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ABSTRACT

Utility strikes have spawned companies specializing in providing a priori analyses of the
underground. Geophysical techniques such as Ground Penetrating Radar (GPR) are
harnessed for this purpose. However, analyzing GPR data is labour-intensive and
repetitive. It may therefore be worthwhile to amplify this process by means of Machine
Learning (ML). In this work, harnessing the ADR design science methodology, an
Intelligence Amplification (IA) system is designed that uses ML for decision-making
with respect to utility material type. It is driven by three novel classes of Convolutional
Neural Networks (CNNs) trained for this purpose, which yield accuracies of 81.5%
with outliers of 86%. The tool is grounded in the available literature on IA, ML and
GPR and is embedded into a generic analysis process. Early validation activities confirm
its business value.

Keywords: Utility mapping; ground penetrating radar; intelligence amplification;
machine learning; convolutional neural networks; business value

INTRODUCTION
With the length of utilities exceeding 1.7 million kilometers, the Netherlands has a complex
underground infrastructure (Rijksoverheid, 2015). Utility strikes occur in approximately
5.7% of all excavation work (Rijksoverheid, 2015). This equals 33,000 incidents annually,
that is once every 3–4 minutes. Annual damages exceed 25 million Euros (Rijksoverheid,
2015). The risk of strikes can be mitigated by inspecting the underground a priori.
Unsurprisingly, therefore, a business model has emerged for companies performing
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underground mapping. Ground Penetrating Radar (GPR) is used by analysts to detect
underground utilities non-destructively (Cassidy & Jol, 2009). GPR analysis tasks are
however reported to be repetitive and cost-intensive. This partially occurs due to the
scarcity of GPR analysts and the steep learning curve preceding one’s mastery. This
chapter addresses this problem by designing and developing an intelligent system capable
of supporting GPR analyses by means of Machine Learning (ML) models. We identify
well-performing ML algorithms for predicting the material type of underground utilities
detected with GPR, in response to an open automation problem posed by our industrial
partner, Terra Carta. In doing so, we explicitly take an Intelligence Amplification (IA)
approach in which the analyst is not replaced. Rather, through our smart ML agent, our
goal is to amplify the analyst’s intelligence. This allows analysts to quickly identify the
material types of simple objects while using more creative, human intelligence–based
approaches for complex ones. The main argument for this approach is that it the reduces
substantially the repetitiveness of the analyst’s work and makes on-the-shelf knowledge
available repetitively, while creating a true human-machine symbiosis and smart working
environment. Our research has high applicability in industries such as critical infrastruc-
tures (e.g. gas, water, communication) and oil industry. It constitutes a typical example of
business process improvement within the Industry 4.0 (I4.0) paradigm: two core I4.0
technologies, smart sensing and ML are combined with the goal of achieving smart
working in which the worker is augmented with AI, and the nature of work changes (also
one of I4.0’s main goals). This work further contributes to science and practice in multiple
ways. First, it introduces IA to the literature on GPR analysis by means of the intelligent
system. Second, it designs and validates three novel classes of ML algorithms. Third, it
presents a review of the literature on ML for underground mapping. Fourth, it embeds the
system into a general human-in-the-loop analysis process by means of an architectural
model. Fifth, it presents early validation comments demonstrating industry demand. As
mentioned earlier, the chapter has emerged in cooperation with an industry partner. The
chapter is structured as follows. Section ‘Background’ presents the literature reviewed.
Section ‘Research Methodology’ discusses the methodology used. Section ‘ML Models
Underlying the Intelligent System’ presents the design of the novel ML algorithms. Section
‘ML Performance’ demonstrates model performance. Section ‘ML Driven Intelligent
System’ discusses the design of the intelligent system. Section ‘Discussion’ discusses and
explains our findings. Finally, Section ‘Conclusion’ concludes this chapter.

BACKGROUND
Origins of Excavation Damage

Utility strikes pose a significant problem to Dutch construction given the costs and dangers
involved. There are multiple causes for this problem:

• Quickly rebuilding damaged infrastructure was the primary concern after World War 2
(Eng, 1987). No central registry for utilities existed then, leaving many unregistered.

• The accuracy of methods for geospatial positioning was lower compared to today’s ones.
This sometimes resulted in large deviations between registered and actual utility
positions.
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Today, the registries are centralized into the KLIC utility registry. Here, all excavation
work must be reported. In return, the reporter will receive all available information
regarding utilities near their construction site. Consequently, as any request is forwarded to
network operators, they are required to register their utilities and maintain accurate maps.
Additionally, to protect critical utilities, network operator experts must provide physical
identification when excavation work is performed near them. Although much progress has
been made, inconsistencies from the past ensure that incidents continue to occur today
(Rijksoverheid, 2015).

