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Abstract

Purpose –This review aims to give a critical view of thewheel/rail high frequency vibration-induced vibration
fatigue in railway bogie.
Design/methodology/approach – Vibration fatigue of railway bogie arising from the wheel/rail high
frequency vibration has become the main concern of railway operators. Previous reviews usually focused on
the formation mechanism of wheel/rail high frequency vibration. This paper thus gives a critical review of the
vibration fatigue of railway bogie owing to the short-pitch irregularities-induced high frequency vibration,
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including a brief introduction of short-pitch irregularities, associated high frequency vibration in railway bogie,
typical vibration fatigue failure cases of railway bogie and methodologies used for the assessment of vibration
fatigue and research gaps.
Findings – The results showed that the resulting excitation frequencies of short-pitch irregularity vary
substantially due to different track types and formation mechanisms. The axle box-mounted components are
much more vulnerable to vibration fatigue compared with other components. The wheel polygonal wear and
rail corrugation-induced high frequency vibration is the main driving force of fatigue failure, and the fatigue
crack usually initiates from the defect of the weld seam. Vibration spectrum for attachments of railway bogie
defined in the standard underestimates the vibration level arising from the short-pitch irregularities. The
current investigations on vibration fatigue mainly focus on the methods to improve the accuracy of fatigue
damage assessment, and a systematical designmethod for vibration fatigue remains a huge gap to improve the
survival probability when the rail vehicle is subjected to vibration fatigue.
Originality/value –The research can facilitate the development of a newmethodology to improve the fatigue
life of railway vehicles when subjected to wheel/rail high frequency vibration.

Keywords Wheel/rail high frequency vibration, Vibration fatigue, Railway bogie,

Fatigue damage assessment

Paper type Literature review

1. Introduction
The railway bogie is a crucial component for rail vehicle and serves an important role in
steering vehicle operating on the track and supporting loads from the car body. Therefore, the
railway bogie is expected to be subjected to dynamic loads arising fromwheel/rail interaction,
car body motion, as well as traction and braking systems. These loads are usually
characterized by the broadband frequency due to varying speeds, different track types and
operational conditions, which pose a huge challenge for the vehicle design. In recent years,
vibration fatigue, referred to as fatigue failure caused by random vibration especially when
the excitation frequency is approaching the natural frequency of structural, has been widely
reported by railway operators. These fatigue failures occurring in railway bogie are usually
related to the wheel/rail high frequency impact and can pose highly adverse influences on
operating safety. Therefore, this paper aims to elaborate the wheel/rail high frequency
vibration, and the resulting vibration fatigue in railway bogie as well as the associated
methodologies used to estimate vibration fatigue.

2. Wheel/rail high frequency vibration in railway bogie
The rail vehicle operates on two parallel rails through the wheel/rail rolling contact. The
contact at the wheel/rail interface is characterized by large contact stiffness due to the steel-
madewheel and rail, and the size of the contact patch is similar to the dimension of the thumb.
Therefore, the contact force of wheel/rail interaction is very sensitive to irregularities at the
wheel/rail interface. These irregularities could be from either the wheel or the rail interface. It
has been reported that the short pitch irregularities of wheel/rail serve as themain resource of
wheel/rail high frequency vibration (Tao, Wen, Jin, & Yang, 2020; Tao, Xie, Wang, Yang,
Ding, & Wen, 2020), which are usually associated with the structural fatigue failure and
wheel/rail noise emission, as shown in Figure 1. The short-pitch irregularities on the wheel
and rail interface could be classified into discrete irregularities and periodic irregularities
distributed on the wheel circumference and rail head. The discrete irregularities could consist
of wheel flat, wheel shelling and wheel spalling on the wheel circumference, as well as the rail
joint on the rail head. Those irregularities can give rise to a local impact at the wheel/rail
interface. The wheel polygonal wear and rail corrugation are regarded as typically periodic
irregularities at the wheel/rail interface, which can lead to high frequency and high
magnitude impact for rail vehicles. Therefore, the wheel polygonal wear and rail corrugation-
induced high frequency vibration are the main focus of this paper.
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2.1 Formation mechanisms of short-pitch irregularities

(1) Wheel OOR

The irregularities on the wheel circumference are also referred to as wheel Out-Of-Round
(OOR). Due to its highly adverse influence, huge efforts have been made to understand the
formation mechanism and its associated influence on high-speed rail vehicles, metro cars and
locomotives. The most recent review on the formation mechanisms of wheel polygonal wear
for high-speed rail vehicles, metro cars and locomotive were made by Tao, Wen et al. (2020),
Tao, Xie et al. (2020), Iwnicki, Nielsen, and Tao (2023). The frequency-fixed mechanism is
regarded as a general law for the formation of wheel polygonal wear, although the specific
driving force of wheel polygonal wear still remains controversy for specific vehicles. The
proposed formation mechanism of wheel polygonal wear includes the bending of wheelset
(Jin, Wu, Fang, Zhong, & Ling, 2012; Tao, Wen et al., 2020; Tao, Xie et al., 2020), P2 resonance
of wheel/rail (Tao,Wen, Liang, Ren,& Jin, 2019; Cai, Chi, Tao,Wu,&Wen, 2019), rail localized
bending between two wheelsets in a bogie (Wu, Rakheja, Cai, Chi, Ahmed, & Qu, 2019; Wu,
Wu, Li, Shi, & Xu, 2019; Cai, Wu, Chi, Yang, & Huang, 2022; Qu, Zhu, Zeng, Dai, &Wu, 2020;
Ma, Gao, Cui, & Xin, 2021), the structural resonance of bogie frame (Wu, Du, Zhang, Wen, &
Jin, 2017), as well as the frictional self-excited vibration of wheelset–track system (Zhao et al.,
2019; Wu, Shang, Pan, Zhang, Shi, & Xiao, 2022; Wu, Xie, Liu, Wu, Wen, & Mo, 2022) and
traction-induced wheelset torsional vibration and associated self-excited stick slip vibration
(Spangenberg, 2020), as shown in Figure 2. In addition, the initial irregularities on the wheel
circumference (Cai, Chi, Wu, Yang, & Huang, 2023; Ye, Shi, Krause, Tian, & Hect, 2020; Kang
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Rail joint
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Bogie frame

Car body

Source(s): Authors own work

Figure 1.
Wheel/rail interaction

in the presence of short
pitch irregularities
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et al., 2022), wheelset flexibility (Peng, Iwnicki, Shackleton, Crosbee, & Zhao, 2019; Peng, Han,
Chu, Gao, Liu, & Xiao, 2019) and traction (Chen et al., 2023) can aggravate the formation of
uneven wear on the wheel circumference.

It can be seen that the formation mechanisms of wheel polygonal wear are mainly
attributed to the resonance of the natural vibration mode of the system, especially for the
modes that affect the wheel/rail interaction. These suggest that the wheel polygonalization is
a general wear process for rail vehicles, and a perfect round wheel could also tend to be an
OOR wheel if the mitigation is not considered in the operation. Therefore, it is desirable to
summary the resulting excitation frequencies of polygonal wheel at the wheel/rail interface,
which could facilitate the optimization of structure so as to avoid the exciting frequencies of
polygonal wheels. Table 1 summarizes typical wheel polygonal wear and associated
excitation frequencies for wheel/rail interaction reported by references. It can be seen the
dominating excitation frequencies of polygonal wear for metro cars and locomotive mainly
lies in the frequency band of less than 100 Hz approximately. Whereas for high-speed trains,
the wheel polygonal wear-induced excitation frequency can reach up to 650 Hz, mainly
ranging from 550 to 650 Hz.

