
The impact of multiagent systems on
autonomous production and supply chain

networks: use cases, barriers and contributions
to logistics network resilience

Benjamin Nitsche and Jonas Brands
Chair of Logistics, Technische Universität Berlin, Berlin, Germany

Horst Treiblmaier
School of International Management, Modul University Vienna, Vienna, Austria, and

Jonas Gebhardt
Chair of Logistics, Technische Universität Berlin, Berlin, Germany

Abstract
Purpose – Academics and practitioners have long acknowledged the potential of multiagent systems (MAS) to automate and autonomize decision-
making in logistics and supply chain networks. Despite the manifold promises of MAS, industry adoption is lagging behind, and the exact benefits of
these systems remain unclear. This study aims to fill this knowledge gap by analyzing 11 specific MAS use cases, highlighting their benefits,
clarifying how they can help enhance logistics network resilience and identifying existing barriers.
Design/methodology/approach – A three-stage Delphi study was conducted with 18 industry experts. In the first round, these experts identified 11 use
cases of MAS and their potential benefits, as well as any barriers that could hinder their adoption. In the second round, they assessed the identified use
cases with regard to their potential to enhance logistics network resilience and improve organizational productivity. Furthermore, they estimated the
complexity of MAS implementation. In the third round, the experts reassessed their evaluations in light of the evaluations of the other study participants.
Findings – This study proposes 11 specific MAS use cases and illustrates their potential for increasing logistics network resilience and enhancing
organizational performance due to autonomous decision-making in informational processes. Furthermore, this study discusses important barriers for
MAS, such as lack of standardization, insufficient technological maturity, soaring costs, complex change management and a lack of existing use
cases. From a theoretical perspective, it is shown how MAS can contribute to resilience research in supply chain management.
Practical implications – The identification and assessment of diverse MAS use cases informs managers about the potential of this technology and
the barriers that need to be overcome.
Originality/value – This study fills a gap in the literature by providing a thorough and up-to-date assessment of the potential of MAS for logistics
and supply chain management. To the best of the authors’ knowledge, this is the first study to investigate the relevance of MAS for logistics network
resilience using the Delphi method.

Keywords Multiagent systems, Automation, Autonomization, Digitalization, Autonomous systems, Delphi study, Resilience,
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Introduction

Modern logistics and supply chain management (LSCM) is
driven by the digitalization of processes and networks. In this
regard, stable, efficient and resilient processes are of paramount
importance and are a natural part of supply chain evolution
(MacCarthy et al., 2016; Miceli et al., 2021). Among the
plethora of challenges arising from the digitalization process,
the automation of informational processes in LSCM is a core

challenge, as acknowledged by both academic research (Dotoli
et al., 2019; Viale and Zouari, 2020; Frederico et al., 2019;
Nitsche et al., 2021) and industry practice (Junge et al., 2019;
Kersten et al., 2017). When equipped with enhanced decision-
making abilities and artificial intelligence (AI), automated
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processes can evolve into autonomous processes, thereby
bringing further value and enhanced resilience (Nitsche, 2021).
The ongoing COVID-19 pandemic has caused significant

disruptions to supply chain networks (Sarkis, 2021) and
sparked a debate over ways to increase supply chain resilience
(Herold et al., 2021). This might include increasing the speed
of decision-making and reinforcing the ability of supply chains
to recover from unpredictable disruptions more quickly (Ozdemir
et al., 2022). Therefore, in the wake of the COVID-19 crisis, the
design of autonomous processes for managing logistics networks is
becoming particularly important. Recent technological evolutions,
in particular the increase in computational capacity and the growing
availability of data, are crucial for enabling wide-scale automation
and self-organizing logistics networks. These developments, in
combinationwith technologies such as the Internet of Things (IoT)
(Aryal et al., 2018; Rejeb et al., 2022), machine learning (ML)
(Akbari and Do, 2021), blockchain (Treiblmaier, 2018b) and
digital supply chain twins (Gerlach et al., 2021; Calatayud et al.,
2019), have made autonomous systems in LSCM ever more
realistic. Previously, the implementation of these technologies was
hampered by technological shortcomings, but new concepts and
applications have illustrated how they can be successfully integrated
and deployed (Simchi-Levi and Wu, 2018; Helo and Hao, 2022;
MacCarthy and Ivanov, 2022).
In this complex technological ecosystem, multiagent systems

(MAS) are a highly important, yet under-researched, technological
driver for enabling automation and autonomization (Dorri et al.,
2018). LSCM is a good match for the practical application of
MAS, as supply chain processes require multiple decisions among
a large number of actors, both within a company and among
decision-makers of different firms. Previous examples demonstrate
the positive impact of MAS on the automation of small-scale
LSCM tasks, which play key roles in supply chain networks. For
instance, MAS can be used to select suppliers based on ordering
synergies (Yu and Wong, 2015), to establish collaborative supply
chain management (Fu and Fu, 2015), to optimize process
scheduling in the supply chain (Jiang et al., 2018; Leusin et al.,
2018; Yu et al., 2017) and to support decision-making in logistics
networks (Blos et al., 2018; SouzaHenriques, 2019).
According to Sycara (1998), MAS have four defining

characteristics:
1 limited information regarding each agent;
2 absence of a global control system;
3 decentralized data; and
4 asynchronous computation.

