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Abstract

Purpose – This study aims to reduce the redundant weight of the anti-roll torsion bar brought by the
traditional empirical design and improving its strength and stiffness.
Design/methodology/approach – Based on the finite element approach coupled with the improved beluga
whale optimization (IBWO) algorithm, a collaborative optimization method is suggested to optimize the design
of the anti-roll torsion bar structure andweight. The dimensions andmaterial properties of the torsion barwere
defined as random variables, and the torsion bar’s mass and strength were investigated using finite elements.
Then, chaotic mapping and differential evolution (DE) operators are introduced to improve the beluga whale
optimization (BWO) algorithm and run case studies.
Findings – The findings demonstrate that the IBWO has superior solution set distribution uniformity,
convergence speed, solution correctness and stability than the BWO. The IBWO algorithm is used to optimize
the anti-roll torsion bar design. The error between the optimization and finite element simulation results was
less than 1%. The weight of the optimized anti-roll torsion bar was lessened by 4%, the maximum stress was
reduced by 35% and the stiffness was increased by 1.9%.
Originality/value –The study provides amethodological reference for the simulation optimization process of
the lateral anti-roll torsion bar.
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1. Introduction
In order to ensure the comfort of passengers and the smoothness of vehicle operation, most of
the rail vehicles use the softer two-system pendant suspension system, but the large
flexibility of the two-system pendant suspension system also brings the problem of
insufficient vehicle anti-roll stiffness. In order to solve the above problems, the addition of an
anti-roll torsion bar system can be used.

As an important suspension component of a rail vehicle, the accurate calculation of the
anti-roll stiffness value of the anti-roll torsion bar system is an important guarantee tomake it
meet the design requirements. In the traditional design process of anti-roll torsion bar, the
main calculation method is the combination of finite element simulation calculation and
theoretical calculation. However, the existing theoretical calculation method has the
disadvantage of insufficient accuracy, and the design redundancy is large to ensure safety
and increase the weight of anti-roll torsion bar (Zeng, Chi, & Dai, 2023).

At present, relevant scholars for railway vehicle anti-roll torsion bar stiffness theoretical
calculation method to explore are in the initial stage, the proposed calculation method is not
comprehensive enough to consider the factors, the results of the calculation and the actual value of
the error is larger.DongandShang (2020) derived the stiffness equation of the anti-roll torsionbar in
detail. In the optimization process, finite element method is utilized to calculate the stiffness and
strength of the anti-rolling torsion bar under two loads, while topology optimization and parametric
analysis are carried out for the torsion bar arm. The outcomes demonstrate that the mass of the
optimized structurewas decreased by 12.4%whilemaintaining the required stiffness and strength.
The efficacy of combining finite element analysis (FEA) with topology-optimized design and
dimensional-optimized design techniqueswasdemonstrated. Shu andLiu (2017) established the rail
vehicle anti-rolling torsion bar stiffness calculationmodel. Duan andYuan (2019) propose amethod
for evaluating structures’ static and fatigue strengths based on the theory of elasticity mechanics,
which is simple and easy to parameterize. To satisfy the design requirements of the structure, Niu,
Wang, Liao, Zhu, Zhang, andKeshtegar (2020) constructed a fatigue reliability analysis and optimal
design frameworkof thebladeddiskstructure incorporatingmultivariateuncertaintiesbasedon the
finite element method. The findings indicate that the optimization method based on the Kriging
agent model is the best and significantly improves the reliability of the bladed disk structure.