(2) Rail corrugation

Rail corrugation is a periodic wear on the rail head. Grassie classified rail corrugation into six
types: heavy haul corrugation, light rail corrugation, corrugation related to track form,
corrugation caused by P2 resonance, flange-type corrugation and rail Pinned-Pinned

Figure 2.
Typical formation
mechanisms of wheel
polygonal wear
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corrugation (Grassie, 2009). Zhai et al. and Wen et al. summarized the phenomenon, causes
and countermeasures of rail corrugation in China’s high-speed lines and metro lines,
respectively (Zhai, Jin, Wen, & Zhao, 2020; Wen, Tao, Zhao, Wei, & Jin, 2023), as listed in
Table 2. As pointed out by Jin et al., rail corrugation exhibits diverse forms, and its formation
mechanisms are highly complex (Jin, Li, Li, &Wen, 2016). The occurrence and development of
rail corrugation are influenced by both the natural characteristics of the vehicle-track system,
such as vehicle speed, un-sprung mass, rail pad spacing, fastener stiffness and damping and
track slabs types, as well as the operating environmental conditions (e.g. straight track,
curved track, roughness of the wheel–rail interface, wheel–rail friction ecoefficiency) and the
type of vehicles (heavy haul, light rail, etc.). Due to this diversity and complexity, it is
challenging to summarize the growth mechanism of all corrugation phenomena using a
single theory. Most rail corrugation is due to the periodic fluctuations in the wheel–rail
interface (such aswheel–rail normal force and creepages), then lead to periodic fluctuations in
wheel/rail wear depth and gradually accumulate into rail corrugation. There are many
reasons for these periodic wheel–rail vibrations, such as resonance of the wheelset itself

Vehicle Order, vehicle speed and formation mechanisms Frequency

Metro car 9th order, 50–80km/h, First bending of wheelset 85 Hz
13th order, 120km/h, First bending of wheelset 78–96 Hz
5–8th order, 60 km/h, P2 resonance of wheel/rail 31–63 Hz

Locomotive 20th order, 40 km/h, resonance of a coupled traction motor pitching and
axle torsional mode

60.4 Hz

18\19\24 order, 80 km/h, bending of wheelset and wheel disc 84Hz, 122Hz
High-speed
train

18–20th order, 300 km/h, Localized bending of rail in the length range of
wheelbase

550–580 Hz

25 order, 250 km/h, Localized bending of rail in the length range of
wheelbase

595–650 Hz

Source(s): Authors own work

Line Wavelength, vehicle speed; track characteristics (reasons) Frequency

Metro line 30–40 mm, 80–90 km/h; resilient fasteners (GJ-III) 556–833 Hz
50–63 mm, 55–70 km/h; resilient fasteners (Cologne-Egg) 243–389 Hz
40–50 mm, 83 km/h; resilient fasteners (Vanguard) 461–576 Hz
100–250 mm, 40–50 km/h; conventional fasteners, Curve Radius <300 m 44–139 Hz
200–250mm, 65–70 km/h; conventional fasteners, 600m<CurveRadius<800
m

72–97 Hz

80–100mm, 60–80 km/h; conventional fasteners, Rubber booted short sleeper,
400 m < Curve Radius <700 m

167–278 Hz

50 mm, 35–40 km/h; Type-II fasteners, Rubber booted short sleeper, Curve
Radius 5 350

194–222 Hz

125–200 mm, 60–80 km/h; conventional fasteners, Ladder-type sleeper, 400<
Curve Radius ≤600

83–178 Hz

60–100 mm, 35–40 km/h; Type-II fasteners, Ladder-type sleeper, Curve
Radius 5 350

97–185 Hz

High-speed
line

60–80 mm, 300 km/h; pinned-pinned resonance 1,042–
1,388 Hz

120–160 mm, 300 km/h; vertical bending mode of the rails 520–694 Hz
63–80 mm, 250 km/h; rail pre-grinding 868–1,102 Hz

Source(s): Authors own work, Wen et al. (2023)

Table 1.
Typical wheel

polygonal wear and the
associated excitation

frequencies

Table 2.
Typical rail

corrugation and
associated excitation

frequencies
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(Tassilly & Vincent, 1991; Vila, Baeza, Mart�ınez-Casas, & Carballeria, 2014; Torstensson &
Schilke, 2013; Suda, Komine, Iwasa, & Terumichi, 2002; Fourie, Frohling, & Heyns, 2020),
resonance of the track itself (Jin, Wen, Wang, Zhou, & Liu, 2006; Li et al., 2016; Daniel,
Horwood, Meehan, & Wheatley, 2008; Wu, 2011), wheel–rail contact resonance (Carson &
Johnson, 1971), vehicle-track coupling resonance (Kurzeck, 2011;Wang&Wu, 2020) and self-
excited vibrations of the wheel–rail system (Clark, Scott, & Poole, 1988; Chen et al., 2020; Cai
et al., 2020), as shown in Figure 3. Similar to the wheel polygonal wear, the rail corrugation
developed by dynamic cause also follows the frequency-fixed mechanism.

2.2 Wheel/rail high frequency vibration
Through the above-mentioned investigations, the wheel/rail short-pitch irregularities can
lead to high frequency and highmagnitude impact at the wheel/rail interface near the passing
frequency, thereby intensified vibration level for rail vehicles. The wheel polygonal wear-
induced impact can affect the whole wheel re-profiling cycle until the reprofiling process is
performed. The rail corrugation usually affects the local track sectionwhen the vehicle passes
through, especially for the tight curve section. Considering the highly adverse influence on
the rail vehicles, huge efforts have beenmade to explore the short-pitch irregularities-induced
high frequency vibration through both the tests and numerical simulations.

(1) Experimental investigations

The short-pitch irregularities-induced high frequency impact load can reach up to 1,000 Hz,
which poses a huge challenge tomeasure impact loads arising from thewheel polygonal wear
and rail corrugation through the instrumented wheelset. Therefore, the axle box acceleration
is usually employed to quantify the influences of short-pitch irregularities on the vehicle in
the tests. To capture the evolution of axle box acceleration from the new wheel to the worn
wheel conditions, the long-term field test campaigns were usually conducted. Cai et al.
conducted a long-term field test for a high-speed train operating at a speed of 250 km/h (Cai
et al., 2020). In the test, the tested vehicle was subjected to severe wheel polygonal wear with
the harmonic order of 22–25th, which gives rise to obvious influences on the axle box

Figure 3.
Typical formation
mechanisms for rail
corrugation
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acceleration (especially for the passing frequency band of 550–650 Hz), as shown in Figure 4.
In the lateral stage of the wheel re-profiling cycle, the acceleration of the axle box showed a
rapid increase with the vehicle mileages due to the wheel polygonal wear. The results also
showed that the frequently varying speed can lower the increase rate of wheel polygonal
wear. Wu et al. reported the evolution of wheel polygonal wear for a high-speed train
operating at 300 km/h and pointed out that themaximum vertical acceleration of the axle box
can reach up to 400 g due to severe wheel polygonal wear, and the associated impact can
excite some high frequency vibration mode (up to around 1,000 Hz) near the double passing
frequency of wheel polygonal wear (Wu, Rakheja, & Wu, 2018; Wu, Rakheja, & Qu, 2018).
Moreover, the wheel polygonal wear-induced high frequency vibration is obviously greater
than those defined in IEC 61373 (Wu et al., 2023), especially for the dominating frequency
band of wheel polygonalization (550–650 Hz), as shown in Figure 5. This suggests that the
axle box vibration level given in IEC 61373 could underestimate the vibration level of the axle
box in the presence of wheel polygonalization. These could significantly shorten the fatigue
life of rail vehicles, thereby the occurrence of in-service fatigue failures.

Alternatively, some researchers investigated the wheel polygonal wear-induced high
frequency vibration through a roller test rig. China Academy of Railway Sciences
Corporation Limited developed a full-size roller test rig for a single wheelset so as to
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investigate the high frequency vibration of wheel/rail interaction (Chang, Cai, Chen, Li, & Lin,
2022), as shown in Figure 6. This test rig was employed to explore the wheel flat-induced
impact at the wheel/rail interface (Wu, Chi, Liu, Hu, Liang, & Wen, 2020; Wu, Xie, Liu, Wu,
Wen, &Mo, 2020) and the formation process of wheel polygonal wear (Wu, Shang et al., 2022;
Wu, Xie et al., 2022). Similarly, Liu et al. utilized a full-scale roller test rig for a single wheelset
incorporating with a numerical model to study the combined vibration of the wheelset and
gear box arising from the wheel polygonal wear and track irregularity (Liu, Yang, & Liu,
2022), as shown in Figure 7. Although the considered wheel polygonal wear is limited to the

Figure 6.
Experimental
investigation on the
wheel/rail interaction
due to wheel flat, (a) roll
test rig, (b) wheel flat-
induced wheel/rail
impact forces, and (c)
axle box acceleration
caused by wheel flat

Figure 7.
Full-scale roller test rig
for a single wheelset
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first-order OOR, the wheel polygonal wear-induced vibration is still identified as the main
contributor for the vibration of wheelset. Similarly, Zhang et al. designed the roller as
polygonal wheel with high-order polygonal wear to simulate the high frequency vibration of
wheelset (Zhang, Ping, &Wu, 2018). To better simulate the high frequency vibration of bogie
frame, Wu et al. developed a roller test rig for the whole railway bogie rather than a single
wheelset (Wu, Chi et al., 2020; Wu, Xie et al., 2020), as shown in Figure 8, which enables us to
identify the transfer path of high frequency vibration from the wheel/rail interaction to the
bogie frame. Considering the limitations of hydraulic actuators for the high frequency
loading, the above-mentioned test rigs serve as an alternative method to simulate the high
frequency of wheel/rail interaction, although these test rigs are still subjected to limitations,
such as regardless of the effects of track support stiffness which could overestimate wheel/
rail impact load and axle box acceleration with respect to the real operating condition.

