344

Received 12 March 2024
Revised 26 March 2024
Accepted 26 March 2024

Study on the pattern of train arrival headway time in high-speed railway

Changhai Tian
Railway Science and Technology Research and Development Center, China Academy of Railway Sciences Corporation Limited, Beijing, China, and Shoushuai Zhang
School of transportation and logistics, Southwest Jiaotong University, Chengdu, China

Abstract

Purpose - The design goal for the tracking interval of high-speed railway trains in China is 3 min , but it is difficult to achieve, and it is widely believed that it is mainly limited by the tracking interval of train arrivals. If the train arrival tracking interval can be compressed, it will be beneficial for China's high-speed railway to achieve a 3 -min train tracking interval. The goal of this article is to study how to compress the train arrival tracking interval. Design/methodology/approach - By simulating the process of dense train groups arriving at the station and stopping, the headway between train arrivals at the station was calculated, and the pattern of train arrival headway was obtained, changing the traditional understanding that the train arrival headway is considered the main factor limiting the headway of trains. Findings - When the running speed of trains is high, the headway between trains is short, the length of the station approach throat area is considerable and frequent train arrivals at the station, the arrival headway for the first group or several groups of trains will exceed the headway, but the subsequent sets of trains will have a headway equal to the arrival headway. This convergence characteristic is obtained by appropriately increasing the running time. Originality/value - According to this pattern, there is no need to overly emphasize the impact of train arrival headway on the headway. This plays an important role in compressing train headway and improving highspeed railway capacity.

Keywords High speed railway, Train headway, Train arrival headway, Regular pattern
Paper type Research paper

By the end of 2023, the mileage of China's high-speed railway operation reached 45,000 kilometres, with more than 9,600 trains in motion, and the passing capacity of important corridors continues to be strained, with the busiest section of Beijing-Shanghai high-speed railway running 188 pairs of high-speed trains per day between Jinan West and Taian station, 166 pairs of high-speed trains per day between Xuzhou East and Bengbu South station, and the Shanghai-Hangzhou high-speed railway reaching 167 pairs per day. Train headway is the key factor to determine the railway passing capacity. Japan's Tokaido

[^0]Shinkansen uses 3 min as headway, and it is quite common for four consecutive trains to arrive and depart at 3 min intervals in the Tokaido direction (6 lanes) at Tokyo Station; the Tohoku Shinkansen uses 4 min as headway, and there are often more than 10 consecutive trains arriving and departing at 4 min intervals in the Tohoku direction (4 lanes) at Tokyo Station. At present, the train headway of China's high-speed railway mostly adopts 5 min , individual lines adopt 4 min and some trains of Shanghai-Hangzhou high-speed railway adopt 3 min . If the train headway of busy high-speed railways can achieve the design goal of 3 min , the line capacity can be greatly improved, more trains can be operated and better economic and social benefits can be generated.

China's high-speed railway has taken many measures to shorten the train headway such as optimizing the braking mode curve of the train control system, setting the speed limit for trains entering and leaving the station in sections, and shortening the polling time of the Centralized Traffic Control (CTC), etc. However, the vast majority of high-speed railways have not yet reached the design goal of 3 min , which is generally regarded as the limitation of the train arrival headway (Zhang, Tian, Jiang, \& Wang, 2013; Tian, Zhang, Zhang, \& Jiang, 2015). At present, the research on train headway (I) is mainly based on the fact that the two trains running in front and behind tracking do not affect each other, and the headway in train sections ($I_{\text {sec }}$), headway between train departures $\left(I_{d e p}\right)$, headway between train arrivals $\left(I_{\text {arr }}\right)$, headway between train passages ($I_{p a s}$) are calculated in isolation and compared with each other in terms of their sizes $\left(I=\max \left\{I_{\mathrm{sec}}, I_{\text {dep }}, I_{\text {arr }}, I_{\text {pas }}\right\}\right)$, so as to reach the conclusion that I is mainly restricted by $I_{a r r}$ (Zhang, Tian, \& Yan, 2017). However, in the actual train operation work, especially during peak train operating hours, it is often arranged for trains to depart every 3 minutes closely, with trains running in close pursuit in the sections and dense station stops often lead to the deceleration of following trains, which is then continuously passed on, gradually causing subsequent trains to be able to achieve a 3 min arrival headway and achieving the purpose of compressing $I_{a r r}$ by sacrificing a small amount of running time in the sections. This paper will employ the method of train cluster operation simulation, allowing multiple trains to arrive at the station in continuous dense succession, to explore the patterns of high-speed trains arriving in close sequence and dense clusters, and study the feasibility of compression of $I_{a r r}$, so as to provide technical support for compressing the train headway and improving the passing capacity of the line.

