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Abstract

Purpose – The paper aims to solve the problem of personnel intrusion identification within the limits of high-
speed railways. It adopts the fusion method of millimeter wave radar and camera to improve the accuracy of
object recognition in dark and harsh weather conditions.
Design/methodology/approach – This paper adopts the fusion strategy of radar and camera linkage to
achieve focus amplification of long-distance targets and solves the problem of low illumination by laser light
filling of the focus point. In order to improve the recognition effect, this paper adopts the YOLOv8 algorithm for
multi-scale target recognition. In addition, for the image distortion caused by bad weather, this paper proposes
a linkage and tracking fusion strategy to output the correct alarm results.
Findings – Simulated intrusion tests show that the proposed method can effectively detect human intrusion
within 0–200 m during the day and night in sunny weather and can achieve more than 80% recognition
accuracy for extreme severe weather conditions.
Originality/value – (1) The authors propose a personnel intrusion monitoring scheme based on the fusion of
millimeter wave radar and camera, achieving all-weather intrusion monitoring; (2) The authors propose a new
multi-level fusion algorithm based on linkage and tracking to achieve intrusion target monitoring under
adverse weather conditions; (3) The authors have conducted a large number of innovative simulation
experiments to verify the effectiveness of the method proposed in this article.

Keywords High-speed rail perimeter, Personnel invasion, Object detection, All-weather, Radar-camera fusion

Paper type Research paper

1. Introduction
The 20th National Congress of the Communist Party of China explicitly stated the need to
improve the capacity of disaster prevention, mitigation and relief, and the handling of
emergencies, dangers and public emergencies regarding the aspect of social stability. In the
field of railway transportation, China has successfully established the most advanced high-
speed rail network globally. By the end of 2022, the operational mileage of high-speed
railways has reached 42,000 kilometers, with passenger transportation exceeding 25.9bn
individuals over the past decade. Consequently, the safety of high-speed rail operations
constitutes a pivotal component in safeguarding national security and social stability.

“The Regulations on Security and Protection Management of High-Speed Railways”
(Measures for the Administration of High-speed Railway Safety Protection, 2020) came into
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effect on July 1, 2020, requiring railway transport enterprises to install perimeter intrusion
alarm systems in key sections along high-speed railway lines, such as bridgeheads, tunnel
entrances, and track bed areas, where access is relatively easy. Due to the diverse and
changeable climate types, intricate terrain along railway lines, and the subjectivemalintent of
individuals, uncontrollable risk points exist along the railway lines, resulting in occasional
perimeter intrusions Despite employing multiple technological measures for high-speed
railway perimeter protection, single technologies still suffer from issues such as high rate of
false positives and false negatives, and high comprehensive costs, leading to limitations in
their application. Therefore, it is imperative to conduct research on high-speed railway
perimeter intrusion alarm front-end monitoring technology that integrates multiple sensor
technologies, specifically tailored to typical intrusion scenarios in high-speed railways.

In recent years, railwaymanagement authorities at home and abroad have been arranging
train protection and alarm systems. The annual report published by the European Union
Railway Agency in 2022 (European Union Agency for Railways, 2022) revealed that in
railway systems across Germany, Spain, Italy, Luxembourg, the Netherlands, and Romania,
more than 90% of the tracks are equipped with the highest-level train protection systems,
including warning, automatic stopping, and train speed supervision. In Japan, the
Shinkansen (bullet train) system has developed a computer-assisted traffic control system
(Hachiga, 1993) to ensure the safety of train operations, which includes monitoring and
alerting of foreign objects on the tracks, and stopping. China has also placed a high priority on
railway operational safety and has made initial progress in establishing disaster monitoring
systems and perimeter intrusion alarm systems (China National Railway Group Co., LTD,
2015). However, the effectiveness of perimeter intrusion monitoring sensor solutions still
faces challenges under adverse weather conditions.