Rail corrugation is discretely distributed in the local region of track, especially in tight
curves. It is known that the inner rail is subjected to larger wheel/rail creepage in the curve,
therefore, the inner rail is much more vulnerable to rail corrugation with respect to the outer
rail. The characteristics of rail corrugation are highly related to track properties, and the
resulting dynamic responses could vary substantially in a single railway line due to different
track types (Wu, Chi et al., 2020; Wu, Xie et al., 2020), as shown in Figure 9. The rail
corrugation-induced axle box acceleration is significantly greater than those observed in the
track section without rail corrugation. Moreover, the short sleeper track and rubber booted
sleeper track yield different wavelengths for the rail corrugation, thereby different
dominating frequencies (70 Hz for short sleeper track and 200 Hz for rubber booted
sleeper track). In China, a railway line could consist of different damping track types
(especially for metro lines) for different purposes of vibration reduction, thereby different
characteristics for rail corrugation and exciting frequency for wheel/rail interaction, as listed
in Table 2. The variations in the excitation frequencies of rail corrugation for different tracks
pose huge challenges for themodalmatching for the vehicle and track system, and the natural
frequencies of rail vehicles cannot avoid all the exciting frequencies arising from the wheel/
rail interaction, thereby leading to the vibration fatigue in the service.

(2) Theoretical investigations

In the theoretical study, thewheel polygonal wear and rail corrugation are generallymodelled
as a harmonic variation superposing on the wheel circumference or rail head (Li et al., 2011;
Liu&Zhai, 2014; Zhang et al., 2014), which serves as a basic input for the simulation of vehicle
and track model. From the interested frequency point of view, the vehicle and track system

Figure 8.
Full-scale roller test rig

for a whole
railway bogie
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can be modelled in different frequency ranges, such as the mid-frequency range and the high
frequency range. A review of modelling the vehicle and track system in the mid-frequency
range 50–500 Hz was given by Popp et al., in which the rail corrugation, deterioration of
ballast or Out-Of-Round (OOR) wheel have been considered as main contributors to the mid-
frequency oscillation in the railway system (Popp, Kruse, & Kaiser, 1991). Regarding to the
wheel/rail noise problem, the high frequency vibration of the system up to 5,000 Hz is the
interest. The relatedmethods used to build the vehicle and track system in the high frequency
range were reviewed by Knothe and Grassie (1993). In order to characterize the high
frequency vibration arising from short-pitch irregularities, a vast number of models were
developed on the basis of the theory of vehicle/track coupled dynamics (Zhai, Wang, & Cai,
2009) and the theory of rigid/flexible coupled dynamics. Dependent upon different purposes,
the proposed models show varying complexities, including the flexibility in the rail, slab
track, wheelset, axle box, coil spring, gear box and bogie frame, so as to consider the desired
high frequency vibration (see Figure 10).

Through the simulation of a vehicle/track coupled dynamic model together with flexible
models of interest components, the influences of short pitch irregularities have been widely
investigated, in terms of wheel/rail normal force, wheel/rail creepage force, vibrations in the
track, axle box, wheelset, gearbox, roller bearing, coil spring and bogie frame, as well as
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dynamic stress arising from the high frequency vibration. Through simulation of a vertical
coupled vehicle/track model along with the measured wheel polygonal wear, Liu and Zhai
concluded that the damping effects of the wheel/rail interaction can impose a significant
influence on the fluctuations of wheel/rail contact forces in the presence of wheel
polygonalization, and the peak wheel/rail contact force always occur at the raising slopes
of radius (Liu & Zhai, 2014), which was comparable with observed by Morys (1998).
Considering a 20th-order wheel polygonal wear, Wu et al. investigated the influences of
vehicle speed and polygonal wear amplitude on the wheel/rail normal force, axle box
acceleration and stress of wheelset axle (Wu, Rakheja, &Wu, 2018;Wu, Rakheja, &Qu, 2018).
The results demonstrated a nearly linear increase in the wheel/rail contact forces with wear
amplitude. The high magnitude and high frequency impact loads owing to wheel
polygonalization can excite some bending modes of vehicle and track subcomponents and
further contribute considerably to the reduction of fatigue lifetime. Wu et al. investigated the
dynamic stress developed in the wheelset axle shaft arising from the impact loads due to the
wheel flat and wheel polygonalization through a coupled vehicle/track dynamic model along
with a rotating flexible wheelset (Wu, Chi, &Wu, 2015). The results suggested that the wheel
polygonalization can impose a significant influence on the dynamic stress in thewheelset axle
shaft, and the secondary bending vibration mode of wheelset axle shaft could be excited by
the wheel polygonalization-induced impact load. Yang et al. investigated the effects of wheel
polygonal wear of locomotive on the wheel/rail creep forces and concluded that the anti-slip
controller could contribute to the development of wheel polygonal wear (Yang, Xu, Ling, &
Zhai, 2022). Moreover, a number of investigations focused on the effects of wheel polygonal
wear on dynamic responses of roller bearing of axle box (Liao et al., 2022; Wang et al., 2019),
torsional vibration of transmission system (Wang, Cheng, Mei, Zhang, Huang, & Yin, 2020;
Wang, Xie, Jiang, Song, Sun, &Wang, 2020; Wang, Bai, Wu, Zheng, & Zhou, 2020) and gear
box (Wu, Rakheja et al., 2019; Wu, Wu et al., 2019).

Regarding the rail corrugation-induced impact, Wu et al. developed a flexible bogie model
incorporating an antenna beam and concluded that rail corrugation-induced high frequency
vibration near 78 Hz can excite the coupled vibration of bogie frame and antenna beam
thereby the intensified stress level (Wu, Shang et al., 2022; Wu, Xie et al., 2022). Zhou et al.
reported the failure mechanism of coil spring through the simulation of vehicle/track model
incorporating a flexible coil spring model and pointed out that the natural vibration mode of
coil spring can be excited by the rail corrugation (Zhou et al., 2020). In the above
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investigations, the track was invariably considered as a tangent line. Considering a curved
track, Bethel et al. developed a tram/track coupled model to study the effect of wheel
polygonal wear on the dynamics of vehicle when negotiating a curve (Bethel et al., 2022).

3.Wheel/rail high frequency vibration-induced vibration fatigue of railwaybogie
The intensified vibration of railway bogie is expected to deteriorate the loading
conditions thereby shortening the fatigue life of rail vehicles. Table 3 and
Figure 11 summarized some typical fatigue failures of railway bogie reported by
references, including the high-speed railway vehicles and metro vehicles. The well-known
fatigue failure caused by the wheel OOR is the failure of the resilient wheel for IEC train, and
the identified main causal factor is the low-order wheel polygonal wear-induced impact at the
wheel/rail interface. After that, the wheel polygonal wear-induced vibration became a main
concern for the structural integrity. In China, Zhang, Tan, and Lin (2016) andHu, Liu, Liu, and
Hai (2017) reported the fatigue failure of gear box in high-speed rail car and concluded that the
failure of gear box was highly related to the structural resonance caused by wheel OOR. The
experimental results showed that the wheel circumferential roughness was predominated by
20th-order wheel polygonal wear, and the resulting high frequency impact at the wheel/rail
interface near 580 Hz can excite the vibration modes of the gear box, thereby the reduced
fatigue life for the gear box. Similarly, the brake disc mounted on the wheelset axle have been
also reported to be subjected to fatigue failure due to the combined effects of high frequency
vibration and thermal loading in the braking process (Jin et al., 2020). Through the field test,
Peng et al. pointed out that the failure of the vertical block was related to the high order wheel
polygonal wear-induced high frequency impact at thewheel/rail interface (Peng, Iwnicki et al.,
2019; Peng, Han et al., 2019). Besides, the high-level vibration arising from the wheel
polygonal wear can also give rise to the non-linear vibration in the axle box front cover of
high-speed train and further contribute to the failure of connecting bolts (Feng, Qu, Li, Dai, &
Shu, 2023). Dong et al. reported the failure of the wire bracket installed on the axle box
through the field test and numerical simulation and concluded that the crack initiated from
the weld defect and the combined impacts due to wheel polygonal wear and rail corrugation
serve as the main driving force for fatigue failure (Dong, Wang, Dai, & Li, 2023).