1. Simulation conditions and parameter values

The simulation process is to use OpenTrack software to let multiple trains (generally 6 trains) run continuously and intensively towards the station with normal running speed (e.g. $350 \mathrm{~km} /$ h) at a certain headway (e.g. $I_{\text {sec }}$ for 3 min), reduce the running speed to the specified speed before the home signal, and continue to run at this speed until stopping at the stopping mark on the departure and arrival track. During the train operation process, the train traction and braking performance and the train route handling standards of CTC are strictly followed. The train running speed is controlled strictly in accordance with the signal display and the requirements of the Chinese Train Control System (CTCS)- $2 / 3$ level train control system. By tracking and statistically analysing the variations in the train running trajectories and train headway, the study seeks to identify the patterns of changes in train arrival headway.

The specific simulation parameters are as follows: The stations and intermediate sections of the line are configured with straight alignments. The length of the intermediate block sections is set at 2000 m , and the effective length of the station's departure and arrival tracks is designated as 650 m . In accordance with the requirements of the revised contents of the "High-Speed Railway Design Specifications" and the "Intercity Railway Design Specifications", the departure and arrival tracks set up not less than 60 m protection section, and the train stopping position marking 40 m from the protection section (as shown in

Study on the pattern of train arrival headway

Figure 1. Schematic plan of the simulated station and layout of facilities

Figure 1). In order to check and calculate the arrival patterns of high-speed trains, the length of the station throat area (X in Figure 1) (The length can also be regarded as the common approach length for trains travelling in both forward and reverse directions) from 200 m to 1600 m to take different values (The majority of station throat lengths fall within this range), the distance for a train to enter the station is calculated as +540 m , the speed limit within the throat area is set at $80 \mathrm{~km} / \mathrm{h}$ (The actual operational speed is maintained at $75 \mathrm{~km} / \mathrm{h}$), the safety protection distance before the home signal is set to 110 m . In simulation, the length of throat area is $200 \mathrm{~m}, 500 \mathrm{~m}, 600 \mathrm{~m}, 1000 \mathrm{~m}, 1200 \mathrm{~m}, 1500 \mathrm{~m}$ and 1600 m ; the multi-unit electric train (EMU) has been configured with the China Railway Highspeed (CRH)380AL model equipped with a 300 T train control system; the running speed of the train before entering the station is $350 \mathrm{~km} / \mathrm{h}, 300 \mathrm{~km} / \mathrm{h}, 250 \mathrm{~km} / \mathrm{h}, 200 \mathrm{~km} / \mathrm{h}$ and $I_{\text {sec }}$ is taken $3 \mathrm{~min}, I_{\text {sec }}$ takes 4 min or 2.5 min under certain speed conditions, resulting in a total of 42 scenarios being simulated. The following is only a list of some simulation results analysing the train arrival headway pattern of high-speed trains running at $350 \mathrm{~km} / \mathrm{h}$ and $200 \mathrm{~km} / \mathrm{h}$ before entering the station, when the length of the throat area is taken as $200 \mathrm{~m}, 1000 \mathrm{~m}$ and 1600 m , respectively.

2. Train running speed before entering station: $350 \mathrm{~km} / \mathrm{h}$

When the train's running speed is $350 \mathrm{~km} / \mathrm{h}$, two simulation schemes with train headway of 3 min and 4 min are conducted, respectively.