Underground Mapping and GPR

Mitigating the risk of utility strikes is possible through a priori analysis. Companies
specializing in underground mapping have harnessed technologies such as the GPR for this
purpose. A GPR is equipped with antennas transmitting and receiving electromagnetic
waves and is moved over the Earth’s surface. When waves propagate into the subsurface
medium, they are echoed back when they hit objects buried in this medium (Cassidy & Jol,
2009). These are subsequently received by the GPR. This behaviour allows one to analyze
the underground non-destructively. In fact, GPR is the de facto standard method used in
underground mapping today.

Visualizing GPR Data: A-Scans and B-Scans
Echoes received can be visualized in A-scans (Scheers, 2001). In those, the amplitudes of
the echoes are plotted against time of arrival (ToA), often in nanoseconds. Analysts can
already derive certain object characteristics from A-scans. For example, they can identify
object depth and, possibly, the nature of object contents. Fig. 1 presents an A-scan. Since a
GPR moves horizontally, consecutive A-scans produce a richer image called B-scan
(Scheers, 2001). In those, the horizontal axis represents the time domain across multiple
A-scans. The vertical axis contains A-scan echo backscatters. Fig. 2 presents an exemplary
scan. On B-scans, underground objects are visible as hyperbolae. This signature results
from spherical GPR wave emission. ToAs are longer first, but get shorter when the
operator gets closer to the object. ToA is shortest when the GPR is directly above it.
Moving away again produces longer ToAs, resulting in the characteristic hyperbolic
signature. Analysts can derive richer insights from B-scans, especially when they can
combine GPR data with additional information sources like the KLIC registry. This
makes the utility strike problem manageable.

Fig. 1. A-Scan.

• Utilization of registries, which emerged in the late 1960s, remained optional until 2008.
Only then, the government introduced legislation requiring their use (Kadaster, 2008;
Rijksoverheid, 2019).
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Challenges Experienced During Utility Mapping
Despite being widely used, GPR-based analysis presents certain challenges (Cassidy & Jol,
2009). Those are technical and organizational in nature. Key challenges experienced by
GPR practitioners are:

• The interface between the air and the subsurface is small but significant.
In fact, strong echoes are produced that are known as ground bounce.

• Waves emitted attenuate over time. As a result, shallow objects cause relatively strong
echoes while deep objects are scantily visible. Compensating attenuation can be done
with time-varying gain filters (Cassidy & Jol, 2009).

• GPR analysis tasks are reported to be labour-intensive. The industry partner reports that
they are also repetitive. Human beings generally do not excel at such tasks (Cummings,
2014).

• Becoming a GPR analysis expert requires significant training in geophysics.
Consequently, analysts are scarce (Versloot, 2019).

This work contributes to reducing those challenges by designing an intelligent system
that amplifies the underground mapping process. Machine learning algorithms are used for
this purpose. Therefore, we next position our work with respect to the Industry 4.0
paradigm, introduce the possible benefits of symbiotic or IA relationships between humans
and machines and finally review the literature on applying ML to underground mapping.

Industry 4.0 and Intelligence Amplification

The Industry 4.0 paradigm was introduced to secure the competitiveness of the German
manufacturing industry. It has now spread into a global development and comprises base
technologies which, integrated with business processes, accelerate the fourth industrial
revolution (Kagermann, Wahlster, & Helbig, 2013).

Base Technologies
Technology has become increasingly important since World War 2 (Isaacsson, 2014). The
nascence of the transistor has created unprecedented technology growth. Computers, once

Fig. 2. B-Scan.
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available only at the most sophisticated research institutes, have moved into peoples’
homes and hands. Increased interconnectivity between devices through the internet has
democratized information which resulted in the third industrial revolution (Isaacsson,
2014; Lasi, Fettke, Feld, & Hoffmann, 2014). In the fourth revolution, which is currently
underway, the role of technology is similarly significant. This time, however, different
technologies serve as its primary driver. Specifically, the Internet of Things, cloud services,
big data and analytics are the key technologies in this revolution (Kagermann et al., 2013).
They are the so-called base technologies (Frank, Dalenogare, & Ayala, 2019). Machine
Learning is an instance of analytics.

Business Impact through Front-End Technologies
According to Frank et al., front-end technologies interface between base technologies and
business actors (Frank et al., 2019). They can also be considered to be application areas.
The initial Industry 4.0 document considered one front-end technology, Smart
Manufacturing (Kagermann et al., 2013). Frank et al. added three others, yielding these
Industry 4.0 application areas all driven by base technologies:

• Smart Manufacturing: considers internal production operations.
• Smart Working: considers operational activities.
• Smart Products: considers end products.
• Smart Supply Chain: considers improved processes through supply chain integration.