Vehicle Failed components Causal factors
Characteristic
frequency band

High-
speed
train

Gearbox 20th-order wheel polygonal wear 580 Hz
Brake disc 20th-order wheel polygonal wear 580 Hz
Axle box bolts 20th-order wheel polygonal wear 580 Hz
Vertical block of axle box 25th- to 27th-order wheel polygonal wear 510 Hz
Wire bracket 15th to 22nd-order wheel polygonal wear 400–800 Hz

Metro
cars

Motor installation of bogie
frame

8th-order wheel polygonal wear and rail
corrugation with the wavelength of 206–417 mm

56.6–62.5 Hz

Side frame of bogie 14th- to 16th-order wheel polygonal wear and rail
corrugation

71, 89, 94 Hz

Coil spring Rail corrugation 60 Hz
Antenna beam Rail corrugation (wavelength 125–200 mm) 60–80 Hz
Safety hanger of axle box Rail corrugation (wavelength 61.5 mm) 258 Hz
Lifeguard Rail corrugation 63 Hz

Source(s): Authors own work

Table 3.
Typical fatigue failures
of rail vehicles arising
from high frequency
vibrations
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Regarding metro cars, Wang, Cheng et al. (2020), Wang, Xie et al. (2020) and Wang, Bai et al.
(2020) reported the fatigue failures of bogie frame through the field test, and the combined
impacts due to the wheel polygonal wear and the rail corrugation were identified as the main
contributor of fatigue failure of bogie frame. Zhou et al. (2020) and Ling et al. (2017) studied the
fatigue failures of coil springs in ametro car and pointed out that the passing frequency of rail
corrugation near 60 Hz can excite some vibration modes of coil spring. Through the field test
and numerical simulation, Wu et al. concluded that the coupled bending mode between the
bogie frame and antenna beam can be excited by the high frequency impact near 78 Hz
arising from the rail corrugation (Wu, Chi et al., 2020; Wu, Xie et al., 2020). Li et al. studied the
vibration fatigue of lifeguard in a metro car and concluded that the rail corrugation-induced

Figure 11.
Typical fatigue failures

caused by high
frequency vibration of

wheel/rail
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high frequency impacts excite the natural frequency of lifeguard thereby reducing fatigue
lifetime (Li et al., 2019). Shi et al. pointed out that the fatigue failure of the safety hanger is
mainly attributed to the rail corrugation with the dominating wavelength of 61.5 mm (Shi,
Wang, Dai, &Wu, 2019). Based on the aforementioned investigations, it is concluded that the
axle-mounted components are much more vulnerable to fatigue failures compared with other
components. The fatigue crack usually initiates from the defect of weld seam, and the wheel/
rail high frequency impact-induced structural resonance serves as the main driving force of
the failure of vehicle sub-components.

4. Methodologies used for assessment of vibration fatigue
The fatigue damage is usually employed to quantify the influences of service loads on the
fatigue life of considered components. Therefore, this part focuses on methodologies used to
assess the fatigue damage in both the design and service phases, especially focusing on load
definitions and fatigue damage assessment models, as shown in Figure 12.

Load 
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Finite Element 
Model

Load

Stress Stress
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counting
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Domain 
method 

Stress Range Cycle Distribution
Stress
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Fatigue 
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Maximum
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Mean Stress
Deterimination

Fatigue Strength 
Diagram

Stress

S/N Curve 
Selection

Fatigue Damage
Assessment

Source(s): Authors own work

Figure 12.
Basic flowchart of
fatigue assessment
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4.1 Load definitions

(1) Main load for railway bogie frame

A number of international standards have been developed to specify the load spectrum of
railway bogie, such as UIC515-4, UIC615-4, EN 13749, JIS E 4207 and JIS E 4208. UIC615-4
and UIC515-4 were defined by the International Union of Railways for motor bogie and
trailer bogie of passenger rolling stock, respectively. Based on the track conditions in
Europe, European countries developed EN 13749 according to the loads given in UIC
standards. However, EN standard gives a more detail definition for longitudinal loads of
bogie frame, such as the longitudinal lozenging force and potential shock. In those
standards, the loads are classified into three types, such as exceptional loads, particular in-
service loads and fatigue loads. Considering different operation conditions, the loads given
in each standard are different. Japanese standards association developed JIS E 4207 and JIS
E 4208 standards to verify the strength of bogie frame. To demonstrate the effects of
difference of load definition, a number of investigations compared the fatigue results
obtained from different methods. An et al. investigated the methodologies of fatigue
assessment given in the JIS standard and further compared with UIC and EN standards and
concluded that the JIS standard gave a more detail definition for the operational loads of
bogie frame compared with other standards, whereas the exceptional load conditions are
not defined in JIS standard (An, Li, Huang, Fu, &Yu, 2009). Liu et al. investigated the fatigue
strength of a metro bogie frame and concluded that the JIS standard yields more
conservative results for the fatigue strength of the weld seam of bogie frame compared with
the UIC standard (Liu, Yang, Xiao, Yang, & Zhu, 2019).

It is known that the load spectrum is the basic input for verification of fatigue strength of
railway bogie, and it is significantly affected by vehicle conditions and interfaces, operational
characteristics, line characteristics and environmental conditions, and so on. The loads given
in the current standards thus could be subjected to limitations due to differences in the
operation condition of China railway. Therefore, it is of great interest to explore the load
spectrum of bogie through field tests. In China, huge efforts have been made to understand
the load spectrum of railway bogie, especially for new modes of high-speed rail vehicles,
through the development of load cells for bogie frame, coil spring, axle box, traction rad,
braking and wheelset, as shown in Figure 13.

Zhang et al. proposed a methodology to establish the load spectrum of bogie frame for a
high-speed train based on the criteria of damage consistency method, which was used to
measure the load spectrum of bogie frame operating at a speed of 350 km/h on the Jin-Jin high-
speed railway line (Zhang, 2008). Ren et al. developed an instrument coil spring to measure
dynamic loads of coil springs through a field test and pointed out that the maxima load
mainly occurs at the entrance of the depot and railway connection section (Ren, Sun, & Li,
2010). Wang et al. developed the coil spring and axle box as load sensors with a validated
frequency of up to 50 Hz, so as to measure the vertical and lateral forces acting on the bogie
frame in the operation condition (Wang et al., 2015). The obtained loads were further
employed to calculate the bounce, roll, torsion and lateral load spectrum of bogie frame. The
results concluded that the wheel reprofiling process can effectively reduce lateral loads of
axle box, up to 50% and 40% for the tangent and curve sections, respectively. Ren et al.
proposed a method to identify the traction and braking loads and concluded that the traction
and braking forces were highly related to the traction and braking process, irrespective of
curve negotiation (Ren, Zhao, Li, Wang, & Wu, 2022). Zou et al. conducted a comprehensive
load calibration experiment for a bogie frame to identify the service load conditions of bogie
frame (Zou et al., 2016, 2021). The damage consistency criterion was subsequently used to
develop the load spectrum of bogie frame.
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In the aforementioned investigations, a linear relationship between the load and the stress
was usually established through the laboratory test based on the quasi-static method, so as to
identify the load through the stress developed on the structure. In the operation, the bogie
frame is usually subjected tomultiple dynamic forces. Therefore, the relationship between the
stress and force can be further derived as:

S1 ¼ F1k11 þ F2k12 þ . . .þ Fnk1n

S2 ¼ F1k21 þ F2k22 þ . . .þ Fnk2n

..