High-speed railway operation security is related to billions of people’s safety of their lives
and properties. Currently, most of the intrusion detection methods of railway lines rely on
vision. However, due to the complexity of railway environment, the vision-based approach
faces the following problems: firstly, the classes of targets are diverse, including not only
people and animals, but also large and small obstacles. Secondly, the operation environment
is complex, wind, rain, snow, fog and other bad weather conditions occur from time to time,
resulting in the poor performance of the existing vision-based detection approach. Thirdly,
vision-based detection approach is usually unable to accurately identify targets at low
illumination and far distance. Therefore, we adopt the radar and vision fusion to improve the
accuracy of target detection. In order to deal with the detection of small targets, we adopt the
fusion strategy of radar and camera linkage to focus and amplify long-distance targets, and
solve the problem of low illumination by filling laser light on the focus point. In order to
improve the recognition effect, we use the YOLOv8 algorithm for multi-scale target
recognition. In addition, for the image distortion caused by badweather, we propose a linkage
and tracking fusion strategy to output the correct alarm results. Simulated intrusion tests
show that the proposed method can effectively detect human intrusion within 0–200 m
during the day and night in sunny weather, and can achieve more than 80% recognition
accuracy under extreme severe weather conditions.

The main contributions of this paper can be summarized in four aspects:

(1) Introduce a personnel intrusion monitoring method based on the fusion of millimeter-
wave radar and cameras, enabling round-the-clock intrusion detection.

(2) Propose a multi-level fusion algorithm based on a linkage and tracking strategy to
achieve intrusion target monitoring under adverse weather conditions.

(3) Conduct extensive on-site simulation experiments to validate the effectiveness of the
methods proposed in this paper.
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The remainder of this paper is organized as follows: In Section 2, we provide an introduction
of the relevant background, including the conventional millimeter-wave radar processing
procedures and an overview of target detection. In Section 3, we present the algorithms
proposed in this paper. In Section 4, we describe the radar-camera linkage experiments and
the training of the model. Section 5 provides a detailed description of the testing methods and
includes a wide range of experiments. In Section 6, we conclude this paper and discuss future
prospects.

2. Related work
Both domestic and international research institutions have conducted studies on various
sensor fusion technologies regarding perimeter intrusion detectionmethods (Mockel, Scherer,
& Schuster, 2003; Wang, Yu, Wu, Li, & Li, 2021; Garcia-Dominguez et al., 2008). However,
challenges persist, including lowmonitoring accuracy under adverse weather conditions and
the inability to recognize small distant targets. Currently, for mobile target detection, a
popular approach involves combining sensors such as cameras, millimeter-wave radar, and
lidar. Cameras can precisely measure edges, colors, and brightness and can classify and
locate objects on image plane. Lidar offers high positioning accuracy, while millimeter-wave
radar can operate effectively under adverse weather conditions. In addition to the inherent
characteristics of individual sensors, the method of fusing multiple sensors also significantly
impacts the final detection performance. Previous research has designed various fusion
strategies for cameras, millimeter-wave radar, and lidar. One fusion method (Han, Wang, Lu,
& Zhao, 2017) combines lidar and cameras by projecting lidar point clouds onto images by
way of cross-calibration, generating sparse depth images for classification and recognition.
Another approach involves using image detection algorithms to create a series of detection
boxes and then projecting a series of 3D pyramids generating by detection boxes into 3D
point cloud space to facilitate recognition (Wang& Jia, 2019)Moreover, in scenarios with poor
visibility or lighting conditions, Shuai etc. (Shuai et al., 2021) explored fusion methods for
millimeter-wave radar and cameras, significantly improving detection capabilities in low-
light scenes. Recently, Chen, Zhang, Wang, Wang, and Zhao (2023) investigated a general
fusion framework for millimeter-wave radar, lidar, and cameras in the field of advanced
driving assistance system and achieved favorable target detection results on publicly
available multi-source data fusion datasets. However, camera and radar fusion heavily rely
on pre-training data and require a substantial amount of manually labeled intrusion data to
train models effectively. Existing training datasets may not fully reflect real-world railway
scenarios.

In recent years, there has been extensive research on fusion algorithms of millimeter-wave
radar and cameras in the field of advanced driver assistance systems (ADAS). Based on the
levels of fusion and substance, these algorithms can be categorized into threemain types (Wei
et al., 2022): data-level fusion, feature-level fusion, and decision-level fusion. Decision-level
fusion involves the independent recognition of targets by two different sensors, acquiring the
information of target and subsequently fusing the detection results from different sensors.
Feature-level fusion typically projects the radar features onto the corresponding 2D image
plane, thereby further enhancing the recognition performance between modes. Data-level
fusion initially generates regions of interest (ROIs) based on radar points and subsequently
employs feature extractors and classifiers within ROIs to detect targets.