2.1 Train headway in section: 3 min

The impact of train arrival headway is influenced not only by the train's running speed and the train headway, but also by the length of the throat area. Table 1 -Table 3 respectively present the simulation results of six consecutive trains inbound stopping at the station with a speed of $350 \mathrm{~km} / \mathrm{h}$ and a headway of 3 min , at throat section lengths of $200 \mathrm{~m}, 1000 \mathrm{~m}$ and 1600 m (the length of the common approach for both outgoing and incoming trains). Figures 2-4 respectively depict the distance-speed diagrams of train inbound stopping at the station for different throat area lengths. In the chart, Train 1, Train 2, Train 3, Train 4, Train 5 and Train 6 run at speed of $350 \mathrm{~km} / \mathrm{h}$ in the headway of 3 min and reduces their speed to $75 \mathrm{~km} / \mathrm{h}$ at a distance of 110 m before the home signal. The train then comes to a stop at the stopping mark of the station's departure and arrival line. Two adjacent trains constitute a set of train headway. From the chart, when the length of the throat area is long, the delay in clearing the approach of the preceding train may cause the following trains to slow down earlier.

In the table, the train's departure time and headway, refers to the starting time of the 6 trains running continuously at $350 \mathrm{~km} / \mathrm{h}$ and the headway of the adjacent trains, the starting departure time of the 6 trains in Table 1 are the 0 th, $180 \mathrm{~s}, 360 \mathrm{~s}, 540 \mathrm{~s}, 720 \mathrm{~s}, 900 \mathrm{~s}$ and the train departure headway are all at 180 s ; the first model kilometre marker, start-up time and headway, refer to the train's first start braking location, time and headway with the preceding train. In Table 1, the first starting model mileage is 8.57 km , followed by five starting model

Source(s): Authors own work

Train track statistics points	Time and kilometre markers for continuous train tracking runs								Train headway Train 4-Train 3	Train 5-Train 4	Train 6-Train 5
	Train 1	Train 2	Train 3	Train 4	Train	$\begin{gathered} \text { Train } \\ 6 \end{gathered}$	Train 2-Train 1	Train 3-Train 2			
Departure time and headway/s	0	180	360	540	720	900	180	180	180	180	180
First model kilometre marker/km	8.570	6.316	6.316	6.316	6.316	6.316	-	-	-	-	-
First model start-up time and headway/s	89	245	425	605	785	965	156	180	180	180	180
Kilometre marker (speed limit $75 \mathrm{~km} / \mathrm{h}$) before home signal/km	18.665	18.665	18.665	18.665	18.665	18.665	-	-	-	-	-
Time and headway before home signal (speed limit $75 \mathrm{~km} / \mathrm{h}$)/s	252	437	617	797	977	1157	185	180	180	180	180
Inbound stopping kilometre marker/km	19.515	19.515	19.515	19.515	19.515	19.515	-	-	-	-	-
Inbound stopping time and headway/s	312	497	677	857	1037	1217	185	180	180	180	180
Overall running time/s	312	317	317	317	317	317	-	-	-	-	-

Study on the pattern of train arrival headway

Table 1. Simulation results of 6 trains stopping continuously at $350 \mathrm{~km} / \mathrm{h}$ with 3 min headway when the length of the throat area is 200 m

RS
3,3

348

Table 2.
Simulation results of 6 trains stopping continuously at $350 \mathrm{~km} / \mathrm{h}$ with 3 min headway when the length of the throat area is 1000 m