The multi-objective optimization algorithm provides an effective means for the
lightweight design of mechanical structures by considering the requirements and
constraints of strength and stiffness while realizing the lightweighting of mechanical
structures (Shanmugam & Sirisha, 2022, Babajamali et al., 2022). Mi, Gu, Zhang, Liu, Zhang,
and Nie (2016) proposed a kriging model-based collaborative optimization method to achieve
frame lightweighting without the expense of fatigue life and strength. Li, Sheng, Zhi, and Li
(2019) optimized the volume and stiffness of the anti-roll torsion bar using the Modified Non-
dominated Sorting Genetic Algorithm (MNSGA)-III multi-objective algorithm. The optimized
anti-roll torsion bar’s stiffness rose by 3.3% while the volume was reduced by 1.6%, proving
the effectiveness of the multi-objective optimization algorithm. Zhi, Wang, Chen, and Sheng
(2022) constructed a multi-objective fuzzy optimization design model of the anti-roll torsion
bar considering variable stiffness and strength reliability constraints. Through the example
verification, the dependability of the anti-roll torsion bar is improved by 14% and the weight
of the torsion bar is reduced by 0.6% during the life cycle. The effectiveness of the proposed
method is verified. For the side-rolling torsion bar, Dong and Li (2015) offers a multi-response
robust optimization design method based on a stochastic model. The results show that the
optimized anti-roll bar has reduced weight, increased stiffness and fatigue strength while
improving the anti-roll bar’s anti-torsion capability. Zhang, Li, Bai, and Wang (2023)
determined the input variables of the optimizationmodel of the bogie frame structure through
sensitivity analysis and carried out multi-objective optimization of the bogie frame using the
improved Non-dominated Sorting Genetic Algorithm (NSGA)-II algorithm, and after
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optimization, the maximum equivalent force of the bogie frame was reduced and its own
weight was reduced, so as to achieve the lightweighting of the bogie frame.

Most researchers design anti-roll torsion bars with only FEA in mind or just use
size-optimization algorithms. Zeng, Song, Li, Yan, and You (2021) optimized the turbine disk
structure by intelligent optimization algorithm to decrease the mass of turbine disk. Zhang,
Du, Mao, Meng, and Zhu (2022) suggested a tractor transmission case optimizationmethod to
achieve lightweight with the case meeting the strength and stiffness requirements. In 2022,
Zhong, Li, and Meng (2022) introduced a meta-heuristic algorithm based on the behavior of
the beluga whale, called the beluga whale optimization (BWO) algorithm. The results
demonstrate that BWO performs well in single-objective optimization when compared to 15
other algorithms. In four engineering situations, BWO is adept at resolving complex
engineering problems. However, the beluga optimization algorithm still suffers from
problems such as uneven population distribution, poor spatial search ability and prematurely
falling into local optimality. Chen, Zhang, and Wang (2023) address the shortcomings of the
standard beluga optimization algorithm, such as low convergence accuracy and limited
adaptive ability and adopt Fuch chaotic initialization to improve the traversability of the
algorithm’s initialized population, thus enhancing the algorithm’s optimization searching
accuracy and introduce the Fuch chaotic mapping in the development stage to coordinate the
algorithm’s global searching and local searching, which effectively improves the algorithm’s
adaptive ability. Chen, Zheng, Li, Zhang, and Zhu (2023) propose an update elite group
mechanism for the standard BelugaWhale algorithm which has the defects of being prone to
falling into local optimum and losing suboptimal solutions; secondly, in order to enhance the
exploratory ability of the algorithm, a reverse learning strategy is added at the same time.

To address these problems, Logistic chaotic mapping, differential evolution (DE) strategy,
crossover operation and Levy flight strategy are introduced to improve the uniformity and
stability of the solution set distribution of the beluga optimization algorithm, as well as to
enhance the global search and local utilization ability in this paper.

Taking the anti-rollover torsion bar as the research object, its working principle is briefly
introduced and the strength of the torsion bar is analyzed by finite element method. An improved
beluga whale optimization (IBWO) algorithm is proposed and the superiority and effectiveness of
the algorithm is demonstrated througha case study. In order to test the feasibility and effectiveness
of the proposed algorithm in solving the multi-objective optimization problem of anti-roll torsion
bar, themulti-objective optimization algorithm is used to optimize the size of anti-roll torsionbar, so
that the anti-roll torsion bar can realize the lightweight design under the demand of strength and
stiffness, and the optimized torsionbar is simulated andverified.Through the combination of finite
element simulation and multi-objective optimization algorithm, the optimal design size can be
found to avoid the redundant design brought by the traditional design method.