They enable optimization problems in subsystems to be solved
in a short time compared with system-wide optimization
(Karnouskos and Leitão, 2017; Wooldridge, 2009). As supply
chains regularly comprise a variety of subsystems, their respective
optimizations can yield substantial improvements overall. Through
the digitalization of business processes, MAS can take over
decision-making from humans and arrive at equally good or better
solutions at greater speed (Müller andFischer, 2014). In summary,
MAS offer great potential for creating supply chains that are
partially or fully autonomous (Ghadimi et al., 2019; Fiedler, 2022).
It is important to differentiate MAS from related and

partially overlapping concepts that are frequently used to
support automation and autonomy in logistics and supply chain
processes. To start with, the broad research field of AI has

attracted significant attention in recent years since industrial
users in particular expect complex problems to be solved
quickly, proactively and, in some cases, independently of
human decision-makers (Toorajipour et al., 2021). Distributed
artificial intelligence (DAI), a subfield of AI, provides solutions
to problems that are too complex to be solved by one agent;
thus, the associated computational load must be distributed
among several agents, some of which might have divergent
goals (Balaji and Srinivasan, 2010). Within the field of DAI,
MAS offer one way to address complex decentralized
problems. MAS consist of a finite number of agents; each agent
has a specific goal and can determine whether or not this goal is
met within its own context (Ferber, 1999). MAS can be
understood as a set of agents that share information with each
other to solve problems that are beyond the ability of a single
agent (Balaji and Srinivasan, 2010). ML, which can be
understood as a subset of AI, is defined as:

[. . .] a set of methods that can automatically detect patterns in data, and
then use the uncovered patterns to predict future data, or to perform other
kinds of decision making under uncertainty (Murphy, 2012, p. 5).

ML depends on algorithms that can learn and improve from
experience (Mitchell, 1997). In summary, MAS and ML are
overlapping and complementary concepts. Individual agents
within a MAS can be equipped with additional intelligence
(including ML capabilities) to learn about future events (Iqbal
et al., 2016). ML algorithms are an important tool that agents
can use to make decisions and increase autonomy. The
usefulness of ML for solving complex MAS problems has been
acknowledged in previous research (Panait and Luke, 2005).
Although MAS have been discussed in the academic

literature for several years (Wooldridge, 2009), industry
implementations of these systems remain scarce. Single use
cases of the technology have been previously deployed in pilot
projects (Müller and Fischer, 2014), yet the use of MAS is not
widespread (Xu et al., 2021), despite its postulated benefits
(Jennings, 2000). Considering the proliferation of other
forms of autonomy and digitalization in LSCM, such as
autonomous vehicles, ML algorithms and self-organizing
warehouses, it is high time to rigorously reassess the potential of
MAS as an autonomous technology that can benefit LSCM.
Therefore, in this paper, we scrutinize the application of MAS
with the goal of identifying concrete use cases and their
contribution to logistics network resilience and organizational
performance. Specifically, this study addresses the following
research questions (RQ):

RQ1. Which use cases in LSCM have the greatest potential
to be operated autonomously with the help of MAS
applications?

RQ2a. What potential lies in the autonomous execution of
specific use cases?

RQ2b. How can MAS enable and support resilient logistics
networks as well as improve productivity?

RQ3. What are the barriers to implementing autonomous
processes with the help ofMAS?

This paper is organized as follows. First, academic research on
MAS is discussed, and howMAS can play an important role in
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creating resilient networks is illustrated. Subsequently, the
research design is outlined, which consists of a three-stage
Delphi study among 18 LSCM practitioners. In the results
section, MAS use cases are first identified and then assessed
according to their respective potential. Furthermore, potential
barriers are pointed out. Several recommendations for future
theory-based research are presented, as well as practical
recommendations for managers. This study ends with a short
conclusion that also illustrates several limitations and interesting
avenues for future research.

Theoretical background

Automation and autonomy in supply chains
Increasing automation and autonomy shape the present
development of LSCM and will continue to do so in the
foreseeable future (Nitsche et al., 2021). Automation has
already been a key focus of the third industrial revolution, and
autonomy is playing a leading role in the ongoing fourth
industrial revolution, triggered in the wake of the IoT (Schwab,
2017). Both concepts, in essence, refer to processes happening
without direct human intervention and tend to be used
interchangeably. However, there is an important difference:
automation refers to systems that are programmed by humans to
act in an exactly specified way and under certain circumstances.
In contrast, autonomous systems can act on their own and are
able to change initially designed paths of action within
boundaries defined a priori by designers (Wooldridge and
Jennings, 1995; Wooldridge, 2002). Consequently, autonomous
systems have greater flexibility and the ability to self-govern.
Although automation has been achieved in many processes in

recent decades, autonomy in production or logistics networks has
not yet lived up to its initial promise. When it comes to the
differentiation between automation and autonomy, various
authors have developed their own taxonomies over the years
(Sheridan and Verplank, 1978; Miller and Parasuraman, 2007;
Johnson et al., 2009). Some suggest classifying a system
according to its level of autonomy, which typically ranges from
full human control to a fully functional autonomous system that
works without any human interference. Dumitrescu et al. (2018)
propose five evolutionary stages in the autonomy of technical
systems that range from remotely controlled systems to fully
autonomous systems. At each stage, the amount of human user
control is reduced, whereas the level of control by the system, its
decision-making and ML gradually increase, leading to
autonomous systems that are capable of solving complex
problems and interacting with other systems without the need for
direct human interaction. The advanced stages of this
evolutionary process are closely linked to the deployment of AI,
which leads to systems that have agency of their own (Baryannis
et al., 2019). Recent advancements in AI have made the vision of
fully autonomous systems increasingly realistic (Baryannis et al.,
2019). As AI can still face computational boundaries due to the
complex nature of many problems, DAI has been suggested as a
solution that would divide the computational load across a
network of smaller agents. MAS therefore offer a goal-oriented
solution for agent collaboration within the field of DAI (Balaji
and Srinivasan, 2010).