Train track statistics points	Time and kilometre markers for continuous train tracking runs								Train headway		
	$\begin{gathered} \text { Train } \\ 1 \end{gathered}$	$\begin{gathered} \text { Train } \\ 2 \end{gathered}$	$\begin{gathered} \text { Train } \\ 3 \end{gathered}$	$\begin{gathered} \text { Train } \\ 4 \end{gathered}$	$\begin{gathered} \text { Train } \\ 5 \end{gathered}$	$\begin{gathered} \text { Train } \\ 6 \end{gathered}$	$\begin{gathered} \text { Train } \\ 2-\text { Train } 1 \end{gathered}$	$\begin{gathered} \text { Train } \\ 3 \text {-Train } 2 \end{gathered}$	$\begin{gathered} \text { Train } \\ 4 \text {-Train } 3 \end{gathered}$	$\begin{gathered} \text { Train } \\ 5 \text {-Train } 4 \end{gathered}$	$\underset{\text { Train }}{6 \text {-Train } 5}$
Departure time and headway/s	0	180	360	540	720	900	180	180	180	180	180
First model kilometre marker/km	8.57	6.316	6.316	6.316	6.316	6.316	-				-
First model start-up time and headway/s	89	245	425	605	785	965	156	180	180	180	180
Kilometre marker (speed limit $75 \mathrm{~km} / \mathrm{h}$) before home signa/km	18.665	18.665	18.665	18.665	18.665	18.665	-	-	-	-	-
Time and headway before home signal (speed limit $75 \mathrm{~km} / \mathrm{h}$)/s	252	437	617	797	977	1157	185	180	180	180	180
Inbound stopping kilometre marker/km	20.315	20.315	20.315	20.315	20.315	20.315	-	-	-	-	-
Inbound stopping time and headway/s	350	535	715	895	1075	1255	185	180	180	180	180
Overall running time/s	350	355	355	355	355	355	-	-	-	-	-

Train track statistics points	Time and kilometre markers for continuous train tracking runs								Train headway Train 4-Train 3	Train 5-Train 4	Train 6-Train 5
	Train 1	$\begin{gathered} \text { Train } \\ 2 \end{gathered}$	Train 3	Train 4	Train	$\begin{gathered} \text { Train } \\ 6 \end{gathered}$	Train 2-Train 1	Train 3-Train 2			
Departure time and headway/s	0	180	360	540	720	900	180	180	180	180	180
First model kilometre marker/km	7.57	5.316	5.316	5.316	5.316	5.316	-	-	-	-	-
First model start-up time and headway/s	78	235	415	595	775	955	157	180	180	180	180
Kilometre marker (speed limit $75 \mathrm{~km} / \mathrm{h}$) before home signal/km	17.665	17.665	17.665	17.665	17.665	17.665	-	-	-	-	-
Time and headway before home signal (speed limit $75 \mathrm{~km} / \mathrm{h}$)/s	241	428	608	788	968	1148	187	180	180	180	180
Inbound stopping kilometre marker/km	19.915	19.915	19.915	19.915	19.915	19.915	-	-	-	-	-
Inbound stopping time and headway/s	368	555	735	915	1095	1275	187	180	180	180	180
Overall running time/s	368	375	375	375	375	375	-	-	-	-	-

Study on the pattern of train arrival headway

Table 3.
Simulation results of 6
trains stopping continuously at $350 \mathrm{~km} / \mathrm{h}$ with 3 min headway when the length of the throat area is 1600 m

Figure 2.
Operational distancespeed diagram for 6 trains at $350 \mathrm{~km} / \mathrm{h}$ with 3 min headway between consecutive inbound stops for a 200 m length of throat area

Study on the pattern of train arrival headway

Figure 3.
Operational distancespeed diagram for 6 trains at $350 \mathrm{~km} / \mathrm{h}$ with 3 min headway between consecutive inbound stops for a 1600 m length of throat area

Figure 4.
Operational distancespeed diagram for 6 trains at $350 \mathrm{~km} / \mathrm{h}$ with 3 min headway between consecutive inbound stops for a 1600 m length of throat area
mileage are in 6.316 km ; the kilometre marker, time and headway before home signal, refer to the train running to the kilometre marker, time and headway with the preceding train at 110 m before home signal; the station inbound stopping kilometre marker, time and headway, refer to the kilometre marker, time and headway with the preceding train for the train to stop at the position mark before the departure signal of the arrival-departure track. In Table 1, the first group of train's arrival headway is 185 s , followed by four groups of trains' arrival headway are 180 s ; the overall running time, refers to the running time calculated as the difference between the train's inbound stopping time and its departure time.