2. Finite element analysis of anti-roll torsion bar
2.1 Calculation of anti-roll stiffness
The anti-roll torsion bar, as depicted in Figure 1, primarily consists of parts such as a torsion
bar, torsion arms, connecting rods and support seats.

In Figure 1, Br is the effective length, F is the connecting rod’s axial force, θ is the side tilt
the vehicle’s body’s angle, L is torsion arm’s length, ζ is the vertical displacement of the rod
and γ is the torsion angle of the torsion bar. The anti-roll stiffness kt of the anti-roll torsion bar
device is determined by dividing the torsional reaction value M of the torsion bar by the side
tilt angle of the vehicle body.

One of the key performance indicators for the bogie, the anti-roll stiffness, is primarily
influenced by the torsion bar’s torsional rigidity. Thus, when other parameters are
disregarded, the anti-roll stiffness can be described as follows:
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i

32Li

(1)

where Li andDi represent the length and diameter of each portion that falls within the torsion
bar’s range of torsional distortion.

2.2 Strength analysis of the torsion bar
The material properties of component of the anti-roll torsion bar are shown in Table 1.

According to theworking principle of Figure 1, the finite elementmodel is also set up as far
as possible in the FEA in accordance with the boundary conditions of the real vehicle; as
shown in Figure 2, fixed constraints are applied to the support seat and vertical loading is
applied to the upper surfaces of the rubber nodes of the connecting rods at both ends,
respectively.In accordance with the relevant technical standard CRH3-350-PS-021, the main
tests for torsion bars are the static load conditions of the ultimate load and the fatigue load
conditions.

Load case I: Maximum stress does not surpass thematerial’s yield strength at the ultimate
static load of 62kN.

Load case II: Maximum stress does not surpass the material’s yield strength under the
37kN fatigue dynamic load.

Figure 3 shows the anti-roll torsion bar’s stress distribution as estimated by FEA. The
torsion bar’smaximal vonMises stress is located at the transition between the torsion bar and
the torsion arm seat in load cases I (a) and II (b) because The transition is affected by a torque

Part name Material
Young’s modulus/

MPa
Density/
kg∙m-3

Poisson’s
ratio σs/MPa σb/MPa

Torsion bar 52CrMoV4 2.113105 7830 0.30 1300 1450
Torsion arm 42CrMo 2.123105 7850 0.28 650 930
Connecting
rod

42CrMo 2.123105 7850 0.28 650 930

Source(s): Authors’ own work

Figure 1.
Working principle of
anti-roll torsion bar

device

Table 1.
Material of anti-roll

torsion bar
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and bending moment. The maximum equivalent stresses are 536.67 MPa and 463.19 MPa,
which are less than the material’s yield limit of 1300 MPa and fatigue limit of 745 MPa,
respectively. Therefore, the torsion bar’s static and fatigue strength complies with the design
specifications.

3. Improved beluga whale optimization algorithm
3.1 Beluga whale optimization (BWO)
The BWO algorithm was inspired by the behavior of beluga whales, including swimming,
feeding and whale falling. The BWO algorithm has an exploration phase, a development
phase and a whale-falling phase. During the optimization process, the whale fall phase is
implemented at the completion of each iteration of the exploration and mining phases.
The steps of the original white whale optimization algorithm are as follows.

Step 1: Initialization

Determine the algorithm parameters, including the population size and the maximum
number of iterations Tmax. Randomly generate the initial positions of all belugas in the
search space.

Step 2: Exploration and exploitation phase

Depending on the balancing factor Bf , each beluga chooses whether to join the exploration
phase or the exploitation phase. If Bf> 0:5, the whale enters the exploration phase of the
beluga is refreshed by equation (2).