Frank et al. argue that Smart Working comprises ‘technologies [supporting] worker’s
tasks, enabling them to be more productive and flexible to attend [to their] (…) require-
ments’ (Frank et al., 2019). This definition aligns with the operational improvements for
GPR analysts’ tasks discussed previously. This work can thus be cast as an attempt to
produce a Smart Working system.

The Need for Integration
Traditionally, organizations have developed in a siloed fashion (Britton & Bye, 2004).
Organizations distributed responsibilities for IT acquisition and operations to individual
departments that would guard these strongly. This impacted organizational technology
and application landscapes, which have traditionally been very scattered. This results in for
example interoperability problems and vendor lock-ins. The Industry 4.0 principle radi-
cally breaks with this view-point. Rather, it prescribes that technologies are integrated both
with other technologies and into production processes (Diez-Olivan, Del Ser, Galar, &
Sierra, 2019). This integration occurs at various levels:

• Horizontally: distinct base technologies are combined to create integrated solutions (e.g.
combining the IoT for acquiring data with ML for creating predictive models).

• Vertically: individual or integrated base technologies are integrated with business pro-
cesses through front-end technologies to provide business value.

• Circularly: horizontal and vertical technology integration is combined to create a sound
and relevant IT-based solution for a business problem, considering their lifecycles as
well.

The intelligent system designed in this work integrates circularly. Horizontal integration
is provided by means of integrating ML with big data and cloud services, while vertical
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integration is achieved by embedding it into a generic analysis process in Section
‘Embedding the System Into GPR Analysis Process’.

Intelligence Amplification: A Symbiotic Relationship Between Humans and Technology
Although base technologies can automate human tasks, one should consider the degree of
automation a priori. For example, our industry partner claims that GPR analysts cannot
be fully replaced by Industry 4.0 base technologies; they must remain in the loop. In the
dawn of the computing era, technologists however considered automation to be binary:
problem-solving was either entirely automated or fully left to human beings (Cummings,
2014). This viewpoint shifted in the early 1950s. Scholars, attempting to characterize the
field of human-computer interaction, proposed a set of heuristics to distinguish between
what ‘men are better at’ and what ‘machines are better at’: the MABA-MABA heuristics
(Fitts, 1951).

Those were later expanded into Levels of Automation (LoA), which explain to what
extent humans interact with information systems in a decision-making situation
(Cummings, 2014; Parasuraman, Sheridan, & Wickens, 2000). They extend the binary
view of automation and allow humans and machines to work together. Machines can
increase human intelligence by amplifying it (Ashby, 1957). This observation emerges
from machine capabilities for problem-solving, which Ashby argues it comes down to a
suitable selection (Ashby, 1957). Freely interpreted, the core of his argument is that
solving a problem equals picking the best solution out of a set of candidates. Since he
claims that intelligence is measured as one’s ‘power of appropriate selection’, and that
devices can amplify this power (i.e. assisting in picking a solution), he analogizes that
intelligence can be amplified. Ashby’s comparisons would be the basis of further
research and the nascence of the research area known as IA. Intelligence Amplification,
by means of the front-end technologies interfacing between base technologies and
business actors, is intrinsically related to the Industry 4.0 paradigm discussed before.
Intelligently supporting GPR analysts by means of ML algorithms, which we cast as an
Industry 4.0 instance, can namely also be cast as an IA instance. Following the con-
cerns raised by our industry partner, this work explicitly takes the point of view that
GPR analysts should be amplified rather than replaced. This way, the operational
aspects of their tasks can be improved for simple objects while human creativity is still
required for complex ones. We next review the literature already available for this
research goal.