Multiagent systems
Based onWooldridge and Jennings (1995), Wooldridge (2002,
p. 5) defines an agent as “a computer system that is situated in
some environment, and that is capable of autonomous action in
this environment in order to meet its design objectives.” Any
control system can therefore be seen as an agent, and the more
complex the environmental control system becomes, the more
complex and comprehensive the decision structures become.
Taken together, individual intelligent agents can become part
of a larger system, labeled asMAS. Such a decentralized system
consists of multiple autonomous agents that each pursue their
individual objectives and execute activities in parallel (Wooldridge,
2009). They can solve complex problems by dividing them into
simpler subproblems and offering companies features such as
decentralization, modularity, flexibility and robustness (Skobelev
andTrentesaux, 2017), which help to increase the resilience of the
overall system (Vistbakka andTroubitsyna, 2021). Different levels
of autonomy within MAS exist, ranging from machines that are
able to solve simple mathematical functions to fully autonomous
individual agents that evolve over time through ML (Dorri et al.,
2018;Moyaux et al., 2006).
MAS have existed for several decades, and previous research has

already confirmed their importance in areas such as real-time
manufacturing through themodeling of competitivemanufacturing
systems, the capturing of manufacturing systems’ evolutionary
development and the designing of rational agents, which together
allow for improved qualitative analysis and the development of
simulation frameworks as well as real-life applications (Dominguez
andCannella, 2020; Lee andKim, 2008).
MAS have gained renewed attention following the rise of data-

driven technologies at the beginning of the current decade. The
overall number of MAS implementations is increasing, and
numerous application areas have been identified, including
scheduling, coordination between enterprises, information sharing,
order fulfillment processing, collaborative production planning,
provider selection, remanufacturing and resilience (Dominguez
and Cannella, 2020). However, the technology has not yet reached
its predicted levels of use (Karnouskos and Leitão, 2017; Xu et al.,
2021). Existing studies on specific industries, such as the oil and gas
industry, have found that several companies already apply MAS
systems, but existing implementations strive to solve rather well-
defined supply chain problems, such as logistics planning or
process optimization. In contrast, implementations for more
complex problems covering thewhole supply chain are rare (Hanga
andKovalchuk, 2019).
Although there are considerable benefits from MAS, they also

haveweaknesses that inhibit their practical deployment (Dorri et al.,
2018). Amajor issue is that decentralized systems only provide local
optimization and, when combined, may underperform compared
with a centralized solution (Treiblmaier, 2018a). The high
interdependency of the different agents makes finding an optimal
solution difficult, and a great number of interactions between
agents can also lead to long computation times. Problems that
cannot be divided into subproblems are also unsuitable for MAS.
Implementation and monitoring are costly, and the output of the
system can be incomprehensible and unpredictable, as MAS can
lead to emergent and unpredictable behavior (Jennings, 2000).
These downsides result in six barriers, as summarized by
Karnouskos and Leitão (2017), which hinder the widespread
implementation of MAS in industry. These are change
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management – describing the complex process of MAS
adaptation, lack of technologicalmaturity, costs for development,
maintenance and implementation, lack of standardization,
problems finding suitable and feasible practical applications and
the ability tomeasure the total benefits of the system.
As an evolving technology, the widespread industrial

adoption of MAS depends on how well these barriers can be
dealt with. Although several benefits can be relatively easily
shown at the level of proof-of-concept, showing true business
value in the long run is much harder (Bergenti et al., 2004).
Furthermore, the business benefits of MAS are notoriously
difficult to quantify in advance. The technology requires
acceptance by all relevant stakeholders, which is particularly
difficult to achieve in tightly controlled, hierarchical industrial
settings. To ensure this acceptance, it is therefore crucial to
identify and evaluate specificMAS use cases and to understand
the barriers hindering their adoption.

Resilience and the role of multiagent systems
In general, resilience can be defined as the capability of a supply
chain to return to normal operations or even to an improved
state after being disrupted (Christopher and Peck, 2004; Pettit
et al., 2010). Building on this core objective, a broad field of
research has emerged, and several definitions have been
developed that highlight various characteristics of resilience
(Shishodia et al., 2021). An overview of resilience definitions in
logistics and supply chain research is given in Table 1. To
achieve resilience, proactive strategies can be established to
ensure that the probability of disruptions is lowered, but
reactive strategies also have to be in place to increase an
organization’s capability to react to any disruptions (Tukamuhabwa
et al., 2015). Although the proactive part is of importance, a
major portion of resilience research focuses on the reaction to
disturbances. What most definitions have in common is the ability
to recover from disruptions and return to normal operations. In this
regard, the speed of this process is crucial to becoming resilient
(Brandon-Jones et al., 2014; Sheffi, 2005; Tukamuhabwa et al.,
2015).
Pettit et al. (2010) list several vulnerabilities in the supply

chain (i.e. turbulence, deliberate threats, external pressures,
resource limits, sensitivity, connectivity, supplier/customer
disruptions) and derive important capability factors (e.g.

flexibility, capacity, efficiency, adaptability, collaboration) that
can be leveraged to address these vulnerabilities. MAS in LSCM
can help alleviate several of these issues by allowing lengthy and
complex processes, which often include negotiations with other
entities, to be run autonomously in a faster and more efficient
way. Besides gains in the productivity of processes, MAS also
offer the potential to react to unforeseen changes in a network in a
timely manner and leverage the knowledge stored in the network
as opposed to tacit knowledge in individual units.
As a contribution to logistics network resilience, MAS can

increase organizational flexibility through modularity and are
able, through decentralization, to offer new solutions that cannot
be found in purely centralized systems (Huhns and Stephens,
1998). Moreover, MAS reduce the need for computational
power, as only subsystems need to be optimized. In the wake of
Big Data, highly complex centralized systems are consuming ever
more resources (Schwartz et al., 2020). In this regard, MAS offer
an effective way to design efficient distributed computer systems
(Huhns and Stephens, 1998). Additionally, the division into
subsystems makes the programming of MAS relatively easy for
developers owing to the reduced complexity of the system. One
resulting benefit is the ease ofmakingmodifications, as amodular
system makes it easier to change a single agent, thereby reducing
configuration costs and increasing system reusability. Finally, the
multidimensionality of MAS simplifies problem-solving in
complex environments, and the combination of decentralization
and modularity lends itself to situations that are likely to change
frequently (van Parunak, 1998; Treiblmaier, 2018a).
Given the core characteristics of autonomous MAS, it can be

concluded that they can support companies in increasing their
organizational productivity and making their networks more
resilient. Furthermore, gaining independence from individual
human knowledge has become an important driver for LSCM,
especially during the COVID-19 pandemic (Modgil et al., 2022a;
Modgil et al., 2022b; Nitsche and Straube, 2021). During this
pandemic, the need for more resilience in future supply chains
became evident, and process automation is now seen as one
important cornerstone in achieving it (Kiers et al., 2022). Process
automation can be seen as another evolutionary step in the
industrial evolution that substitutes humans with machine labor
and, in doing so, reduces the number of jobs needed in the industry
(Schmidpeter andWinter-Ebmer, 2021;Petropoulos, 2021).