Zhang, Zhou, Qiu, Huang, and Li (2019) proposed an obstacle recognition algorithm that
combines millimeter-wave radar and cameras. Initially, the algorithm utilizes millimeter-
wave radar for target localization. Then, through the coordinate transformation of the
camera, the ROI of the target in the image is obtained, followed by object recognition. Yao,
Wang, and Qian (2021) employed a multi-layer perceptron model. The camera and radar
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simultaneously detects targets, then the detection results of camera are associated with radar
data. Lukas, Philipp, Jason, andDidier (2022) introduced a novel fusion point pruningmethod,
which automatically finds the optimal fusion point for radar and image features within a
neural network structure. Liu and Liu (2021) proposed a three-level fusion architecture that
includes sensor data selection, sensor data association, and target trajectory prediction.

While the aforementioned algorithms have shown promising experimental results in the
field of autonomous driving assistance system, the detection distance of railway scenarios is
longer than that of automobiles, and it is necessary to study fusion detection algorithms for
longer distances.

The fusion algorithmproposed in this paper combinesmillimeter-wave radar and cameras
to address the problem of long-distance detection by leveraging the millimeter-wave radar to
drive the dome camera. Furthermore, it achieves target recognition under low-light
conditions by applying supplemental lighting within a small area around the target.
Additionally, to tackle distortion of data captured by the camera in adverse weather
conditions, this method utilizes a fusion evaluation strategy based on radar-camera linkage
and radar tracking. This strategy effectively ensures precise target identification under
adverse weather conditions.

3. Method design
In this section, we will primarily introduce the fusion method of millimeter-wave radar and
cameras, as well as the overall structure of the alarm system.

3.1 Overall architecture
Railway perimeter intrusion protection requires all-weather and all-time monitoring of the
railway perimeter, regardless of weather and adverse environmental factors. Thewavelength
of millimeter-wave radar reaches the millimeters level, while the length of rain, snow, and
dust is shorter than the wavelength of millimeter-wave radar which makes it a perception
sensor that remains unaffected by adverse weather conditions. However, millimeter-wave
radar data is inherently sparse. On the other hand, cameras can provide the contours and
colors of the scene and the target but exhibit low accuracy in adverse weather conditions.
Therefore, the fusion of millimeter-wave radar and cameras realizes the complementary
advantages of sensor detection. The fusion architecture of millimeter-wave radar and
cameras is illustrated in Figure 1.

Radar and camera collect target data. Radar data includes target position, velocity, and
spatial coordinates, while video information includes video stream video. Cameras decode the
collected video streams. Subsequently, each sensor, relying on its unique sensor technology,
generates distinct feature information for the detected targets. This information is then
integrated in the same world coordinate system to identify whether the recognized objects by
both radar and camera sensors are the same. Following this integration, demo cameras are
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Figure 1.
Fusion architecture of
millimeter-wave radar
and cameras
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employed to focus, magnify, and supply illumination for target localization. Subsequently,
intelligent recognition algorithms and fusion algorithms are applied to output the alarm
results.

Regarding the fusion of millimeter-wave radar and cameras, firstly, data-level fusion is
applied to combine radar data with camera video, enhancing both visual recognition and
localization. Secondly, on the basis of improving video target recognition, cameras may still
struggle to identify objects at night and under adverse weather conditions. In such scenarios,
the paper utilizes target tracking algorithms of millimeter-wave radar to facilitate object
recognition.

3.2 The radar-camera linkage method
The linkage detection method involving millimeter-wave radar and spherical cameras
operates as follows: millimeter-wave radar obtains data such as distance, angle, and velocity
of the target. Subsequently, the spherical camera system swiftly locates the target and the
area where the target is located is magnified and focused, realizing the clear display of long-
distance small targets.