Figure 2.
Boundary conditions of
the anti-roll torsion bar

Figure 3.
FEA-derived stress
distribution
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where the current iteration, XTþ1
i;j is the new location, pj is a random number, XT

i;Pj is the
position of the ith beluga whale on pj dimension,XT

i;Pj andX
T
r;P1

are the current positions for ith

and rth beluga whale (r is a randomly selected beluga whale), r1 and r2 are random number
between (0,1). Two randomnumbers r1 and r2 are used to enhance the random operators in the
exploration phase. If Bf< 0:5, then it enters the exploitation control phase, which is updated
using equation (3). Then the fitness value of the new location is calculated and ranked to find
the best result in the current iteration.

XTþ1
i ¼ r3$X

T
best � r4$X

T
i þ2r4$ð1� T=TmaxÞ$LF$

�
XT
r � XT

i

�
(3)

where XT
i and XT

r are current position for the ith beluga whale and a random beluga whale,
XTþ1
i is the new position of the ith beluga whale, XT

best is the best position among beluga
whales, r3 and r4 are random number (0,1). LF is the Levy flight function, calculated as
follows:

LF¼ 0:05$
u$σ

jvj1=β
(4)

σ ¼
 

Γ$ð1þ βÞ$sinðπβ=2Þ
Γ$ðð1þ βÞ=2Þ$β$2ðβ−1Þ=2

!
(5)

where u and v are random integers with normal distribution and β is 1.5.

Step 3: Whale fall phase

Some belugas could pass away and fall into the ocean, and the probability of the whale falling
is calculated at each iteration Wf . Thus, the location of the belugas is updated according to
equation (6).

XTþ1
i ¼ r5$X

T
i � r6$X

T
r þ r7$Xstep (6)

where r5, r6 and r7 are random numbers between (0,1), Xstep is the step size of whale fall
established as:

Xstep ¼ ðub � lbÞ$expð−2Wf $n$T=TmaxÞ (7)

The likelihood of a whale falling is estimated using this model as a linear function:

Wf¼ 0:1� 0:05$T=Tmax (8)

The authors look forward to the development of the BWO multi-objective optimization
algorithm. Insufficient population variety and inadequate spatial search capability are
issues with the multi-objective white whale optimization algorithm that is prone to local
optimum. These issues are addressed in this study. The introduction of logistic chaotic
mapping and the difference variation operator enhances the algorithm’s overall
performance. Besides, in this paper, to expand the search step, the coefficient of 0.05 in
equation (4) is modified to 1.
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3.2 Logistic mapping
In order to improve population variety and provide early candidate solutions, chaotic
mapping is applied. In addition to improving exploration capabilities, chaotic mappings can
also assist optimization algorithms successfully avoid local optimum solutions (Ibrahim,
Elaziz, & Lu, 2018; Wang, Li, Hu, & Yang, 2022; Zhang, Zhou et al., 2022). Two popular
mapping techniques for determining the starting points of optimization algorithms, Logistic
and Tent mapping, are used in this paper to generate initial values. Logistic mapping can be
described as equation (9):

x$ðkþ1Þ ¼ μ$xðkÞ$ð1� xðkÞÞ (9)

where xðkÞ∈ ð0; 1Þand 3:5699 < μ≤4, the system is in chaos.When μ is close to 4, the chaotic
sequence that is created is evenly spaced between 0 and 1, non-converging and non-periodic.
Therefore, the control parameter μ should be set close to 4 (Zhang & Ding, 2021). Logistic
mapping is employed to obtain the xijðkþ1Þ by equation (10).

xij$ðkþ1Þ¼ 4$xijðkÞ$ð1� xijðkÞÞ (10)

where, in accordance with equation, xijðkþ1Þ is converted from the original domain of [0,1] to
a new xij according to equation (11), where ub and lb stand for, respectively, the upper bound
and lower bound of xij.

xij ¼ lbþ xij$ðkþ1Þ$ðub� lbÞ (11)

3.3 Differential evolution
DE strategies and crossover operations were introduced into BWO to generate new
individuals. The differential variation strategy is a special variation strategy for the DE
algorithm that involves scaling and combining the difference vectors of two randomly chosen
individuals in the population to create a new individual. A crossover operation is carried out
after mutation, and individuals are subjected to mutation with a specific probability to create
a crossover population. The mutation and crossover operations are represented by equation
(12) and equation (13), respectively.