Table 1 Resilience definitions in logistics and supply chain management research

Source Definition/understanding

Brandon-Jones et al. (2014, p. 58) Supply chain resilience is defined as the ability of a system to return to its
original state within an acceptable period of time after being disturbed

Ponomarov and Holcomb (2009, p. 131) The adaptive capability of the supply chain to prepare for unexpected events,
respond to disruptions and recover from them by maintaining continuity of
operations at the desired level of connectedness and control over structure and
function

Sheffi (2005, p. 2) In the corporate world, resilience refers to the ability of a company to bounce
back from a large disruption – this includes, for instance, the speed with which
it returns to normal performance levels (production, services, fill rate, etc.)

Tukamuhabwa et al. (2015, p. 8) The adaptive capability of a supply chain to prepare for and/or respond to
disruptions, to make a timely and cost-effective recovery, and therefore
progress to a post-disruption state of operations – ideally, a better state than
prior to the disruption
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Methodology

In this explorative study, we chose a Delphi method because of
its ability to attain and develop knowledge among a group of
experts in a particular field of interest (Melnyk et al., 2009;
Okoli and Pawlowski, 2004). The experts were tasked with
making predictions on the future development of MAS in their
respective work areas and providing contextual information
regarding their predictions (Alarabiat and Ramos, 2019). Their
input was aggregated and analyzed anonymously by the
researchers, and, in line with the tenets of a Delphi study, the
results were sent back to the experts for revaluation. Bias was
prevented by the absence of interactions among the individual
experts, which also increased the accuracy of the forecasting
(Okoli and Pawlowski, 2004). In summary, the Delphi method
provided the ideal tool to account for the different geographical
locations of the experts, objectively gain group consensus on
single topics while avoiding dominant respondent bias, and
extract knowledge from highly qualified individuals.
Previous Delphi studies in LSCM research were successfully

used to systematically extract practitioners’ knowledge, with the
goal of predicting and assessing developments in industry
practice (Hohn and Durach, 2021; Durach et al., 2017; Darkow
et al., 2015). Following previous authors’ recommendations, we
placed special emphasis on recruiting a heterogeneous group of
experts from different areas of LSCM to ensure creativity, avoid
bias from likeminded answers and gain a broad view (Alarabiat
and Ramos, 2019) of this under-researched field. We chose a
three-round Delphi study design, which is a design that is
generally regarded as being sufficient for gaining conclusive data
(Okoli and Pawlowski, 2004); additional rounds would
potentially lead to substantial dropout rates (Kache and Seuring,
2017). The selection of experts took place between April and
May 2020. The first round of the study was conducted in June
2020. In August 2020, the experts assessed the different use cases
with regard to the potential of MAS identified during the second
stage. In the subsequent third stage in October 2020, the experts
received aggregated group answers to update their own answers.
The empirical study concluded by communicating the
preliminary findings to the participants in the first half of 2021.

Expert selection
Selecting the right experts is crucial for the success of the
Delphi method, as participants who are highly qualified in a
subject contribute the best possible insights and predictions for
a research topic (Alarabiat and Ramos, 2019). To assemble a
suitable group of industry experts, potential candidates from
research and industry with known backgrounds in LSCM as
well as autonomous technologies were contacted and asked if
they considered themselves knowledgeable regarding MAS or, if
this was not the case, to forward the request for participation in the
Delphi panel to more suitable colleagues. Although there were no
geographical restrictions, the participants were required to be able
to complete the questionnaires in English or German. A group of
18 participants took part in all three rounds. Our number of
participants slightly exceeds the recommended number of 10–15
experts forDelphi studies to gainmeaningful results (Delbecq et al.,
1975; Adler and Ziglio, 1996; Alarabiat and Ramos, 2019). To
spark creativity and allow for well-rounded opinions, the Delphi
panel also included two consultants and two academic researchers.

Table 2 shows the characteristics of the Delphi panel
participants, including their country of origin, industry type,
number of employees, annual turnover, management level and
years of experience in LSCM. On average, the study participants
had 13years of professional experience, which considerably
exceeds the recommended domain experience of at least
five years (Durach et al., 2017).

Delphi study design
After confirming their qualifications of relevance to
autonomous systems, the experts were briefed about the goals
and the planned rounds of the Delphi study, which are detailed
in the sections below (see Figure 1).
First round: The aim of the first round of theDelphi study was

threefold. First, the experts were tasked with identifying and
describing specific use cases for MAS in LSCM. These use
cases should be complex and ideally included interactions with
other supply chain participants, as well as exhibiting a high
potential for autonomization. Second, the experts needed to
name potentials that they would expect from an MAS
implementation and that they would use to evaluate a specific
application. Third, they identified barriers that hinder the
widespread implementation of such MAS. The experts were
asked to answer each question openly and to name as many use
cases, potentials and barriers as they could think of. To
synthesize the results, Q-methodology was applied to each
question individually (Ellingsen et al., 2010). This method
enables a structured synthesis of a variety of answers and has
previously been applied in LSCM research to synthesize large
numbers of qualitative answers (Durach et al., 2015; Nitsche
and Durach, 2018). This was done by writing down each use
case mentioned by a study participant on an individual card.
Subsequently, two researchers individually performed the
Q-methodology process, reading one card after another and
either opening up a new use case group in case no thematically
similar use group already existed or placing it into an existing
and similar group of use cases. By executing this procedure,
each researcher individually came to a synthesis of use cases that
were presented to the other researcher. Afterwards, the similarities
in assignments were identified and differences discussed to find a
common understanding. As a result, a set of 11 use cases was
synthesized that provided the basis for the further assessment of
the potential of the use cases in the subsequent rounds.
Second round: The goal of the second round was to assess the

potential of the identified MAS use cases. Building on the
results of the first round, the potential of each MAS use case
was identified in the synthesis as either improving the resilience of
the logistics and supply chain network or increasing organizational
productivity. Additionally, we asked for a thorough assessment of
the implementation complexity of each use case. In the second and
third rounds, the 11 use cases identified were assessed using a five-
point differential scale with endpoints 1 (low) and 5 (high) using
the following three assessment criteria:
1 Potential for logistics network resilience (PLNR): The

potential of a use case to increase the capability of a
logistics/supply chain network to go back to regular
operational functioning within a tolerable time interval
after being disrupted.
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Table 2 Sample demographics of the Delphi study