In this context, the coordinate system of millimeter-wave radar is the polar coordinate
system X0O0Y0, and the coordinate system of the spherical camera is the world coordinate
system OXYZ. Initially, based on the target information acquired by the millimeter-wave
radar, including the distance D and angle β, the coordinates of the target in the radar’s polar
coordinate system are transformed into the world coordinate system. This coordinate
transformation is illustrated in Figure 2.

Here, the radar is located directly above the camera, and the center of the camera’s field of
view is at a height H relative to the ground. The distance between the center of the radar
transmitting face and the center of the camera’s field of view is h. To determine the camera’s
position, the target’s distance d, horizontal angle β, and pitch angle α are required. Among
these parameters, H, h, D, and β are known parameters before the camera linkage, while the
target distance d and pitch angle α are the parameters to be solved.

Figure 2.
The principle of radar
and camera linkage
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First, the projection r of the target distance in the horizontal plane is calculated by formula (1)

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2 � ðH þ hÞ2

q
(1)

The target distance d of the spherical camera can be obtained using the coordinate
transformation formula (2).

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ H 2

p
(2)

The pitch angle α in the spherical camera coordinate system can be calculated by formula (3):

α ¼ arctanðH=rÞ (3)

The premise of the above model assumes an ideal scenario where there is no angular
deviation between the radar normal X0 axis and the spherical camera’s 0-degree X-axis. In
practical installations, if there is an angular deviation between the radar normal X0 axis and
the spherical camera’s 0-degree X-axis, then this situation needs to be considered in the
coordinate transformation.

Suppose there is an angular difference in the horizontal direction between the radar
normal X0 axis and the spherical camera’s X0 axis and an angular difference in the pitch
direction. In that case, the final target angle in the spherical camera coordinates would be
formula (4) and (5):

βc ¼ β � Δβ (4)

αc ¼ arctanðH=rÞ � Δα (5)

From this, the parameters required for target localization by the camera can be obtained,
enabling the functionality of radar-camera linkage positioning.

3.3 Video intelligent recognition algorithm
For the video intelligent recognition method applied to targets after radar-camera linkage,
this paper introduces an improved version of the YOLOv8 algorithm (Dillon, Jordan,
Jacqueline, & Ahmad, 2023). This algorithm can directly extract features within the network
to predict object categories and positions without the need for candidate bounding box
extraction. Furthermore, this algorithm enhances recognition performance by adding
receptive field block (RFB) modules according to the multi-scale imaging characteristics after
linkage. These modules not only reduce information loss but also lower network parameters,
thus improving the training and inference speed of the network. The structure diagram of the
RFB module is depicted in Figure 3.

The RFBmodule is a multi-branch convolutional module, where each branch corresponds
to a different receptive field. Features from different convolutions and outputs are cascaded
in the channel dimension, followed by convolutional operations to integrate and adjust the
number of channels, resulting in rich feature information. The smaller convolution kernels
have a smaller receptive field, catering to the requirements of small-scale targets, thus
enabling the network to detect small-sized objects more effectively, while the larger
convolution kernels have a larger receptive field, meeting the receptive field requirements of
larger-scale targets. This allows the network to learn features of the large and small targets
simultaneously during the learning process. Thus, the feature information in the decoder’s
output is rich for both small and large targets. The detection branch can then regress the
center points of targets of different scales, thereby enhancing the detection rate for targets of
different scales.
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3.4 The target tracking and fusion algorithm
Based on the acquired radar target information and video data, this paper presents a linkage
and tracking fusion decision strategy. This method is capable of making full use of radar
informationwhen visual perception is hindered, such as heavy fog. It achieves effective target
detection while reducing false positives. The logical diagram of the algorithm is illustrated in
Figure 4.

This algorithm begins by acquiring radar sensor data using the SDK. Simultaneously, it
conducts video intelligent analysis. When the radar detects a target, the fusion algorithm
retrieves video processing data and judges whether the video intelligent analysis has
identified the target. Upon detection of the target by the video intelligent analysis, the target
information is transmitted to the fusion algorithm through the Redis component. The fusion
algorithm, relying on the target information, continuously tracks and judges the target.When
the target can be continuously tracked, the algorithm will recognize that there is a target
intrusion and give an alarm. Due to the sensitivity of visible light cameras to adverse weather
conditions, such as rain and fog, clear video images cannot be obtained in such weather
conditions. This limitation results in the inability of video recognition under rainy or foggy

Figure 3.
Structure of the RFB

module

Figure 4.
The target tracking

and fusion algorithm
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weather conditions. Therefore, when the radar can continuously track a target and behavior
recognition based on the tracked target indicates human intrusion, the algorithm outputs an
alarm result.

