To read this content please select one of the options below:

Stepping into safety: a systematic review of extended reality technology applications in enhancing vulnerable road user safety

Gargy Sudhakaran (School of Architecture and Environment, University of the West of England, Bristol, UK)
Abhinesh Prabhakaran (School of Architecture and Environment, University of the West of England, Bristol, UK)
Colin Booth (School of Engineering, University of the West of England, Bristol, UK)
Samuel Abbey (School of Engineering, University of the West of England, Bristol, UK)
Abdul-Majeed Mahamadu (The Bartlett School of Sustainable Construction, University College London, London, UK) (University of Johannesburg, Johannesburg, South Africa)
Panagiotis Georgakis (School of Architecture and Built Environment, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton, UK)
Maria Pohle (Fraunhofer Institute for Transportation and Infrastructure Systems IVI, Dresden, Germany)

Smart and Sustainable Built Environment

ISSN: 2046-6099

Article publication date: 4 July 2024

34

Abstract

Purpose

In alignment with the European Union’s Vision Zero initiative to eliminate road fatalities by 2050, leveraging technological advancements becomes crucial for addressing the challenges of vulnerable road users (VRUs), and for mitigating the impact of human error. Despite increasing scholarly interest in applications of extended reality (XR), a research gap persists, particularly in the role of XR in transportation safety. Therefore, the aim of the study was to fill this gap through a systematic literature review to evaluate comprehensively the potential scope and practical applicability of XR technologies in enhancing the safety of VRUs.

Design/methodology/approach

A systematic review was undertaken, following PRISMA guidelines meticulously, in which 80 relevant articles from databases, such as Scopus and Science Direct, were identified and analysed.

Findings

The results of the analysis revealed the potential of XR beyond pedestrians and cyclists, and highlighted a lack of research about the impact of XR with regard to the personal traits or abilities of VRUs. The results of a thorough analysis confirmed the potential of XR as a promising solution for an approach to collaborative co-creation in addressing the safety challenges of VRUs. In addition, the integration of eye-tracking with virtual reality emerged as a promising innovation for enhancing the safety of vulnerable road users.

Research limitations/implications

Theoretical implications include enhancing the understanding of applications of XR in VRUs’ safety and providing insights into future research possibilities and methodological approaches. Valuable insights into search strategies and inclusion-exclusion criteria can guide future research methodologies.

Practical implications

Practically, the findings from the study offer insights to assist urban planners and transportation authorities in incorporating XR technologies effectively for VRUs safety. Identifying areas for further development of XR technology could inspire innovation and investment in solutions designed to meet the safety needs of VRUs, such as enhanced visualisation tools and immersive training simulations.

Originality/value

The findings of previous research underscore the vast potential of XR technologies within the built environment, yet their utilisation remains limited in the urban transport sector. The intricacies of urban traffic scenarios pose significant challenges for VRUs, making participation in mobility studies hazardous. Hence, it is crucial to explore the scope of emerging technologies in addressing VRUs issues as a pre-requisite for establishing comprehensive safety measures.

Keywords

Acknowledgements

The SOTERIA project has received funding from the European Commissions’ Horizon Europe Research and Innovation Programme under Grant Agreement No 101077433, as well as by UK Research and Innovation (UKRI) under the UK government’s Horizon Europe funding guarantee [Grant Nos: 10052969, 10058247, 10059948, and 10064506] to whom all partner organisations and authors express their sincere gratitude.

Citation

Sudhakaran, G., Prabhakaran, A., Booth, C., Abbey, S., Mahamadu, A.-M., Georgakis, P. and Pohle, M. (2024), "Stepping into safety: a systematic review of extended reality technology applications in enhancing vulnerable road user safety", Smart and Sustainable Built Environment, Vol. ahead-of-print No. ahead-of-print. https://doi.org/10.1108/SASBE-10-2023-0321

Publisher

:

Emerald Publishing Limited

Copyright © 2024, Emerald Publishing Limited

Related articles