Machine Learning Approaches for Underground Mapping

Recently, ML algorithms, today especially deep learning (DL) ones, have been used to
eliminate repetitive tasks in various business domains. They allow for ‘[discovering] reg-
ularities in data through the use of computer algorithms and [by using them] to take
actions’ (Bishop, 2006). Analyzing GPR data is essentially a classification problem: the
analyst, given contextual data, classifies an object with respect to its material type. Since
GPR analysis is often repetitive and GPR analysts are scarce, applying ML here can be
worthwhile. In fact, many studies have validated ML approaches for underground map-
ping. They can be grouped into four distinct groups (Pasolli, Melgani, & Donelli, 2009a).
Primarily, studies report on (1) detection and localization, rendering it trivial today. Less
work has focused on (2) material recognition and estimation of (3) dimension and (4)
shape.
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Machine Learning for Recognizing Material Type, Shape and Size
Given the popularity of Support Vector Machines (SVMs) during the early 2010s, they
were primarily used then. Consequently, various SVM approaches were identified. For
example, El-Mahallawy and Hashim combine noise reduction and discrete cosine trans-
form (DCT) A-scan signal compression with SVM classification (El-Mahallawy &
Hashim, 2013). DCT-based features yielded superior results over time series and statistical
ones. Shao et al. also use SVMs but apply other signal processing methods. They first
sparsely represent an A-scan by ‘[expressing] a signal as a linear combination of elementary
waves’ (Shao, Bouzerdoum, & Phung, 2013). In another study, Pasolli et al. combine
SVMs with B-scans (Pasolli et al., 2009a). They also demonstrate that estimating object
size is possible as well (Pasolli, Melgani, & Donelli, 2009b). The subfield of DL experi-
enced a breakthrough in 2012 (Jordan & Mitchell, 2015). Since then, scholars have applied
DNNs to material recognition. Zhang et al. validate an architecture of three neural net-
works for recognizing object shape, material and size (Zhang, Huston, & Xia, 2016). Their
network also computes object depth and medium conductivity. It however only supports a
limited number of material types. More recently, Almaimani successfully applied Con-
volutional Neural Networks (CNNs) to material recognition (Almaimani, 2018). Contrary
to previous approaches, no feature extraction was performed. Rather, a B-scan slice is used
as a feature vector. Although her results are promising, she welcomes more research that
demonstrates the applicability of CNNs to material recognition.

RESEARCH METHODOLOGY
Creating an intelligent system is a typical design problem in which an artefact that aims to
improve a problem context is designed and developed (Wieringa, 2014). Design science
methodologies can be used to attain scientific rigor during such research. They ensure that
artefacts are both theoretically sound and practically relevant. Several methodologies exist
for design research. Choosing one partially relies on the practicality of the research at
hand, since certain methods rely more heavily on theory than others, while those often
allow researchers to align their work with practice more easily. Sein et al. argue that
methodologies like the Design Science Research Methodology by Peffers et al. ‘fail to
recognize that the [artefact] emerges from interaction with the organizational context even
when its initial design is guided by the researchers’ intent’ (Peffers, Tuunanen, Roth-
enberger, & Chatterjee, 2007; Sein, Henfridsson, Purao, Rossi, & Lindgren, 2011). They
would produce insufficient agility when working with industry partners. Inspired by Action
Research, they conceptualize the Action Design Research (ADR) methodology. It itera-
tively interweaves artefact development with organizational intervention and evaluation
and is especially relevant for business problem–oriented research. The research carried out
in this work has been triggered by the business problem discussed in Section ‘Introduction’.
Additionally, artefact design and development was performed in strong collaboration with
an industry partner. The ADR methodology, therefore, guided this work.

ML MODELS UNDERLYING THE INTELLIGENT SYSTEM
Rationale

Histograms can be used to count the number of instances across a range of values in a
statistical sample. Weia and Hashim created histograms based on A-scan signal backscatters
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and a thresholding algorithm, demonstrating that various material types can be discrimi-
nated for human analysis (Weia & Hashim, 2012). We apply their feature extraction
approach for training ML models. Therefore, one of the classes of CNNs trained is a
histogram-based one. El-Mahallawy and Hashim harness the Discrete Cosine Transform
(DCT), which is known for signal compression, for training SVM classifiers (El-Mahallawy
& Hashim, 2013). CNNs could however perform better for multiple reasons. First, training
SVMs requires the configuration of a kernel function a priori. Kernels are generic functions
for computing similarity and may not be entirely suitable to the ML problem at hand. This
cannot be known in advance. Second, SVMs cannot be used for multiclass predictions (i.e.
when the number of material types is .2). Third, SVMs do not scale well with larger
datasets. CNNs do however learn kernels themselves, are capable of generating multiclass
predictions and do scale with larger data volumes. This work therefore replicates the
application of the DCT with CNNs. Generally speaking, however, the ML community
suggests that minimum feature extraction must be applied when training CNNs (Chollet,
2018). That is, since they can learn filters themselves, data should be input as raw as
possible. This work therefore also validates a CNN trained on slices of slightly
pre-processed B-scans. In total, therefore, three classes of CNNs are validated in this
work: a histogram-based class, a DCT-based class and a B-scan window-based one.

CNN Architecture

The CNNs contain various components combined into an architecture. Specifically, it uses
a convolutional block and a densely connected block. Fig. 3 presents the architecture. It
contains those components:

Fig. 3. CNN Components.
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• The convolutional block contains a convolutional layer, batch normalization and max
pooling. Those are appropriate for learning from image-like data (Chollet, 2018). The
DCT and histogram-based CNNs have two since data are already sparsened; the B-scan
one has three.

• The densely connected block contains two Dense layers. They convert the patterns
identified by the convolutional block into a multiclass prediction. All CNNs have one
densely connected block attached to the final convolutional block. To interface, a
Flatten layer is added in between.