In order to solve the problem thatmillimeter-wave radar is easy to produce false alarms for
plant shaking, the feature processing module is added to the fusion strategy to remove false
alarms. Firstly, the interference information generated by plant shaking and the information
of intruders walking along the fence were collected, and their characteristics were analyzed.
Secondly, a new defense zone was established in the vegetation disturbance area, and the
standard deviation of the moving distance of the alarm point in the world coordinate system
was calculated in this area, and the human invasion and vegetation interference were
distinguished according to the different standard deviations.

4. Test and train
In this section, we conducted radar-camera linkage experiments and model training in the
actual scenario. The test was conducted at the testing grounds of the East Sub-Institute of the
China Academy of Railway Sciences, which has a total length of 212 m. The millimeter-wave
radar and video monitoring equipment were installed on a pillar at one end of the testing
grounds. The pillar extended upwards with a crossbar, and the equipment was installed as a
whole using brackets and clamps on the crossbar, as depicted in Figure 5. Additionally, a rain
simulation system and a fog simulation system were installed above to simulate rain and fog
conditions in the testing area of the millimeter-wave radar equipment.

The protected area for the video þ millimeter-wave radar covers a strip-shaped region
with a length of approximately 200 m and a width of about 10 m. It encompasses the double-
track railway on both the left and right sides. The near-end boundary starts at the beginning
of the railway tracks, with the left boundary along the edge of the track bed and the right
boundary marked by a protective fence, as illustrated in Figure 6.

4.1 Radar-camera linkage calibration experiment
Firstly, the camera’s installation height H was obtained by the measuring tape as 2.8 m, and
the distance h between the millimeter-wave radar and the camera was measured as 0.16 m.
Secondly, as shown in Figure 7, as personnel moved within the protected area, the millimeter-
wave radarwas able to determine the position of amoving target as 74.57m,with the azimuth
angle of themillimeter-wave radarmeasured as�4.728. The horizontal and pitch angles of the

Figure 5.
Installation diagram
for video þ millimeter-
wave radar
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moving ball camera were determined to be �8.748 and �7.678, respectively. Using the
formula from Section 3.2, the deviation angles αc and βc were calculated as 3.58 and 2.78,
respectively.

4.2 Video intelligent recognition training
This study employed 4585 real railway scene images as training data, with 3668 images used
for training and 917 images for testing. The training experiments were conducted on an
RTX3090Ti GPU, utilizing Pytorch as the deep learning framework and the Adam optimizer
for training. The batch size was set to 12, the number of training epochs was set to 30, and the
initial learning rate was set to 0.0001. The loss function used was the same as the original
model. The training results are depicted in Figure 8.

5. Real-world scenario testing
In this section, we conducted numerous experiments to demonstrate the performance and
advantages of the proposed algorithm in this paper. The tests covered anti-interference
performance to typical interference factors during both daytime and nighttime
periods, performance in recognizing typical intrusion behaviors, and intrusion behavior
recognition performance under the influence of various interference factors.

The typical interference tests for video þ millimeter-wave radar include four categories:
rain interference, fog interference, light and shadow interference, and vegetation interference,
with a total of 166 tests conducted, as shown in Table 1.

The intrusion tests included two categories: individuals crossing the railway tracks and
walking along the inner edge of the fence, with a total of 83 tests conducted. Additionally,
intrusion tests under rain, fog, light and shadow interference, and vegetation interference
conditions were conducted a total of 392 times. The details of the test are shown in Table 2.

Figure 6.
Layout of the
protected area

Figure 7.
Radar-camera linkage
calibration experiment
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Through the interference tests, it was observed that under rain, fog, light and shadow,
and vegetation interference conditions, a total of 30 false alarms were generated. Among
these, vegetation interference resulted in 18 false alarms, primarily due to the presence
of abundant vegetation in the test area. Heavy rain or torrential rain led to 6 false alarms,
while extremely thick fog also resulted in 6 false alarms. Light and shadow interference did
not produce any false alarms.

