
88.49
88.51

84.63
85.85
86.00
84.19
87.67

85.42
87.46
95.17
98.61
99.60

0.3ORF
0.45ORF

20:1
10:1
5:1
2:1

72.08
72.71
73.32
90.69
92.48

73.40
75.18
79.29
91.31
93.72

87.63
88.08
88.75
89.01
88.96

85.25
86.82
87.04
87.02
87.04

88.12
90.00
99.10
99.16
99.87

Unbalanced
dataset
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results on the CWRU data set. The proposed method also exhibits excellent diagnostic
ability in the case of low signal-to-noise ratio data sets.

In general, the following conclusions can be drawn from the two groups of experiments:
� The CGAN data generation method proposed in this paper outperforms the SMOTE

method and the ADASYNmethod in solving the data imbalance problem.
� The diagnostic model based on residual network with SE module proposed in this

paper has higher diagnostic accuracy than the traditional CNN model.
� The combined method of CGAN and the proposed diagnostic model can solve the

problem of bearing fault diagnosis under the condition of data imbalance and low
signal-to-noise ratio and the effect is excellent.

� Although CGAN can generate high-quality samples, it should still try to alleviate
the data imbalance problem during the data collection stage.

6. Conclusion
Aiming at the data imbalance problem based on the fact that the actual bearing fault samples
are far less than the normal samples, this paper proposes a solution that uses the CGAN to
generate high-quality fault samples to construct a balanced data set. Furthermore, this paper
proposes a deep convolutional neural network that fuses residual blocks and SE blocks for
bearing fault diagnosis. This model can be used in conjunction with the CGAN generative
model, which shows better diagnostic ability in the case of data imbalance and low signal-to-
noise ratio compared to other traditional methods. Of course, there are still many problems in
the diagnosis of train bearings. For example, laboratory data is often different from the data
collected from the train, because the data collected from the real vehicle may be disturbed by
vibration of other parts of the train, track irregularities, wheel out-of-roundness or other
sources. So how to transfer and apply the diagnostic model trained on laboratory data to the
actual train requires more in-depth research. Therefore, in future research, we will pay more
attention to this directionwith the goal of putting ourmodel into practical application.
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