GprMax Simulations

A training set was generated using gprMax, which implements the finite-difference
time-domain (FDTD) method for simulating GPR imagery (Giannopoulos, 2005). In
total, 770 B-scans were generated using gprMax Python scripts. A custom wavelet
generated by the GPR used by our industry partner was emitted in the simulations to
mimic the real world as much as possible. Every simulation represents a B-scan composed
of 150 A-scan traces. One A-scan is composed of 1,024 signal backscatter amplitudes. In
total, six target classes were simulated: a concrete sewage, high-density polyethylene
(HDPE), iron, perfect electricity conductors (PECs) like steel and copper, tree roots and
stoneware pipelines. In the simulations, object contents were varied and objects were
buried at various depths. The soil was randomly varied over the entire spectrum of
available soil types and signal interference was introduced by adding noise.

Data Pre-processing

Before training, the simulations were pre-processed as follows:

(1) The gprMax output file was first converted to a readable GSSI file.
(2) Ground bounce was removed with a median-based filter (Versloot, 2019).
(3) Energy decay (i.e. exponential) gain was used to reduce signal attenuation.
(4) Feature-wise normalization was applied to reduce amplitude variance without changing

the A-scan waveform shape. In DL, this benefits model performance (Chollet, 2018).
(5) Feature extraction was applied which was dependent on the algorithm.

• For the histogram-based CNN, histograms computed using the interval [25s, 5s]
were included. Specifically, since the bin size was s/10, the feature vector extracted
contained 101 features.

• For the DCT-based CNN, the DCT was computed using SciPy’s signal processing
package. Inspired by (El-Mahallawy & Hashim, 2013), only the 14 first DCT
coefficients out of 1,024 compose the feature vector.

• For the B-scan–based CNN, a window of 25 traces was sliced left and right of the
hyperbola. Since an A-scan is composed of 1,024 amplitudes, feature vector shape
was (51 and 1,024).

Training, Validation and Testing Data

DL datasets must be split into training, validation and testing data (Chollet, 2018). With
training data, predictions are generated that can be compared to actual targets. Validation
data are used to identify the effectiveness of subsequent optimization. Finally, final per-
formance is measured with testing data the model has not seen before. This way, one can
assess its predictive and generalization powers. Creating these sets can be done naively by
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simply holding out certain proportions for training, validation and testing data (Chollet,
2018). However, with imbalanced datasets, this could produce overly confident model
performance. Using K-fold cross-validation, performance is computed as the average over
K training attempts. This yields more accurate performance metrics, but is K times more
expensive. Typically, based on empirical results, the value of K ranges between 5 and 10.
We use K 5 10.

Hyperparameter Tuning

DL architectures must be configured before training them. This can be achieved through
hyperparameter tuning (Chollet, 2018). It involves parameter (i.e. neuron) initialization,
choosing a loss function and other performance metrics as well as an optimizer, learning
rate (LR), batch size and a number of training iterations (epochs). This work tunes model
hyperparameters manually based on evidence from the literature. To accommodate ReLU,
we used He uniform initialization for neuron initialization, since it performs best (Kumar,
2017). Categorical cross-entropy loss is used for multiclass predictions (Chollet, 2018). We
also utilized accuracy which is more intuitive to humans. Adam optimization is used,
striking a balance between sound methods and novel approaches (Ruder, 2016). With the
LR Range Test, an optimum default LR is found and then decayed linearly (Smith, 2018).
Before training the models with maximum computational resources and with the full data
set, we used KERAS_LR_FINDER to perform the LR Range Test. This allows us to find
the maximum learning rate with which the model does not overfit. We performed this test
for all three algorithms and per algorithm chose this learning rate as the base learning rate.
We subsequently apply a linear decay rate. Batch size is set to 70 given hardware
constraints.

Finally, the number of epochs is 200.000. However, training is stopped early when the
model has not improved for 30 epochs. The best model is saved to disk. This way, the
training process stops exactly in time (Chollet, 2018). More details can be retrieved from
(Versloot, 2019).

ML PERFORMANCE
Data Pre-processing

Fig. 4 presents the results of data pre-processing. The upper part presents a raw A-scan.
Clearly, the air-ground interface is strong and signal attenuates with time. After
pre-processing, ground bounce is no longer present, signal strengths are relatively equal
and amplitudes are normalized. Likely, resembling a real-world scenario, regular noise is
still present in some A-scans.

Initial Model Performance

Table 1 presents initial model performance across 10 training folds. Multiple hypotheses
have emerged why model performance is mediocre:

(1) Primarily, we considered the model to be underfit – that is, every unique object appears
only once in the data set. It is hypothesized that expanding the data set results in better
performance.
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(2) Different material contents produce different echoes. Initially, the model did not
separate material types with respect to content. We hypothesize that by using material
types and contents as targets, performance increases.