Vi;j ¼ xm1;j þ Fðxm2;j � xm3;jÞ;j¼ 1; 2; � � � ;D (12)

ui;j ¼
�
Vi;j; if r≤CR or j ¼ jrand
xi;j; else

�
(13)

whereVi;j stands for the mutant individual,m1,m2 andm3 for the randomly generated serial
numbers for each individual. xi;j represents the variable in the original individual. F is the
scaling factor and is taken as 0.8, CR is the crossover probability and is taken as 0.9, r∈ ½0; 1�,
jrand ∈ ½1;D� and integer number.

The DE factor has benefits such as an easy-to-use algorithm, stable search and a simple
process. In this study, the DE algorithm is used to increase IBWO accuracy while also
guaranteeing the algorithm’s rapid convergence.

3.4 IBWO multi-objective optimization algorithm flowchart and case validation
The flowchart of the IBWO algorithm is illustrated in Figure 4.

Step 1: Input population size n and maximum number of iterations Tmax.

Step 2: Logistic chaotic mapping is introduced and the population is chaotically initialized
using Equation. (10).
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Step 3: Introduce DE strategies and crossover variants and use Equation (13) to generate
new individuals.

Step 4: Determine the best individual and obtain the fitness value based on the objective
function.

Step 5: Calculating Bf andWf according to Equation (8). If the equilibrium factor Bf> 0:5,
the updating mechanism enters the exploration phase and beluga whales are updated in
terms of location through Equation (2). If Bf< 0:5, the update mechanism enters the
exploitation phase, and the position is updated through Equation (3).

Step 6: Firstly, calculate the beluga whale fall probabilityWf during the iteration process;
secondly, perform the position update of beluga whale through Equation (6).

Step 7: the current iteration numberT is greater than themaximum iteration numberTmax,
the algorithm stops, otherwise repeat from Step 5.

The four multi-objective optimization problems (MOP) test functions are solved using the
proposed algorithm and the BWO algorithm. The calculation results are shown in Figure 5.

Figure 4.
Flowchart of the
proposed IBWO
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The results in Figure 5 demonstrate that both the algorithm used in this paper and the
original algorithm produce better Pareto solution sets, but the distribution of individuals
within some intervals is too concentrated in the original algorithm, and there are even no
individuals in some regions. In addition, in order to quantitatively describe the computational
performance of both algorithms, diversity criteria as shown in equation (14), which is
commonly used in multi-objective algorithms for evaluation.

Δ ¼
hf þ hl þ

Pn−1
i¼1

���hi � h
���

hf þ hl þ ðn−1Þh (14)

where hf and hl are the Euclidean distances between the extreme and optimal solutions,

respectively. hi represents the distance between two adjacent points in the optimal solution, h
is the average value of hi and n is the size of the solution set.

Each test function was run 30 times independently to obtain the mean and variance of the
function are obtained in Table 2.

Figure 5.
Calculation results
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Table 2 shows that the IBWOalgorithmdiversitymeans, andvariance is smaller thanBWO,
and the variance is reduced by two orders of magnitude in the ZDT1 and ZDT2 test functions
and by one order of magnitude in the ZDT3 and ZDT4 test functions. This demonstrates that
the IBWO solution set’s uniformity and extensiveness are superior to BWO.

4. IBWO-based torsion bar optimization and verification
4.1 Optimization model building
In this subsection, thematerial uncertainty is considered in theFEAand thematerial’s coefficient
of variation is set to 0.05. Figure 6 depicts the consideration of the four geometric dimensions of
the torsion bar as design variables without changing the dimensions of the torsion arm.

The relevant design codes determine the boundary conditions of the optimized design
variables of the torsion bar, as shown in Table 3.