.

Sm ¼ F1km1 þ F2km2 þ . . .þ Fnkmn

0Sm ¼ KmnF n

8>>>>>>>>><
>>>>>>>>>:

(1)

whereSm is the stressmatrixwhich is ameasurement obtained in field tests,Kmn is the force–
stress transfer matrix obtained in the calibration experiment by applying the unit force for
each loading location, and F n is the desired dynamic forces. In this method, the location of
stress gauge has to be selected carefully so as to omit the coupling effect of multiple forces,
and the wheatstone bridge is usually employed in the calibration. This method is capable of
identifying low frequency dynamic loads of bogie frame because the effects ofmode vibration

Figure 13.
Calibrated load cell for
components of
railway bogie
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of bogie frame on the stress are not taken into consideration. The main loads of bogie frame
are mainly induced by the low frequency motion of car body, therefore, the quasi-static based
instrument bogie frame could be considered acceptable for main load identification for a
railway bogie frame. The methodologies used to identify the high frequency loads of railway
bogie frame under the service condition still remain the challenge for the load definition of the
railway bogie frame.

(2) Vibration spectrum for attachments of railway bogie

Unlike the main structure of a railway bogie, the attachments of bogie frame are mainly
subjected to inertial loads arising from random vibration. EN 13749 defined the inertial
accelerations for attachments installed on the axle box and bogie frame, respectively, as listed
in Table 4. The proposed inertial is mainly limited to the magnitude of acceleration
irrespective of exciting frequency, which could underestimate influences arising from the
vibration fatigue. IEC 61373 standard defined a flat spectrum of ASD for bogie frame- and
axle box-mounted components for both functional- and the simulated long-life vibration test,
which has been employed to verify the structural integrity due to the random vibration.
Figure 14 illustrates the typical load spectrum for axle box-mounted components given in IEC
61373. The cut-off frequency f2 is taken as 500 Hz for the mass less than 50 kg, and 200 Hz for
the mass greater than 125 kg. When the mass lies in the range from 50 to 125 kg, the cut-off

Direction

Axle box-mounted equipment Bogie frame-mounted equipment

Exceptional acceleration Fatigue acceleration Exceptional acceleration
Fatigue

acceleration

Verticalþ ±70g ±25g ±20g ±6g
Lateralþ ±10g ±5g ±10g ±5g
Longitudinal ±10g ±5g ±3g or ±5g* ±2.5g
Note(s): þThe values in the table apply to the bogie frame above the primary suspension. They may be
reduced linearly to half the value at the bogie centre and should be extrapolated to higher values outboard of
the primary suspension
*The value to be used depends on the type of bogie and application and should be consistent with the
longitudinal shunt cases
Source(s): Authors own work
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frequency f2 is calculated though 125 3 200 Hz/mass. The vibration spectrum is taken as a
flat spectrum in the frequency range of 20∼100 Hz. Whereas for the frequency range of 10 to
20 Hz and 100∼ f2 Hz, the slopes of 9 dB/octave and�6 dB/octave are considered for the ASD
spectrum, respectively.

The functional vibration spectrum is the minimum vibration level to demonstrate that the
equipment is capable of functioning when subjected to conditions that are likely to occur in
service. The RMS values of the functional vibration spectrum in the vertical, transverse and
longitudinal directions given by IEC 61373 are 38, 34 and 17 m/s2, respectively. Whereas the
simulated long-life test aims at demonstrating the mechanical integrity of equipment at an
increased vibration level, which is usually determined based on the vibration level of the
functional vibration spectrum together with an acceleration ratio. In IEC 61373, the
acceleration ratio is taken as 3.78 for the axle-mounted components, which permits us to
simulate 25 years of fatigue lifetime for equipment in 15 h considering 5 h for each direction.
Therefore, the RMS values of the simulated long-lifetime test are determined as 144, 129 and
64.3 m/s2 for the vertical, transverse and longitudinal directions, respectively.

It can be seen that the axle box ASD spectrum given in IEC 61373 mainly consists of three
interest frequency bands, and the vibration level in the frequency band of 20–100 Hz is taken
as a flat spectrum. This suggests that the vibration spectrum of axle box defined in IEC 61373
aims to simulate the vibration level of a rail vehicle in the frequency band of 20–100 Hz and
considers that this frequency band predominates the vibration level of axle-mounted
components in the operation. However, in the operation, the vibration of axle box is
predominated by multiple frequency bands rather than a single frequency band alone (Cai
et al., 2021; Wu et al., 2017; Wu, Shang et al., 2022; Wu, Xie et al., 2022). Through analysing
field test measurements obtained from nine high-speed railway lines, Wu et al. pointed out
that the ASD spectrum in IEC61373 mainly focuses on the low frequency range of 20–100 Hz
(Wu et al., 2023). This can represent the overall vibration level of 20–100 Hz, whereas still
underestimates the vibration level near the frequency of wheel/rail coupled mode (P2 force).
The worst underestimations were observed for the frequency band of 500–700 Hz, especially
for the high-speed train in the presence of wheel polygonal wear. Therefore, a multi-
characteristic frequency bands-based axle box ASD vibration spectrum was proposed based
on the distribution of wheel/rail coupled vibration modes in order to better characterize the
vibration level of rail vehicles, as shown in Figure 15. The vibration level for each concerned
frequency band is determined depending upon the distribution of rms values.

Frequency/Hz
Source(s): Wu et al. (2023)
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A few investigations have beenmade to synthesize the vibration spectrum based on the field test
measurement through statistical synthesis methods, such as the vibration test specifications for
flight vehicles (Klein&Piersol, 1965) developedbyNASA, and the associated criteria for dynamic
vibration test (Keegan, 2001; Himelblau, Piersol,Wise,&Grundvig, 1994;Angeli, 2016;MIL-STD-
810F, 2008). Wange et al. conducted a comprehensive review of induction methods used in the
aircraft vibration test data (Wang, Bai, Wan, & Yan, 2011). GJB/Z 126–99 defines a detailed
procedure to synthesize the vibration spectrum for military vehicles, as shown in Figure 16. This
method could be employed in railways for the induction of vibration spectrum. Upon the method

Source(s): Authors own work
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given in the standard, Ding et al. performed a vibration spectral induction for the onboard
equipment of rail vehicles (Ding, Zhang,&Wang, 2016). Considering the strong non-normality of
data in the railway vehicles, Deng et al. used the Johnson’s law to improve the standardmethod of
vibration induction (Deng et al., 2019). A similar investigation was also conducted by Han et al.
(2021). In the abovementioned investigations, the vibration data are inevitably considered as a
Gaussian distribution; however, the vibration of railway vehicles expresses strong non-Gaussian
characteristics, especially for the vibration of axle box due to random excitations at thewheel/rail
interface.

4.2 Evaluation models of vibration fatigue

(1) Endurance strength method

In the current standards, the verification of the strength of railway bogie is based on the
endurance strength method. The Goodman–Smith diagram and Goodman–Haigh diagram
are usually employed to verify the fatigue strength of railway bogie. ERRI B 12/RP 17 defined
the permissible stress for three types of steel using Goodman–Smith diagram in terms of the
tensile strength (as shown in Figure 17), including the tensile strength of at least 370, 420 and
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520 N/mm2. Three types of curves are used to specify the permissible stress for butt-weld,
fillet weld and non-welded area, respectively. JIS E 4207 defined the Goodman–Haigh
diagram, as shown in Figure 18. Three regions are taken into consideration to include the
effects of weld grinding on the fatigue limit.

In the abovementioned Goodman diagram, the maximum- and minimum-stresses for all
considered fatigue load cases have to be determined through the principal stress along the
direction of maximum principal stress in the considered fatigue load cases. The amplitude-
and mean-stress can be determined as:

σa ¼ σmax � σmin

2
; σm ¼ σmax þ σmin

2
(2)

where σa is the amplitude of the stress cycle of considered fatigue load cases, σm is the mean
stress for considered fatigue load cases, σmax is the maximum principal stress for all
considered fatigue load cases and σmin is the minimum stress determined by resolving the
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principal stress in the direction ofmaximumprincipal stress. Alternatively, DVS 1612 utilizes
the normal stresses longitudinal and lateral to the seam direction (σII and σ┴) and shearing
stresses longitudinal to the seam direction (τ) to evaluate the fatigue strength through MKJ
diagram, as shown in Figure 19. In the comparison of Goodman–Simith andGoodman–Haigh
diagram, MKJ diagram gives a more detail description of the permissible stress depending
upon the type of weld joint. In the assessment of fatigue, the concerned stress range has to lie
in the envelope of the fatigue limit diagram in order to demonstrate the infinite life for the
considered structure.