(3) The training process converged quickly. This could be caused by slow LR decay and a
consequentially overshot optimum towards the end of the training process. Increased
LR decay may produce better models.

(4) Pre-processing including feature extraction currently applied may be sub-optimal.
(5) Generally, different hyperparameter tuning could yield better performing ML models.
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Fig. 4. Unprocessed (Above) and Pre-processed A-Scan (Below).

Table 1. Initial Performance of the DL Models.

Model Average Cross-Entropy Loss Average Accuracy

Histogram based CNN 1.3162 61.30%

DCT based CNN 1.2176 61.82%

B-scan based CNN 1.3613 67.53%
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Variation Performance
Initially, model performance for all three algorithms was mediocre, with accuracies
ranging between 60% and 70%. The three CNN classes were retrained with various var-
iations for testing these hypotheses. The first variation we performed was to expand the
dataset to approximately 2,425 simulations, since we observed that one simulation was
unique with respect to the object’s unique characteristics and by consequence could only be
present in one set (i.e. training/validation or test set).

The histogram-based and DCT-based CNNs did not improve any further. The B-scan
based CNN, however, did improve, albeit primarily through dataset expansion. Other
variations subsequently improved performance incrementally. Those variations included
studying the effect of separating the material and its contents when generating target
classes, increasing the decay of the learning rate and studying the effects of varying input
(i.e. applying different gains). The effects of varying the number of DCT coefficients, the
number of histogram bins and the width of B-scan windows were also studied. Similarly,
various model variations were studied, with variations in batch size across the three
algorithms as well as differences in hyperparameters. Combining those variations into one
yielded the most promising results in terms of loss. For these variations, most B-scan CNN
accuracies were in the range of 77–82%. Some variations produced outliers to 86% on
individual folds. Table 2 presents the performance of the variations to the B-scan CNN.

ML DRIVEN INTELLIGENT SYSTEM
The Industry 4.0 paradigm combines base technologies like ML with front-end technol-
ogies to provide business value. This section discusses such an interface between ML
models and GPR analysts. It also integrates it into a generic analysis process using an
ArchiMate model.

System Design and Instantiation

The intelligent system is a web application that is capable of analyzing GPR imagery
uploaded by the user. When started, a GPR radar file can be uploaded, which is interpreted
by the back-end and presented on-screen. Subsequently, the user can fine-tune signal
processing applied to the image, altering time-varying gain and ground bounce removal as
desired. The browser window immediately adapts the visualization. The user can also click
on a hyperbolic signature. When doing so, a window is sliced around the mouse pointer
and input into the ML model running in the background. Its prediction is displayed in a
popup message. A line drawn on-screen shows the user where he has clicked. Fig. 5
illustrates the tool when used in practice.

Embedding the System Into GPR Analysis Process

Fig. 6 shows how the intelligent system can be embedded into a generic analysis process. It
starts when a customer requests a quote for utility mapping.

This is followed by negotiations and contractual agreement. The project is then added
to project planning. At the planned date, a GPR operator records data on site. For this, he
configures the GPR and performs measurements. When finished, data are downloaded in
the office and sent to the GPR analyst. An analysis request is then added into project
planning. When analysis is due, a GPR analyst loads the data into a specific analysis tool.
Which tool is used is dependent on the GPR manufacturer; it is often proprietary. First,
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Table 2. Performance of Variations to Initial B-Scan Based CNN.

Variation Average Loss Average Accuracy

Expanded dataset to 2,426 simulations. 0.8834 77.57%

Used separate materials and contents as
targets.

1.1695 70.20%

Increased LR decay 175,000 times. 0.8665 77.57%

Reduced shape to (25, 1,024). 2.0215 79.18%

Expanded shape to (75, 1,024). 0.9112 79.18%

Original B-scan input scaled down to 33% of
original image size.

0.9706 78.23%

Swish with (101, 1,024) shape. 0.8798 78.81%

Leaky ReLu (a 5 0.10) with Glorot uniform
initializer and (101, 1,024) shape.

0.9805 77.62%

Tanh activation function with Glorot
uniform initializer and (101, 1,024) shape.

0.8783 81.16%

Batch size 5 5. 2.8527 48.23%

Batch size 5 15. 1.1110 66.16%

Batch size 5 25. 0.9294 77.87%

Batch size 5 35. 0.8599 80.96%

Batch size 5 50. 0.8108 81.54%

Batch size 5 90. 0.9900 79.39%

Batch size 5 115. 0.8369 79.72%

Batch size 5 140. 0.7931 80.63%

No gain applied in pre-processing. 1.3299 67.65%

Strong exponential gain applied. 1.2134 67.35%

Linear gain applied instead of energy gain. 0.8517 79.93%

Combined (101, 1,024) shape, Tanh/Glorot,
batch size 5 50, linear gain, 175.0003 LR
decay.