# Country of origin Industry type No. of employees Annual turnover Management level Years of experience

1 Netherlands Manufacturing,
automotive

>10,000 5–10bn e Department manager 20

2 Germany Consulting <50 <10m e General manager 30
3 Brazil Manufacturing,

machinery/equipment
>10,000 5–10bn e Team leader 25

4 Germany Consulting <50 <10m e Self-employed 20
5 Germany Manufacturing,

consumer goods
1,000–2,500 500–1,000m e Team leader 15

6 USA Manufacturing,
automotive

>10,000 5–10bn e Department manager 10

7 Germany Manufacturing,
Automotive

>10,000 >10bn e Team member 3

8 Germany Manufacturing,
automotive

>10,000 >10bn e Department manager 6

9 Germany Manufacturing,
automotive

>10,000 >10bn e Team member 3

10 Germany Manufacturing,
automotive

>10,000 >10bn e Department manager 9

11 Cyprus Manufacturing,
chemicals and
pharmaceuticals

250–500 50–250m e Department manager 25

12 China Logistics service
provider

>10,000 >10bn e Department manager 14

13 Germany Logistics service
provider

>10,000 >10bn e Department manager 15

14 Germany Manufacturing,
aviation

>10,000 >10bn e Team member 6

15 Germany Manufacturing,
automotive

>10,000 2.5–5bn e Department manager 15

16 Australia Research 1,000–2,500 500m�1,000m e Team member 10
17 France Research <50 <10m e General manager 5
18 Netherlands Construction 250–500 50–250m e Team leader 2

Figure 1 Research procedure for the three-stage Delphi study

1st Round

Experts are asked to name and describe use cases for MASs in LSCM (RQ1).

Experts are asked what poten�al they expect from MAS applica�ons (RQ2a).

Experts are asked to iden�fy key barriers to industry acceptance of MAS (RQ3). 

2nd Round

Experts are asked to assess the 11 iden�fied use cases according to their poten�al to increase network resilience and improve produc�vity 

(RQ2b).

3rd Round

Re-evalua�on of their assessments from the second round by le�ng the experts see the group average (arithme�c mean) on each ques�on.
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2 Potential for productivity increase (PP): The potential of a
use case to perform at least one organizational process
more efficiently (e.g. faster or at lower cost).

3 Reduction of the complexity of implementation (CI): A
decrease in the level of resources needed to deploy a
project.

Third round: In the third round, the experts were given the
aggregated results for each of the three metrics (i.e. PLNR, PP
andCI) applied to assess each use case andwere given the chance
to adjust their initial answers based on this new information and
to provide additional information to outline their decisions.
Based on the results of this final round, we calculated important
statistics for each use case to determine whether a group
consensus had been reached. Such consensus is the case if the
interquartile range (IQR) lies beneath a certain threshold. A
consensus confirms the results and indicates high forecast
accuracy (Hahn andRayens, 1999; Raskin, 1994).

Results

In the following sections, we present our results in three parts,
addressing each RQ consecutively. First, we identify and
describe promising LSCM use cases (RQ1); second, we assess
the potential of each of these use cases and how they can benefit
organizations and be leveraged to create resilient and
productive networks (RQ2a/b) and, third, we present and
discuss relevant barriers toMAS implementation (RQ3).

Identification of promisingMAS use cases
Table 3 outlines the 11 use cases (UC) that the experts
identified as having the most potential for MAS-supported
automation. For all use cases, it was considered beneficial to
include multiple entities with partially different target systems
in decisions related to problem-solving. These use cases
illustrate the broad applicability of MAS. In UC1, search
agents check databases to discover suitable suppliers for
required tasks andmaterials. Interested suppliers can register in
the databases to be visible to search agents. Once the agent
finds a suitable supplier, it notifies the responsible employee or
another agent to initiate a contract process. In UC2, renegotiating
expiring contracts or creating new ones can be automated by
letting agents take the place of negotiators. These agents are

configured to represent the goals of individual companies. For a
more complex problem, agents from different companies can
come together to achieve an optimal collaborative planning
scenario. UC3 describes how agents can be used to monitor
demand and coordinate purchasing. All involved agents are in
constant communication with one another, in accordance with the
metrics agreed. Demand and stock are constantly evaluated, and
new orders are generated automatically. In UC4, agents check
truck load sizes, optimal transport routes and available transport
offers for specified routes. Should a match with a third-party
logistics (3PL) or fourth-party logistics (4PL) provider occur, an
agent can automatically book the optimal transportation solution.
UC5 illustrates how two separate agents can optimize production
and transport plans in accordance with one another, finding the
optimal solution for the entire supply chain. Should one of the two
subsystems be disrupted, the agents can work together to create an
automated, viable solution in real time. In UC6, an agent
constantly monitors whether the current production plan is still
optimal, based on new information that can be added in real time
to the system. Should such data lead to a new optimal plan, a
production agent is informed, who checks the plan for feasibility
before implementing it as an updated production plan. In UC7,
different agents take into account staff availability, workload and
flexibility to optimize personnel scheduling. The information is
regularly passed on to another agent responsible for generating an
optimal schedule. UC8 involves different agents that track the
demand and availability of intralogistics components and match
them accordingly, which includes the scheduling of forklifts and
automated guided vehicles (AGVs). In UC9, an agent regularly
updates the list of outgoing orders, sorting them by urgency. This
information is given to another agent, which plans the sequence of
commissioning and outbound goods. In UC10, an agent scans
databases, such as news sites, for disruptive events. Relevant
instances are reported to an event management agent, which then
reconfigures the supply chain to limit the events’ impacts and
implements the new optimal solution. Finally, in UC11, each
agent becomes part of the supply chain and can be used to create a
simulation to optimize and verify solutions for the whole value
network.
As described in the introduction,MAS are used when separate

entities need to be involved in complex decision-making
processes that require automation. Participants were aware of the
crucial role of ML in solving complex MAS problems; this role