Random inputs were obtained using a Latin hypercube sampling of 30 groups, and the
finite element outputs were used for quadratic polynomial response surface fitting. f1 is a
function of geometry and mass, and f2 is an approximation function of geometry and
maximum stress.

Test function
BWO IBWO

Average value Variance Average value Variance

ZDT1 0.863 0.0351 0.279 0.000679
ZDT2 0.911 0.0324 0.482 0.000918
ZDT3 1.031 0.00920 0.696 0.000607
ZDT6 0.949 0.00239 0.821 0.000592

Source(s): Authors’ own work

Design variable (mm) D1 D2 D3 R

Upper bound 45.15 40.43 57.54 94.5
Low bound 40.85 36.58 52 85.5

Source(s): Authors’ own work

Table 2.
Comparison of average

value and standard
variance

Table 3.
Bounds of optimization

variables

Figure 6.
Structural diagram of

the torsion bar
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f1ðD1;D2;D3;RÞ¼ 1694:12155þ 13:5093Rþ13:9163D1

�19:1553D2�50:3213D3�0:0373R2

þ0:289D2
1þ1:0213D2

2þ0:8623D2
3

�0:0963R3D1�0:0933R3D2 � 0:0753R3D3

�0:9393D1 3D2 þ 0:9393D1 3D3�0:1233D2 3D3

(15)

f2ðD1;D2;D3;RÞ¼ 87:598857þ 0:2273Rþ2:9063D1

�5:373D2þ0:7323D3�0:00133R2

�0:0423D2
1þ0:2183D2

2þ0:043D2
3

þ0:0083R3D1�0:0173R3D2þ0:0063R3D3

�0:0513D1 3D2�0:013D1 3D3þ0:0083D2 3D3

(16)

The evaluation index complex correlation coefficient r2 test can be used to determine how
well the response surface function fits the response value, and its expression is as equation
(17), whereYi is the calculated value of the response surfacemodel, yi is the calculated value of

ANSYS and Y is the average value of each Yi.

r2¼ 1�
Pm
i¼1

ðYi � yiÞ2

Pm
i¼1

�
Yi � Y

�2 (17)

The equation r21¼ 1 and r22¼ 0:972, shows that the response surface model of mass and
maximum stress fits well and can reflect the relationship with the design variables.

4.2 Optimization process and results
In the case of satisfying the performance requirements such as strength and stiffness, the
structure is optimized to realize the lightweight of the anti-rolling torsion bar. The stiffness of
the anti-rolling torsion bar is 1.58MN $m/rad calculated from equation (1), and the permissible
condition of stiffness is determined by the design specification as 1.58 ± 10%MN $ m/rad.
The stiffness is selected as the constraint, and the objective function is theminimumvalue of the
torsion bar mass and the maximum stress. According to the above analysis, the mathematical
model of torsion bar structure optimization is established as shown in equation (18).

minf1ðD1;D2;D3;RÞ; f2ðD1;D2;D3;RÞ

s:t:

8>>>>>>>>>>>><
>>>>>>>>>>>>:

1:42≤ kt≤1:73

40:85≤D1≤45:15

36:58≤D2≤40:43

52≤D3≤57:54

85:5≤R≤94:5

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

(18)
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The population size is set to 100, and the number of evolutionary generations is set to 300,
taking into account the complexity of the actual situation. Figure 7 displays the obtained
Pareto solution set.

Each point in the figure represents a set of optimal solutions, and the solutions are not
dominated by each other. Due to the conflict between the objectives, the maximum stress of
the structure decreases with increasing mass, and the designer can choose the corresponding
solution according to the difference in focus. Optimization algorithm is used to find the
optimal size of the anti-roll torsion bar, test 30 times, record the optimal result of each time and
take the average at last. The optimal solution chosen in this paper is shown in Table 4.

4.3 Simulation analysis verification
The optimized design results are used to update the lateral roll resistance torsion bar model
for static simulation verification, and the optimized stresses are shown in Figure 8.