(2) Damage accumulative method

In the endurance strength method, the stress amplitude of cyclic loading has to be less than
the fatigue limit defined by the fatigue strength diagram. Whereas in the operation, the
service loading-induced stress could exceed the fatigue limit and then result in fatigue
damage. Therefore, the fatigue damage assessment is usually conducted on the basis of the
damage accumulation rule. A comprehensive review of time- and frequency-domain methods
for fatigue damage estimation was given by Mu~niz-Calvente et al. (2022). Fatigue damage
estimation can be classified into two groups, including the time-domain methods and
frequency-domainmethods, as listed in Table 5. The first fatigue damage assessment method
was proposed by Palmgren (1924) and Miner (1945) based on the ratio between the applied
cycles and total cycles to failures, which considers the fatigue damage accumulative as a
simple linear process and neglects the effects of the load-level and load-sequence and lack of
load-interaction accountability. Accordingly, a huge number of investigations have been
made to improve the Palmgren–Minermodel, which results in several fatiguemodels, such as
the double-linear model considering both crack initiation and propagation stages (Langer
et al., 1937), the nonlinear damage rules developed by Marco and Starkey (1954), energy
damage models (including Leis, 1988 and Niu, Li, & Lee, 1987), continuum damage models
(such as Chaboche & Lesne, 1988), as well as the probabilistic damage model proposed by
Fern�andez-Canteli et al. (2014) and Fern�andez-Canteli (1982). A more detailed discussion of
those models can be found in Fatemi and Yang (1998).

In the time-domain methods, the loading in terms of stress-time history observed in real
operation conditions is needed to determine load cycles based on the rain flow counting
method, which serves as basic input for fatigue damage assessment. However, due to
economic and feasible reasons, the loading history with the limited time interval can be only
obtained. This could be subjected to limitation when the load is a typical random because the
limited load cycles cannot describe all load distributions in the service. For this reason, the

Figure 19.
Permissible normal
and shear stress for
S355 and S235 given in
DVS 1612
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frequency domainmethods based on the statistical information of loading history are utilized
to assessment the fatigue damage together with the S/N curve and Palmgren–Miner rule. In
these methods, the random load histories are generally treated as a stationary Gaussian
process, represented by the power spectral density (PSD). A random process can be
characterized by the autocorrelation function RX ðτÞ, defined as follows:

RX ðτÞ ¼ E½XðtÞXðt þ τÞ� (3)

where E½∙� operator is the probabilistic expected value. Similarly, this process can be
expressed in the frequency domain with the two-sided PSD function, which is the Fourier
transform of the autocorrelation function,

SX ðwÞ ¼
Z

∞

−∞

RX ðτÞe−iwτdτ (4)

The statistical information of spectral density SX ðwÞ can be described through the means of
the mth spectral moments λm:

Fatigue damage model Expression

Time-
domain

Palmgren–Miner D ¼Pni=Ni
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f

E
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0
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h
−

�
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�βi
Chaboche–Lesne D ¼ 1− ½1− ðn=NÞ1=ð1− aÞ�1=ð1þβÞ

Frequency-
domain

Narrow–band
approximation

D
NB ¼ v0C

−1ð ffiffiffiffiffiffiffiffi
2m0

p ÞkΓ�1þ k
2

�
Range-mean
approximation

D
RC ¼ v0C

−1ð ffiffiffiffiffiffiffiffi
2m0

p
α2ÞkΓ

�
1þ k

2

�
Wirsching–Light
method

D
WL

RFC ¼ ½aðkÞ þ ½1þ aðkÞ�ð1− ebðkÞÞ�DNB

α0:75 method D
AL

RFC ¼ α2
0:75D

NB

Jiao–Moan
method

D
JM ¼ ρJMD

NB

Gao–Moan
method

D
GM

RFC ¼ DP þ DQ þ DH

Dirlik method
D

GM

RFCðσaÞ ¼ vp
C
σkX

�
D1Q

kΓð1þ kÞ þ ð ffiffiffi
2

p Þk�1þ k
2

�ðD2jRjk þ D3Þ
�

Zhao–Baker
method

D
ZB

RFCðσaÞ ¼ vp
C
σkX
h
ωa−

k
bΓ
�
1þ k

b

�þ ð1þ ωÞ2k
2Γ
�
1þ k

2

�i
Tovo–
Benasciutti
method

D
TB

RFC ¼ ½bþ ð1− bÞαk−1
2 �DNB

Petrucci–
Zucarello method

D
PZ

RFC ¼ C
−1
vp

ffiffiffiffiffiffi
mk

0

q
eΨða1 ;a2 ;b;γÞ

Zalaznik–Nagode
method

D
ZN

RFC ¼ vpCoðTÞ−1λkðTÞ=2
0�

D1Q
kðTÞ

Tð1þ kðTÞÞ þ ð ffiffiffi
2

p ÞkðTÞ þ Γ
�
1þ kðTÞ

2

��
D2jRjkðTÞ þ D3Þ

�
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λm ¼
Z

∞

−∞

wmSX ðwÞdw ¼ ð2πÞm
Z

∞

−∞

f mSX ðf Þdf ;m ¼ 1; 2; . . . (5)

The evenmoments correspond to the variance σ2
X of the random processX and its derivatives

_XðtÞ and €XðtÞ:
λ0 ¼ σ2X ; λ2 ¼ σ _X

2; λ2 ¼ σ €X
2 (6)

Based on the spectrum parameter, the expected peak occurrence frequency ν0 and expected
positive zero-crossing rate νp can be obtained as:

ν0 ¼ 1

2π

ffiffiffiffi
λ2
λ0

r
; νp ¼ 1

2π

ffiffiffiffi
λ4
λ2

r
(7)

These parameters are usually used to determine the total load cycles in the fatigue damage
estimation for the frequency-domain methods. Additionally, the irregularity factor α1; α2 for
the spectral density PSD can be expressed as:

α1 ¼ λ1ffiffiffiffiffiffiffiffi
λ0λ2

p ; α2 ¼ λ2ffiffiffiffiffiffiffiffi
λ0λ4

p (8)

where α2 is the most commonly used parameter. When the random process tends to be a
narrow-band process, the parameter α2 is close to 1, otherwise, tends to zero. This parameter

can be further employed to define the bandwidth parameter e ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1− α2

2

p
.When e is close to 0,

the signal tends to be a narrow band process, otherwise, the broadband process. Based on the
derivation of above-mentioned spectral parameters, the distribution of rainflow cycle can be
obtained, which is considered the main difference compared to time-domain methods. Rice
(1944) established the probability density function (PDF) of the peak amplitude for a general
broadband process X(t):

PpðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� α2

2

p
ffiffiffiffiffi
2π

p
σx

e
−

x2

2σ2xð1−α22Þ þ α2x

σ2x
e
−

x2

2σ2xΦ

 
α2x

σx
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� α2

2

p
!