Table 3 Use cases for MAS implementation in LSCM

No. Use case LSCM domain

UC1 Automated partner/supplier search based on predefined parameters Partner search and negotiations
UC2 Automated negotiations with suppliers including contract negotiations Partner search and negotiations
UC3 Automated inbound supply planning and purchasing of materials Supply planning
UC4 Automated transport planning including scheduling/booking Supply planning
UC5 Automated combination and optimization of transport and production plans Supply planning
UC6 Automated rescheduling and production plan optimization including dynamic lot sizing Production planning
UC7 Automated personnel scheduling (in-house, warehouse/production) Warehouse operations
UC8 Automated in-house planning and scheduling of intra logistics components Warehouse operations
UC9 Automated order processing/prioritization of orders in finished goods warehouses Warehouse operations
UC10 Automated risk/event management, identification of disruption risks and rescheduling/planning

of new transport routes
Risk management

UC11 Simulation of supply chain networks to identify potential for optimization Strategic planning
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was also explicitly included in the definitions of the use cases. The
extent to which the agents should be equipped with ML
capabilities or whether predefined rules are sufficient was not
explicitly prescribed for each use case. However, due to the
complexity of the use cases, it can be assumed that their
automation would frequently require intelligent agents that can
learn and adapt over time.

Assessment of MAS use cases
To answer RQ2a and RQ2b pertaining to the different
potentials of the respective use cases, as well as the applicability
of these use cases to the strengthening of supply chain resilience
and productivity, the experts used the assessment criteria
PLNR and PP, as presented above. Additionally, we asked
about the CI. The results can be found in Table 4, which is
ordered by the resilience potential (PLNR) of the respective use
cases. For each case, the arithmetic mean of the assessment
criteria is shown, as well as the IQR and the convergence rate
(CV). The IQR is used to measure the consensus of the expert
group and is calculated by subtracting the results of the first
quartile (25%) from the third quartile (75%). The CV is the
decrease in standard deviation between the rounds of the
Delphi study, in this case, between rounds two and three. A
negative CV indicates a convergence toward a group
consensus. Furthermore, we calculated the difference between
the scores of the PP and the PLNR and weighed these scores
against the CI. These deltas can be used to assess and compare
the relative benefits of the corresponding use cases. Those with
positive scores can be seen as high-value use cases and should
be prioritized when it comes to MAS implementation in
practice, as their potential benefits (e.g. increases in either
productivity or resilience) outweigh the CI. It should be noted
that a use case does not necessarily have to address both
benefits; rather, LSCM managers need to start thinking about
and prioritizing applications in light of their respective demands
to determine whether the goal of autonomizing the process
concerns either increases logistics network resilience or
productivity. AlthoughTable 4 illustrates that all use cases have
above-average assessment scores for each of the assessment
criteria, the results still diverge, depending on the nature of the
use case itself.
Concerning the potential of PLNR, automated risk and

event management is the most promising use case. However,
every use case that automates material flow achieves a high
score, as MAS allows for the rescheduling of material flows in
real time and swift responses to unforeseen events. Notably,
automated supplier negotiations (the only MAS that received a
score below 3 for PLNR) are not seen as very relevant to
resilience, as they are regular, singular events with limited
potential for automation.
When it comes to productivity increases, the use cases that

exhibit the highest potential are those that relate to automated
rescheduling and production planning, synchronized transport
and production planning and inbound supply planning and
purchasing. Since production and transport are at the core of
any supply chain and require substantial coordination effort,
they benefit the most from autonomous processes. In
comparison, automated negotiations are also not highly ranked
for PP, since negotiations have a distinct social component and

can be hard to automate, which is especially true if two or more
parties are pursuing conflicting goals.
The CI is highest for those processes that deal with a lot of

data or involve multiple different parties. The automated
rescheduling of production plans and their synchronization
with transportation are examples of such complex problems. In
comparison, in-house activities, such as automated order
processing in warehouses and the planning of intralogistics, are
comparatively low in complexity. These use cases can be used
to test and gain experience for companies starting out with
deploying MAS, as they offer sufficient potential while
simultaneously having low implementation complexity.
The deltas show that swift implementation is not desirable

for all use cases from a resilience or productivity perspective, as
their benefits may be simply too low or the complexity too high.
These include automated rescheduling and production plan
automation (UC6), the simulation of supply chain networks for
optimization purposes (UC11), automated personnel scheduling
(UC7) and automated supplier negotiations (UC2). The
optimization of transport and production plans (UC5) as well as
inbound supply planning and purchasing (UC3) score positively
when it comes to organizational productivity but negatively from
a resilience perspective. Automated risk/event management
(UC10) is the only use case that has a negative score from a
productivity perspective, but has a positive resilience assessment.
Two cases have two positive deltas, identifying them as
applications that should be prioritized by companies wanting to
implement MAS solutions. These include automated transport
planning (UC4) and automated order processing/prioritization
(UC9).
We defined a threshold value for the IQR of �25% for the

three criteria (PP, PLNR and CI) to test consensus in group
opinion, which is in line with the recommendations of previous
Delphi studies (Hahn and Rayens, 1999). Given the use of a
five-point scale, consensus is thus reached if IQR� 1.0. In
total, consensus was achieved for 29 out of 33 predictions
(88%), which is an above-average group consensus for a Delphi
study, as most results vary between 22% and 85% (Hahn and
Rayens, 1999).