The accuracy of the algorithm was verified by comparing the finite element calculation
results with the extreme results of the optimization algorithm. The anti-roll torsion bar mass,
maximum stress and anti-roll stiffness after optimization using the algorithm in this paper
are depicted in Table 5. It is evident that, after optimization, the mass of the anti-roll torsion
bar is decreased by 4%, the max stress under normal operating conditions is decreased by
35%, the max stress under extreme operating conditions is reduced by 8% and the stiffness
of the anti-roll torsion bar is increased by 1.9%. The effectiveness and superiority of the
algorithm in this paper are verified.

Variables D1=mm D2=mm D3=mm R=mm Mass (kg) Stress (MPa)

Initial 43 38.5 54.8 90 100.8 463.19
Optimized 42 39.6 52.4 88.7 96.55 295.49

Source(s): Authors’ own work

Figure 7.
Pareto solution

Table 4.
Comparison of design
variables before and

after optimization
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5. Conclusions

(1) Combining theworking principle and structural characteristics of the anti-roll torsion
bar, analyzing its force, using finite element simulation combined with the white
whale multi-objective optimization algorithm, static simulation to analyze the
strength and stiffness performance of the anti-roll torsion bar. Moby Dick multi-
objective optimization algorithm searches for the optimal size of the anti-roll torsion
bar, avoiding the redundant mass in the traditional design and realizing the
lightweight design.

(2) An IBWO algorithm is proposed, and the BWO algorithm’s population variety is
increased with the introduction of a logistic chaotic mapping approach. In addition,
the introduction of a differential variance strategy improves the global search
capability of the BWOalgorithm. The test results of the algorithm show that themean
diversity values of the IBWO algorithm are 0.279, 0.482, 0.696 and 0.821 for ZDT1,
ZDT2, ZDT3 and ZDT6 test functions, respectively, and the variances are 0.000679,
0.000918, 0.000607 and 0.000592, which are better than those of BWO at 0.863, 0.911,
1.031, 0.949 and 0.0351, 0.0324, 0.0092, 0.00239, respectively. It proves that the
uniformity and extensiveness of the distribution of the solution set are better, which
verifies the effectiveness of the proposed algorithm.

(3) With the torsion bar mass and max stress as the optimization objective, the stiffness
of the torsion bar against lateral roll is taken as the constraint, and the partial size of
the torsion bar is taken as the design variable. The torsion bar size optimization is
carried out based on the IBWO algorithm. After optimization, the mass of the
anti-rolling torsion bar is 96.55kg, the maximum stress under 37kN load is
296.57MPa, the max stress under 67kN load is 496.96MPa and the anti-rolling
stiffness is 1.61MN $m/rad. Better than 100.8kg, 463.17MPa, 536.67MPa and 1.58MN
$m/rad before optimization. The purpose of lightweighting is achieved while meeting
the strength and stiffness requirements. The effectiveness of the simulation design
technique integrating dimensional optimization design and finite element strength
analysis is confirmed.

Scheme Mass (kg)
Maximum stress (MPa)
Load case I/Load case II Anti-rolling stiffness (MN $m/rad)

Before optimization 100.8 536.67/463.17 1.58
After optimization 96.55 496.96/296.57 1.61

Source(s): Authors’ own work

Figure 8.
Maximum stress
distribution after
optimization

Table 5.
Comparison of the plan
before and after
optimization
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In future research, the use of dynamics simulation to simulate the anti-roll torsion bar is
more appropriate to the actual situation, but also other indicators such as stability as the
constraints of multi-objective optimization, to further optimize the anti-roll torsion bar
structure under the premise of guaranteeing safety, to achieve the design of lightweight,
the future of the high-speed train system may be integrated into the intelligent and
automated control technology. The anti-roll torsion bar system can be integrated with
other intelligent sensors and control systems to realize automatic adjustment and control,
in order to adapt to different operating conditions and provide a higher level of driving
stability and safety.
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