0.8390 78.44%

Combined (101, 1,024) shape, ReLU/He,
batch size 5 50, linear gain, 175.0003 LR
decay.

0.7419 79.31%

Combined (101, 1,024) shape, ReLU/He,
batch size 5 50, original gain, 175.0003 LR
decay.

0.7758 79.76%

Fig. 5. Hyperbolic Signature Classified Using the System.
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Fig. 6. ArchiMate Model for a Generic GPR Analysis Process.
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the GPR image is inspected and preliminary classifications are made based on intuition.
Those are compared with additional information such as the KLIC registry or pictures
made of trenches dug near utilities. This adds certainty to the analysis. Finally, a drawing
is made of the identified utilities. This drawing is then consolidated into a report and sent
to the customer. This concludes the analysis and allows the customer to work safely. The
intelligent system is part of the ‘data analysis service’ composition and is highlighted with a
dashed box. Its business value lies in assisting the user during analysis with respect to
material type. This is currently not supported by existing tooling.

Early Validation Comments

Resulting from utilizing the ADR methodology, the intelligent system was developed in a
spirit of co-creation with an industry partner. Consequently, practitioner feedback has
been processed into artefact design from the start. Additional feedback was acquired from
their upper management and a GPR analyst. It acknowledges the business value provided
by the artefact. Specifically, one remark stood out, being that ‘this tool could potentially
change entirely the way I do my work’.

DISCUSSION
Explaining Performance Differences Between CNNs

The histogram- and DCT-based CNNs were inspired by previous work harnessing SVMs
for material type classification (El-Mahallawy & Hashim, 2013). SVMs can only handle
relatively sparse data. GPR data are however anything but sparse, with a 100 3 1024 pixel
B-scan slice already yielding approximately 100.000 features. Consequently, scholars were
required to reduce input data dimensionality. Histograms and the DCT substantially
reduce dimensionality, presumably without data and thus discrimination loss
(El-Mahallawy & Hashim, 2013). Precisely this sparsity may in our case result in poor
performance when CNNs are applied. In fact, accuracies were only slightly better than
random selection while non-sparse feature vectors yielded accuracies averaging 80%. We
therefore argue that applying dimensionality reduction to GPR input data for CNNs does
indeed deteriorate model performance. We suggest that this behaviour occurs because
feature extraction is effectively applied twice. This can be explained through the inner
workings of a CNN: the convolution operation applied to the input data effectively allows
the network to learn a preconfigured amount of filters itself. We thus suspect that applying
feature extraction techniques to reduce input data dimensionality blinds CNN convolution
operations to idiosyncrasies in the data, resulting in the relatively poor performance
observed. This is in line with the general argument in the DL community to use minimum
feature extraction with CNNs (Chollet, 2018).

Effectiveness of Variations

Next, the effectiveness of variations applied to the CNNs is discussed. The discussion
primarily focuses on the B-scan CNN variations, since only for this class improvements
can be reported. Specifically, the effectiveness of data set expansion, varied activation
functions, varied batch size, varied signal gain and combining individual variations is
discussed. Based on initial model performance, we hypothesized that our models were
underfit given the lack of variety present in our data set. This point of view was confirmed
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by expanding the dataset from 770 to 2,426 objects, introducing redundancy and extra
random noise. This improved the model by approximately 10–15 percentage points. It is
however unclear if it remains underfit. State-of-the-art activation functions like Swish and
Leaky ReLU did not lead to substantial performance improvements. For Leaky ReLU,
there is a slight chance that this observation emerged from misconfiguring the a parameter
(Versloot, 2019). However, we argue that it is more likely due to the compactness of our
CNNs. That is, Swish and Leaky ReLU avoid the death of ReLU powered networks. In
those, neurons can die as a result of the vanishing gradients problem, which becomes
stronger when networks are deeper (Versloot, 2019). For Swish, improved model perfor-
mance was observed in very deep networks (Ramachandran, Zoph, & Le, 2017; Versloot,
2019).