Barriers toMAS use cases
To answer RQ3, the participants were tasked with naming the
relevant barriers to the implementation of MAS. Four main
barriers emerged, which we summarize in a qualitative manner:
Standardization: Current MAS applications are highly

customized solutions implemented by single companies.
Consequently, standardization has not been achieved yet, and
one-size-fits-all solutions are not readily available on the market.
This makes the scalability of current MAS applications very
difficult, and connection with third parties is also impeded by the
lack of widespread standards. Even though there have been efforts
to standardize MAS, these have mainly come from academia and
do not specifically consider industrial requirements.
Technological maturity: This barrier addresses the technological

complexity of solutions and the readiness of these technologies
for wider use. The experts indicated that companies may doubt
the technological readiness of MAS; thus, a MAS solution can
always be questioned, as the problem-solving process is complex
and may not always be transparent. As a result, potential use
cases might be discarded or canceled due to their complexity.
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Most companies have no or only a few MAS experts who are
qualified to develop these complex solutions and dispel doubts
about the technology’s maturity. However, the growing number
of academic MAS publications and the proliferation of industry
projects indicate that MAS might reach a sufficient level of
maturity in the foreseeable future that will then be acknowledged
by industrial actors.
Costs: In addition to the high costs for software acquisition

and development, deployment, management andmaintenance,
personnel training and hardware acquisition, the generation of
high-quality data can be very expensive, a problem that is not
exclusive to MAS. Setting up the master data or migrating it
from legacy systems can consume a lot of effort and time.
Automated data acquisition needs to be implemented in the
entire process so that the whole MAS system can function fully
autonomously. These requirements can easily lead to soaring
costs.
Change management: Decision-makers and management are

often unaware or skeptical of MAS applications, which can be
partly attributed to the barriers discussed above. Furthermore,
MAS might lead to a loss of control because of decentralization
and autonomization. Apart from the previously mentioned
need for successful MAS projects as positive role models for
decision-makers, systems need to be designed in a way that
allows for human interaction and intervention, at least in the
first years of MAS application. This would prevent a feeling of
fully handing over control to an automated system and could
help to increase trust in the technology. Employees may also
fear being replaced by an MAS solution. Good change
management is therefore essential, with employees being
involved in the development and implementation of MAS.
They also need to be prepared to take on new tasks when their
current work is replaced by automated processes. During
change management, it is important to pay particular attention
to the behavioral factors that prevent employees from
supporting technological change. Personal attributes, values
and fears must be addressed; otherwise, this barrier can lead to
a situation in which a technologically mature solution has been
developed but cannot be implemented. On a broader scale, this
also raises the issue of finding employment opportunities for
humans, who are increasingly being replaced by technology.

Discussion and implications

MAShave gained a reputation for providing suitable solutions for
the development of complex systems that demand flexibility,
robustness, adaptation and responsiveness (Barbosa et al., 2015).
Despite promising perspectives, few industrial applications have
been discussed in the literature, which makes it difficult to
convince industry stakeholders of the benefits and technological
maturity of this technology (Leusin et al., 2018). The results of
this study indicate numerous potential benefits for MAS in
logistics for several use cases, which is in line with the findings of
previous research on the general potential ofMAS (Skobelev and
Trentesaux, 2017). At the same time, the inherent complexity of
each of those use cases was confirmed, whichmatches the general
sentiment in the academic literature regarding the cost of
implementing MAS solutions in industrial applications (Leitão
and Karnouskos, 2015). Our findings provide several academic

and managerial implications that can guide future research and
provide value forMAS implementation in practice.

Theoretical implications
In this study, we investigate the current and future
development ofMAS in LSCM and identify and assess possible
use cases. In a rigorous three-round Delphi study, a total of 18
experts compiled a comprehensive list of use cases, which
presents a starting point for other researchers to focus on one or
several of the identified cases or to add further applications to
the list. More in-depth knowledge of the impacts and benefits
ofMAS applications in LSCM can reduce the CI and lower the
threshold for further industry integration.
We approached the assessment of the cases from the

viewpoint of resilience theory, which, in a network setting,
refers to the capability of a supply chain to return to normal
operations or even to an improved state after being disrupted
(Christopher and Peck, 2004; Pettit et al., 2010). In this regard,
our study makes an incremental contribution to previous
research by identifying capability factors that can be leveraged
to address supply chain vulnerabilities, with the goal of
increasing resilience (Pettit et al., 2010). MAS might, by
definition, be unable to identify black swan events in advance,
but they can offer increased flexibility when such events occur
and enable companies to react to unforeseen events more
quickly, thus supporting faster recovery. Our findings identify
those MAS use cases with the highest potential to increase
logistics network resilience, namely, automated risk/event
management, transport planning, rescheduling and production
plan optimization and combination/optimization of transport
and production plans. Furthermore, we also take into account
the implementation complexity of all use cases and have been
able to pinpoint applications that might be advantageous for
companies to try out first. Future theory-based research can
build on our findings by:
� taking a behavioral viewpoint and investigating adoption

antecedents and consequences of a specific implementation; or
� taking a design-oriented perspective and helping to create

solutions that help companies to make their own networks
more efficient.

As indicated above, the implications of our findings may have
both intended and unintended consequences for the organization
itself and its workforce. The main focus of our study was the
investigation of how MAS can help improve an individual
organization’s performance or strengthen the resilience of the
network it is operating in, but the change processes that
accompany these digital transformation processes must not be
neglected. In this regard, the theory of organizational learning
(Crossan et al., 2011) and organizational behavior theories
(Miner, 2003) can help to get a better understanding of how
organizations and their workforce might respond to the changes
that are induced by MAS. Moreover, our findings can help to
identify technologies that might impact organizational structure
and processes in the not-too-distant future.
Another theory-building outcome of this study is the

confirmation and refinement of previous research on MAS
implementation barriers (Karnouskos and Leitão, 2017). Future
research needs to focus in more detail on ways to overcome these
barriers and enable easierMAS implementations. Barriers always
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need to be considered for specific scenarios and can potentially be
removed as the industry matures and knowledge of MAS
becomes more widespread. Some of these barriers take the form
of obstacles resulting from digitalization in LSCM in general
(Agrawal et al., 2019).