(9)

where Φð∙Þ is the standard normal cumulative distribution function:

ΦðzÞ ¼ 1ffiffiffiffiffi
2π

p
Z z

−∞

e
−t2

2 dt (10)

Based on the S–N curve, the relationship between the stress and fatigue life is

S
k
N ¼ C (11)

where N is the number of cycles to failure at the stress amplitude S, C and k are the fatigue–
strength coefficient and fatigue–strength exponent, respectively. In the time-domain method,
S is usually determined through rainflow counting method and is considered a deterministic
parameter. Whereas, for a random process, the stress cycle amplitudes are non-deterministic
parameters, which are calculated through the PDF pðSiÞ. The number of cycles ni for stress
range (Si, Si þ ΔS) in the time period T can be determined as:

RS
3,2

200



ni ¼ υpTpðSiÞΔS (12)

Therefore, based on the Palmgren–Miner method, the fatigue damage can be expressed as:

D ¼
X

Di ¼
X ni

Ni

¼
X υpTpðSiÞΔS

Ni

¼ υT
Z

∞

0

pðSiÞ
NðSiÞ dS (13)

D ¼ υpT
C

Z
∞

0

S
k
pðSÞdS (14)

and the damage per unit time thus can be defined as:

d ¼ D

T
¼ υp

C

Z
∞

0

S
k
pðSÞdS (15)

It can be seen that the main work for frequency-domain method is to formulate a PDF for
stress–cycle amplitude distribution. Therefore, huge works have been made to develop the
rainflow PDF approximation methods, as listed in Table 6. The pioneering work was
conducted by Dirlik (1985) modelling the rainflow PDF through combining one exponential
and two Rayleigh probability densities. Zhao and Baker (1992) proposed a rainflow PDF
through the linear combination of the Weibull and Rayleigh PDF. Based on the Rayleigh, a
standard Rayleigh and a half-Gaussian distribution, Park, Choung, and Kim (2014) developed
another rainflow PDF. Similarly, Jun and Park (2020) further corrected the rainflow PDF
through a Rayleigh, a standard Rayleigh, a half-Gaussian and an additional exponential
distribution.

Apart from the rainflow PDF approximation methods, the narrowband formulation
together with the narrowband correction factor is also used to estimate the fatigue damage
for a broadband random process, such as Wirsching–Light method (Wirsching & Light,
1980), Ortiz–Chen method (Ortiz & Chen, 1987) and Tovo–Benasciutti method (Tovo et al.,
2002). To deal with the multimodal in the broadband process, a spectral density is usually
considered as a superposition of two or more narrowband processes, and then each
narrowband process-induced damage is estimated by the related approximation method,
such as Jiao–Moan method (Jiao &Moan, 1990), Sakai–Okamura method (Sakai & Okamura,
1995), Fu–Cebon method (Fu & Cebon, 2000), Low method (Low, 2014) and Gao–Moan

Models Expressions

Narrow band (Miles et al., 1954)
paðsÞ ¼ s

σ2s
e
−s2

2σ2s

Dirlik method (Dirlik, 1985)
paðzÞ ¼ 1ffiffiffiffi

m0
p
	

G1

Q
e
−Z
Q þ G2Z

R2 e
−Z2

2R2 þ G3Ze
−Z2

2



Zhao and Baker method (Zhao & Baker, 1992) paðzÞ ¼ ωαβZ β−1e−αZ

β þ ð1−ωÞZe−Z2

2

Park method (Part et al., 2014)
paðzÞ ¼ cR1

Z
σ2
R1

e

−Z2

2σ2
R1 þ cR2

Ze
−Z2

2 þ cG
2ffiffiffiffi
2π

p
σG
e
−Z2

2σ2
G

Jun–Park (Jun & Park, 2020)
paðzÞ ¼ Qc

"
D1

1
σE
e
−Z
σE þ D2

Z
σ2
R

e
−Z2

2σ2
R þ D3Ze

−Z2

2 þ D4
2ffiffiffiffi
2π

p
σH
e
−Z2

2σ2
H

#

Source(s): Authors own work

Table 6.
Rainflow cycle PDF

approximation
methods
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method (Gao & Moan, 2008). Alternatively, some other researchers directly used the narrow
band formulation to estimate fatigue damage for each narrow band process and studied the
combination methods for individual damage obtained, such as the Lotsberg method
(Lotsberg, 2005), Huang–Moan method (Huang &Moan, 2006), Han–Ma (Han, Ma, Qu, Yang,
& Qin, 2016) and Bands method (Braccesi, Cianetti, & Tomassini, 2015). Considering 104
different PSD spectra and three different fatigue–strength exponents, Ales Zorman, Slavi�c,
and Boltezar (2023) compared the frequency-domain methods to the time-domain method
using the numerical simulation and concluded that Ortiz–Chen, α0:75, Tovo–Benasciutti 2,
Dirlik, Park and Jun–Park methods can give an acceptable engineering accuracy for small
values of the S −N curve slope ðk¼ 3:324Þ. For a larger fatigue strength exponent (k5 7.3),
Ortiz–Chen, α0:75, Park, Jun-Park and Huang–Moan methods can yield a relatively smaller
error below 25%. Table 1 lists the most cited frequency–domain-based fatigue damage
models. Dirlik and Benasciutti (2021) performed a comprehensive review of the spectral
methods, especially focusing on the review of comparison investigations for spectral
methods, and concluded that Dirlik and TB methods generally give a better estimation.

The aforementioned spectral methods invariably treated the random vibration as a
stationary Gaussian process. However, due to local irregularities on the track, the vibration in
railway vehicle usually expresses non-stationary and non-Gaussian characteristics. A
number of scholars investigated how the non-stationary and non-Gaussian affect the
vibration fatigue. Rizzi, Przekop, and Turner (2011) and Kihm, Rizzi, Ferguson, and
Halfpenny (2013) pointed out that for a stationary excitation the non-Gaussian signal results
in a Gaussian stress response, and the non-stationarity is the origin of non-Gaussian
response. Through studying the vibration fatigue life of Y-shaped specimens considering the
non-Gaussianity and non-stationarity loading, Palmieri, Cesnik, Slavi�c, Cianetti, and Boltezar
(2017) concluded that the Gaussian theoretical-based methods could be questionable when
the excitation is non-stationary and non-Gaussian excitation, and the fatigue life was found to
be significantly impacted due to characteristics of non-Gaussianity and non-stationarity in
the vibration loading. Capponi, �Cesnik, Slavi�c, Cianetti, and Boltezar (2017) defined an index
to quantify the non-stationarity of a signal and investigated the effects of non-stationary on
fatigue life. The obtained results further show that the non-stationary can have significantly
shorter fatigue life compared with those caused by stationary excitations.

To assess the fatigue damage arising from the non-Gaussian loading, the Gaussian-based
methods were further modified. Benasciutti and Tovo (2006) utilized a nonlinear
transformation to transform the Gaussian load to a non-Gaussian load and further
proposed the non-Gaussian-based frequency domain method for the narrow-band
approximation and TB method, as shown in Figure 20. Wolfsteiner (2017) proposed a new
methodology to estimate fatigue damage of non-stationary random vibration through the
decomposition of a non-stationary vibration signal into several stationary vibrations with
Gaussian distributions. The essential of this method is to estimate the distribution of
statistical moments over the frequency band of the given non-stationary signal. This method
was further employed to assess the fatigue damage of rail guard (Wolfsteiner&Breuer, 2013).
Jiang et al. investigated on the non-Gaussian random vibration fatigue analysis and
accelerated test (Jiang, Tao, & Chen, 2021).

In both time- and frequency-domain methods, the S–N curve is the essential part of the
fatigue damage estimation, which defines the relationship between the stress range and the
number of cycles to failure. This relationship is subjected to variations considering different
materials and weld joint details. Therefore, a huge number of tests have been performed to
establish the S–N curve for the interested material or design detail. The mathematical
expression of S–N curves can be classified into deterministic models and probabilistic
models. Castillo and Fernandez–Canteli summarize the typical S–N curve models (Castillo &
Fern�andez-Canteli, 2009), as listed in Table 7. In most industrial standards, the S–N curve is
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represented by the Basquin equation (OH, 1910), such as IIW standard, BS7608, JIS 4207, and
Eurocode 3. Figure 21 illustrates the typical S–N curves defined in the IIW, BS7608, Eurocode
3 and JIS 4207. It can be seen that the S/N curves given by different standards are subjected to
huge deviations, which gives a big challenge to select the right S/N curve based on the design
detail. Therefore, Dong et al. proposed the structural stress-based master S/N curve in terms
of the structure stress rather than the nominal stress (Dong, 2021).

5. Research gaps and discussions
The above-mentioned investigations invariably suggest that the main driving force for the
vibration fatigue of railway bogie is the short-pitch irregularities-induced high frequency
vibration. Whereas the current design method is still based on the quasi-static method and
neglects the high frequency vibration-induced mode resonance in the structure. The
methodologies used to assess the fatigue damage of structure could be considered as a

Figure 20.
The non-Gaussian TB
method together with

the time domain
method for the case of a
non-Gaussian loading
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postprocess procedure for dynamic stress and focus on improving the assessment accuracy
of fatigue damage for a given loading condition. The system dynamics and the fatigue
strength assessment are not coupled and are considered as separated fields. It is known that
the loading of fatigue strength assessment is the dynamic response of system dynamics.
Therefore, the core of improving the survival probability of vibration fatigue is to develop a
systematic design method coupling the strength of structure and the system dynamics of the
vehicle and track system, so as to achieve a reasonable matching relationship between the
considered components and the service boundary conditions.