The intrusion tests show that under sunny weather, except for occasional false negatives
caused by the obstruction of tower cranes and small vehicles within the protected area, the
proposed method achieved zero false negatives. Under light rain, moderate rain, and heavy
rain conditions, there were a few false negatives, and as the intensity of rainfall increased, the
number of false negatives gradually rose, with an overall false negative rate of less than 20%.
Under fog, heavy fog, and extremely heavy fog conditions, there were even fewer false
negatives compared to rainfall, with an overall false negative rate of less than 15%.

The results of false negatives were summarized and it shows that when both interference
and intrusion occurred simultaneously, there will be a false positive before the positive report,
and this test method categorized such cases as false negative. Another reason for false

Interference factors Times

Rain 10
Fog 35
Vegetation 17
Light and Shadow 10
Light and Shadow þ Vegetation 12
Fog þ Vegetation 30
Rain þ Vegetation 20
Rain þ Light and Shadow 10
Rain þ Light and Shadow þ Vegetation 12
Fog þ Light and Shadow þ Vegetation 10
Total 166

Source(s): Authors own work

Figure 8.
YOLOv8 training
results

Table 1.
Test times of
video þ millimeter-
wave radar
interference
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negatives was the randomness of simulated intruder activities. When intruders had limited
movement within the protected area and quickly exited the area, it resulted in false negatives.
This issue can be addressed by adjusting tracking threshold based on the specific on-site
conditions.

Furthermore, under extreme heavy rainfall conditions, the rain curtain has an attenuating
effect on themillimeter-wave radar signal, and the video cannot capture clear images, leading
to the inability to recognize distant crossings. Fog and lighting conditions have a relatively
small impact on the recognition of video þ millimeter-wave radar. The results of the
simulated intrusion test are shown in Figure 9.

In addition, test was conducted on an actual operational line, and the results were obtained
by monitoring the route for one month. A total of 259 positive reports were generated, with
zero false negatives and zero false positives. The positive reports were triggered by the
presence of patrol personnel and maintenance operations on the route. The alarm images are
shown in Figure 10.

6. Conclusion
This paper presents a personnel intrusion detection method for railway perimeter security.
The method proposes a combination of video and millimeter-wave radar equipment and
designs a linkage and tracking fusion strategy based on this scheme. Deployment and testing
experiments were conducted, and the results show:

(1) The video þ millimeter-wave radar technology solution can realize personnel
intrusion detection in the railway perimeter domain, with an effective monitoring
range of up to 200 m.

(2) Tests under extreme adverse weather conditions revealed that the videoþmillimeter-
wave radar equipment and algorithm are sensitive to heavy rainfall but less affected
by fog.

Intrusion
behavior Distance

Sunny
weather

Rainy
weather Fog

Light and
shadow

interference
Vegetation
interference Total

Crossing the
Track Laterally

50m 10 / / / 11 21

Crossing the
Track Laterally

100m 11 / / 13 10 34

Crossing the
Track Laterally

150m 10 32 25 10 10 87

Crossing the
Track Laterally

200m 10 30 32 10 10 92

Walking Along
the Fence

50m 12 / / 10 22

Walking Along
the Fence

100m 10 / / 11 10 31

Walking Along
the Fence

150m 10 31 34 10 10 95

Walking Along
the Fence

200m 10 30 31 12 10 93

Total 83 123 122 66 81 475

Source(s): Authors own work

Table 2.
Test times for

video þ millimeter-
wave radar intrusion
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(3) Tests on the main railway line demonstrated that the proposed algorithm meets the
requirements for on-site applications.

Future work will focus on three aspects: the first is to continue to develop feature-level fusion
algorithms to improve algorithm performance; the second is to conduct research on
interference filtering for adverse environments and vegetation; and the third is to conduct
tests for different types of risk points to meet the requirements of personnel intrusion
detection in railway scenarios.

Figure 9.
Simulated intrusion
effect image

Figure 10.
Positive line intrusion
test image
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