Managerial and societal implications
This study has several important implications for practitioners.
Management can use the suggested list of MAS application
scenarios to identify and assess implementation opportunities
within their own supply chains. The assessment of the
respective use cases gives practitioners guidance on whichMAS
cases to start with. If a company has no prior experience with
MAS, use cases with a low CI and reasonable profits might be
recommended to first try out the technology. The assessment
criterion (i.e. delta) that we used to measure the difference
between the expected benefits and implementation complexity
also provides interesting insights for practice, since managers
with little experience in MAS can identify those use cases that
promise high benefits in relation to their expected complexity.
Examples include the automation of in-house transport
planning and order processing.
It is to be expected that with growing experience in the field

of MAS, companies will be able to maximize the benefits and
lower the costs of implementation over time. In case organizational
subsystems have already been implemented that use MAS,
developers in the company will have earned relevant experience,
and management and employees will have gained trust in the
technology. When implementing MAS, it is also advisable for
management to keep a close eye on the barriers presented in our
study, especially the lack of standardization, missing industry
experience and unpredictable costs. Furthermore, managers need
to establish change management processes that not only take into
account the interests of a company’s shareholders but also its
employees. Our list of barriers can thus help to enable mindful
implementation, show management which challenges are likely to
arise and give them some ideas on how to adequately address
these.
Even though our study focuses on the potential of MAS for

increasing resilience in logistics and supply chain processes, the
societal implications of these changes must not be neglected. In
general, optimized supply chain processes contribute to societal
welfare and value generation, supporting themore effective and
efficient use of existing resources (MacCarthy and Ivanov,
2022). However, the autonomization of previously manual
processes could have a detrimental impact on employment
levels and lead to deskilling in supply chains. The use cases
developed by the Delphi panel illustrate that many of these
processes are currently very labor-intensive and are conducted
manually, with little technological assistance. Autonomizing
such processes will have direct implications for the workforce
and raise various questions that have not yet been adequately
investigated. Several authors already highlighted the significance of
the human factor in the introduction of AI systems (Dora et al.,
2022; Dwivedi et al., 2021; Hoberg et al., 2020; Klumpp and
Ruiner, 2022). However, most current research focuses on the
technical implementation of specific UCs, as demonstrated in the
literature reviews by Pournader et al. (2021), Riahi et al. (2021) and
Toorajipour et al. (2021). So far, few articles have investigated the

employment implications of AI systems in general and MAS
systems in particular.
In highly digitalized and partially autonomous supply chains,

the competence profiles of logistics managers will need to
change. It is currently unclear to what extent systems can run
autonomously or when employees will need to intervene in
systems whose decision-making processes can only be
understood to a limited extent. Consequently, Hoberg et al.
(2020) point out that, despite technological advancements, it is
unlikely that human decision-making will ever be completely
eliminated. For the supply chains of the future, Hoberg et al.
(2020) favor a combination of the unique capabilities of human
decision-makers with AI-based guidance to enable complex
problem-solving.

Conclusion, limitations and future research

The goal of this Delphi study among 18 LSCMpractitioners is to
identify MAS application scenarios, their potentials and barriers
to MAS implementation. Eleven distinct use cases were
identified that ranged from processes that were internal to general
andmore complex ones that involvedmultiple stakeholders along
the supply chain. Subsequently, those use cases were assessed by
the Delphi panel according to three assessment criteria: PLNR,
PP and CI. The expert assessment of these criteria offers
practitioners guidance when implementing MAS. Our findings
highlight use cases with either substantial potential benefits, a low
level of implementation complexity or, in some cases, both. For
the majority of assessments done through this Delphi study, a
group consensus was reached, leading to a solid basis for further
research and helpful guidance formanagers.
This study has several limitations, particularly due to the use

of the Delphi method and the associated study design. The
composition of the expert panel and the qualitative nature of
the evaluation create some limitations as well. First, the
heterogeneity of the Delphi panel can potentially lead to
shortcomings. For instance, a more homogenous panel would
be able to go into more detail on use cases for a particular
industry sector. Practitioners should keep this in mind, as
specific use cases might be of high importance to certain
industries, whereas others might be of less importance to these
industries. However, since there has been little research on the
assessment of the potential of MAS use cases in practice, we
decided to set up a heterogeneous group to ensure broad
insights from various viewpoints when creating the list of
potential cases. Therefore, this assessment has to be
understood as a first indication of the potential benefits ofMAS
in practice, while acknowledging that it needs further
refinement if industry-specific insights are sought. Second, the
selected experts all came from companies that were already
interested in MAS applications or even had experience in
developing them. It is to be expected that these are among the
frontrunners in MAS implementation and will therefore be
among the first companies to implement MAS in the years to
come. It is likely that, on a broader scale, autonomous
processes will be implemented by the end of the decade. Third,
the qualitative nature of the assessment criteria can be seen as a
potential shortcoming because quantitative criteria would have
led to higher precision in the study results. However, the early
state of the implementation ofMAS solutions makes quantitative
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analysis difficult. Although lacking precise, quantitative insights,
our study provides the first qualitative overview of the potential
and costs of MAS implementation. Finally, we acknowledge that
the technology itself is constantly developing and that all findings
are based on the current state of the art. Future applications
might offer more advanced solutions for existing problems
pertaining to performance and resilience.
This leads to our call for future research. The results of the

study indicate that autonomy in LSCM processes is, with the
help of MAS, on the rise and can become an important
technological driver in the industry within the current decade.
Since the full-fledged implementation of MAS has only become
possible with the rise of Industry 4.0, the coming years offer a
wide variety of new research areas for MAS applications. More
in-depth research is therefore needed on the use cases identified
in this study. Future research needs to focus on particular
industry sectors or on participants at specific tiers in the supply
chain (e.g. raw material suppliers, transporters). Furthermore,
additional examples can be added to the list as new applications
arise andMAS proficiency increases. Although the experts in our
panel indicated that these use cases have significant potential for
increasing resiliency, further empirical research is needed to
substantiate this claim. In addition, as more companies gain
experience with MAS, this will provide a solid basis for a
quantitative evaluation of MAS use cases and enable a better
evaluation of the benefits and potentials of autonomous processes
in the supply chain.
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