5.1 Systematic design methodologies for the vibration fatigue
A systematic designmethodology is needed to account for the contribution of mode vibration
of structure through coupling the system dynamics and the strength on the basis of tradition
design and verification methods. Figure 22 illustrates a suggested design flowchart for the
vibration fatigue. In the quasi-static design phase, the traditional static and fatigue strength
analyses are conduced based on the loads given in the standard, such as EN 13749, UIC 515–
4/615–4 and JIS 4207/4208. This phase is used to demonstrate the satisfaction of current
design codes based on the simulation of the FE model of interested component, which
neglects the real operating conditions. Therefore, a dynamic design phase is suggested to
consider the typical vibration conditions, in which a vibration spectrum obtained through
either field tests or numerical simulations is considered as an input for a vibrationmodel. This
vibration model could be a single component or the whole vehicle neglecting the wheel/rail
contact based on the finite element method or rigid/flexible coupled theory. The identified
week point is considered as the dynamic week point since the contribution of mode vibration
is taken into consideration which could lead to different week points. The week points
identified in both quasi-static and dynamic phases should be treated carefully for the design
of vibration fatigue. Another important aspect of this phase is to evaluate the contribution of
vibration mode based on the typical vibration spectrum, where the critical geometry
parameters could be adjusted to achieve a reasonable modal matching from the vibration and
fatigue damage point of view. In the third phase, a more comprehensive model of vehicle/
track coupled dynamics based on the rigid/flexible coupling theory is needed to simulate all
possible service conditions for rail vehicle, so as to obtain the characteristic load spectrum of

Model Expression

Basquin logN ¼ A−B logΔσ
Stromeyer logN ¼ A−B logðΔσ −Δσ0Þ
Palmgren logðN þ DÞ ¼ A−B logðΔσ −Δσ0Þ
Weibull logðN þ DÞ ¼ A−B logððΔσ −Δσ0Þ=ðΔσst −ΔσÞÞ
St€ussi logN ¼ A−B logððΔσ −Δσ0Þ=ðΔσst −ΔσÞÞ
Bastenaire ðlogN −BÞððΔσ −Δσ0ÞÞ ¼ A exp½−CððΔσ −Δσ0ÞÞ�
Spindel–Haibach

log

	
N

N0



¼ A logðΔσ=Δσ0Þ−B logðΔσ=Δσ0Þþ

þBfð1=αÞlog½1þ ðΔσ=Δσ0Þ−2a�g
Castillo–Canteli logðN=N0Þ ¼ λþð−log ð1− pÞβÞ

logðΔσ=Δσ0Þ
Kohout–Vechet

log
�

Δσ
Δσ∞

�
¼ log

�
NþN1

NþN1

�b
Pascual–Meeker logN ¼ A−BlogðΔσ −Δσ0Þ
Source(s): Castillo and Fern�andez-Canteli (2009)

Table 7.
Typical S–N curve
models
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Figure 21.
S–N curves defined in
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the considered region. This can further facilitate the compilation of the stress spectrum of
interested points, thereby the fatigue damage estimation and fatigue life prediction. To obtain
a reasonable estimation, the S/N curve and fatigue damage should be selected carefully and
the degradation process of loading and material properties also should be taken into
consideration. This framework aims to integrate the system dynamics into the strength
design of interested components so as to consider the contribution of vibrationmode, which is
expected to improve the survival probability of vibration fatigue.

5.2 Characterization of typical vibration spectrum of wheel/rail for railway bogie
The design of vibration fatigue should be based on the understanding of typical loads arising
from coupling subsystems of railway bogie, including the wheel/rail interaction, traction and
braking and aerodynamics, as well as loads from the car body. The wheel/rail interaction
serves as the basic input for rail vehicles, it is thus desirable to determine the features of
coupled vibration of wheel/rail considering different track properties. The dominating
frequency bands, including P2 force and other dominating frequencies contributing to the
formation of rail corrugation and wheel polygonal wear, should be treated carefully in the
modal matching. Wu et al. summarized the typical wheel/rail coupled vibration modes of rail
vehicles in the vertical direction (Wu et al., 2023), whereas the coupled vibration modes in the
lateral direction are still needed to be further clarified. The axle box vibration spectrum could
be taken as a representative of wheel/rail coupled vibration, and a database for characteristic
vibration spectrums of axle box is thus suggested on the basis of field test measurements.
This could be considered as an input for the random vibration model of railway bogie in the
dynamic design phase. Regarding traction and braking-induced loads, the effects of
mechanical–electrical coupled loads on railway bogie should be taken into consideration,
especially for the high frequency component. For the thin-shell structure in rail vehicle, the
fluid–solid coupling-induced dynamic loads should be taken into consideration through
either simulation of a fluid–solid coupled dynamic model or field tests.
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5.3 Systematic modal matching between the railway bogie and track system
Modal matching is the core of avoiding the vibration fatigue of railway bogie arising from the
wheel/rail high frequency vibration. Theoretically, the natural frequencies of railway bogie
should avoid typical dominating frequency bands ofwheel/rail interaction.Whereas the principle
for determination of the difference between the nature frequency and the excitation frequency still
remains in question. In themechanical vibration, the natural frequency of the system is suggested
to stay away from the frequency range of bandwidth of dominating frequency. This could be still
a big challenge for railway bogie design since the railway bogie is characterized by multi-modes.
The natural frequencies of bogie frame cannot completely avoid all possible exciting frequencies,
which mean that the railway bogie has to withstand the impacts due to the modal vibration
arising from external excitations. A sophistical modal matching criterion is thus needed to
achieve the reasonable matching between the railway bogie and the coupling boundary.

5.4 Fatigue damage assessment for full life cycle of railway bogie
The fatigue damage assessment for railway bogie still shows deviations with respect to the
real operation conditions, although huge efforts have been made. For vibration fatigue, the
failure of interested components usually failed due to the structural resonance at a relatively
high frequency range. Whereas the definition of S/N curve in the current standard neglects
the influence of loading frequency and few of investigations address the frequency effects of
S/N curve for railway bogie material. Although a number of fatigue damage assessment
models have been developed based on different considerations, the linear Palmgren–Miner
model is still a widely used model in the application due to the features of simplicity and
convenient. For the frequency domain method, a well-validated model should be established
to deal with the non-Gaussian and non-stationary signal in the railway. The load spectrum
definition is essential for fatigue damage assessment. In the railway, thewheel/rail interaction
is subjected to a degradation process due to the formation of uneven wear on the wheel and
railhead surfaces, thereby the evolution of loading for railway bogie. For the full life cycle
fatigue damage assessment, the degradation process in the load spectrum has to be
addressed in the load definition, especially the evolution process arising from wheel OOR. In
addition, it is suggested that the fatiguemechanism and damagemechanism under resonance
conditions should be further studied and expounded, which could facilitate to improve the
structural design so as to reduce the structural resonance-induced fatigue failure.

5.5 Mitigation of wheel/rail high frequency vibration
The vibration fatigue of railway bogie is mainly caused by the wheel/rail high frequency
vibration. It is thus desirable to study methodologies to reduce the wheel/rail high frequency
vibration-induced impacts, such as suppression of formation of wheel polygonal wear and
rail corrugation, a reasonable limit value for the short-pitch irregularities and vibration
reduction for high frequency vibration transmission.

6. Conclusions
The vibration fatigue of railway bogie has been considered the main concern of railway
operators due to its highly adverse influences. This paper deals with the wheel/rail high
frequency vibration-induced vibration fatigue in the railway bogie, mainly focusing on the
characteristics of wheel/rail high frequency vibration, high frequency vibration-induced
vibration fatigue failures in railway bogie, and themethodologies used to assess the vibration
fatigue-induced fatigue damage, then the research gaps have been further discussed. This
review is expected to explore the vibration fatigue of railway bogie and facilitate the
development of the forward design methodology of vibration fatigue for railway bogie.
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