The models used in this study were compact with only two or three convolutional
blocks and one densely classified block. Therefore, we argue that ReLU suffices for
compact CNNs for GPR imagery. The activation function Tanh resulted in model
improvements (Versloot, 2019). It is unclear why this behaviour occurs. However, we
believe this might be related to the Batch Normalization and/or L2 Regularization tech-
niques applied to the CNNs. Since Tanh activates on the [21, 11] range, it might be a
more native fit to regularized networks compared to, for example ReLU. Unsurprisingly,
increasing batch size improved model performance (Versloot, 2019). This is in line with the
mathematical constructs revolving DL model optimization (Chollet, 2018). Neither a
surprise are the increasing memory requirements. The DL practitioner should thus always
strike an optimal balance between batch size and hardware capabilities before training a
DL model. Besides energy gain, we also trained variations without any gain, with strong
gain introducing inverted attenuation and linear instead of exponential gain. Fig. 7
demonstrates the effect of those variations on an arbitrary B-scan. The results demon-
strate that regular gain performs best, followed by linear gain. Apparently, the main object
reflection is considered to be most discriminative for the material type. Although they are
not the main discriminator, sub reflections do benefit the discriminative power of the
model. This argument is supported by the observation that both stronger and no gain
introduce worse performance. Finally, combinations of individual variations were
retrained to assess model performance. All three combinations from Table 2 resulted in
better model performance, sometimes substantially with respect to observed loss. Why this
occurs remains unknown (Versloot, 2019).

Study Limitations

The study reported in this chapter is limited in multiple ways. The first is how the simu-
lations were generated. We used GprMax 2D for this purpose, which simulates wave

Fig. 7. Regular, No, Strong and Linear Gain Applied; Rotated 90° Counterclockwise.
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emission and reception in 2D. Real GPRs however emit and receive them in 3D. This may
result in deviations between similar hyperbolae in 2D and 3D imagery. Since no data are
mixed, this does not impact the discriminative power of our model (Versloot, 2019).
However, the intelligent system should be used with caution. The second limitation is the
noise traditionally present in GPR imagery. Although random noise was added in the
simulations, it is unknown whether this fully captures the noise levels present in real
imagery. Third, during the training process an issue with applying gain was discovered as a
result of pre-processing GprMax output data (Versloot, 2019). It is assumed that this issue
did not impact ML performance, but it must be corrected should the intelligent system be
used with real data. Fourth, the CNNs trained in this work were tuned manually with
respect to their hyperparameters. Although this is acceptable practice in the ML com-
munity, tooling has emerged which converts finding suitable architectures and hyper-
parameters into a large search problem (Chollet, 2018; Versloot, 2019). Although the
results show that our tuning efforts already lead to plateauing model performance, it may
be the case that even better hyperparameters can be identified. Fifth, as illustrated in
Section ‘Explaining Performance Differences Between CNNs’, it remains unknown
whether the model is still underfit. It may be the case that model performance can be
increased by, for example adding similar objects, objects with peculiarities and objects
disturbed by the presence of other objects. Finally, validation feedback was only acquired
from within one organization, being the industry partner of this work. To derive additional
insights like adoption criteria, it must be validated more broadly.

CONCLUSION
In this work, an intelligent system for predicting utility material types from GPR imagery
was designed and developed. It is driven by three classes of CNNs specifically trained for
this purpose. Two of them, the histogram-based and DCT-based ones, were inspired by
previous research on this problem. The third was inspired by the DL community’s wisdom
that data should be as raw as possible when using CNNs. GprMax was used for simulating
the utilities.

Initially, model performance for all three algorithms was mediocre, presumably due to
underfitting resulting from a lack of variety in the dataset. By training various variations to
the initial algorithm, including expanding the dataset to 2,426 utilities, performance of the
B-scan model was increased to approximately 80%. The histogram-based and DCT-based
models did not improve. The system was embedded into a generic GPR analysis process.
Early validation comments were retrieved from our industry partner, confirming its
business value. Our work therefore contributes to science and practice in multiple ways:

• First, CNNs can successfully be applied to GPR-based object material recognition.
Although previous studies achieved this as well, the models trained in this work predict a
more varied set of targets which partially overlap in terms of electromagnetic properties.

• Second, the literature on automating utility mapping by means of ML was introduced to
IA.

• Third, the feasibility of this approach was demonstrated by designing and developing
anintelligent system that interfaces between the ML models and GPR analysts.

• Fourth, this work has allowed our industry partner to validate novel ideas related to
interpreting GPR imagery, possibly optimizing their analysis process by consequence.
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Multiple suggestions for future work can be made:

• Primarily, it is suggested that the data set is further expanded to assess whether the CNN
is still underfit. Possibly, model performance can be improved even further.

• Second, we suggest assessing automated hyperparameter tuning suitability for GPR
analysis.

• Third, the compatibility of GprMax 2D simulations and real-world GPR data could be
explored.

• Fourth, the generalizability of training CNNs on data simulated for the GPR used by
our industry partner to other GPRs could be investigated.

• Fifth, the intelligent system designed and developed in this work could be validated more
thoroughly, acquiring insights in design and adopting criteria for tooling supporting
GPR analyses.
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