From Table 1 it can be seen that when 6 trains run with 3 min headway, the headway of the first group of trains' inbound stopping becomes 185 s , while the headway of the following 4 groups of trains can still be maintained at 180 s ; the overall running time is increased by 5 s for all the following trains except for Train 1, this is due to the fact that from Train 2 onwards, all trains start at 6.316 km in advance and by starting the model in advance, the running time is increased by 5 s , which is exchanged for the subsequent four groups of trains' arrival headway converging to 3 min .

When the length of the throat area was extended to 1000 m (from Table 2 and Figure 3), the simulation results were the same as throat area of 200 m in length.

When the length of throat area is extended to 1600 m (from Table 3 and Figure 4), the headway of the first group of trains' inbound stopping time is extended to 187 s , while the headway of the following four groups of trains can still be maintained at 180 s , the running time is increased by 7 s through the early start of the model from Train 2 to Train 6 in exchange for the arrival headway of the following four groups of trains are all converged to 3 min , and the simulation results are the same. At the same time, it shows that it is impossible for the first group of high-speed railway trains entering the station at $350 \mathrm{~km} / \mathrm{h}$ to achieve 3 min arrival headway.

2.2 Train headway in section: 4 min

When the train headway in the section is extended to 4 min , and the same simulation methodology is employed. The simulation results are presented in Tables 4-6 (for simplicity, distance-speed diagrams are not included, as in the previous examples).

Table 4 demonstrates that under the condition of train headway in the section is 4 min , when the throat section length is 200 m , and 6 consecutive trains are running into the station at a speed of $350 \mathrm{~km} / \mathrm{h}$, there is no interference among them. And the train groups' arrival headway can also be maintained at a 4 min , without an increase in the running time within the section. When the length of the throat area reaches 1000 m (from Table 5), the first group of trains' headway is 241 s , followed by 4 groups of trains' headway are converged to 240 s , and the train running time are increased by 1 s . When the length of the throat area reaches 1600 m (from Table 6), the first group of trains' headway is 242 s , followed by 4 groups of trains' headway are converged to 240 s , and the train running time are increased by 2 s . The simulation results demonstrate that the arrival headway of trains converges to a duration of 4 min .

3. Train running speed before entering station: $200 \mathrm{~km} / \mathrm{h}$

The continued investigation into the train arrival patterns at a running speed of $200 \mathrm{~km} / \mathrm{h}$ within the train section is conducted via simulation methods. Only the simulation results for throat section lengths of $200 \mathrm{~m}, 1000 \mathrm{~m}$ and 1600 m are presented. In comparison to the highspeed train operations at $350 \mathrm{~km} / \mathrm{h}$, train operations at a speed of $200 \mathrm{~km} / \mathrm{h}$ are more conducive to achieving short headway. Therefore, the simulation results for adding trains that operate with a 2.5 min headway at a speed of $200 \mathrm{~km} / \mathrm{h}$ are presented.

Study on the pattern of train arrival headway

353

354

Table 4.
Simulation results of 6 trains stopping continuously at $350 \mathrm{~km} / \mathrm{h}$ with 4 min headway when the length of the throat area is 200 m

Train track statistics points	Time and kilometre markers for continuous train tracking runs								Train headwayTrain4-Train 3	Train 5-Train 4	$\begin{gathered} \text { Train } \\ \text { 6-Train } 5 \end{gathered}$
	$\begin{gathered} \text { Train } \\ 1 \end{gathered}$	$\begin{gathered} \text { Train } \\ 2 \end{gathered}$	$\begin{gathered} \text { Train } \\ 3 \end{gathered}$	$\begin{gathered} \text { Train } \\ 4 \end{gathered}$	$\begin{gathered} \text { Train } \\ 5 \end{gathered}$	$\begin{gathered} \text { Train } \\ 6 \end{gathered}$	$\begin{gathered} \text { Train } \\ 2 \text {-Train } 1 \end{gathered}$	$\begin{gathered} \text { Train } \\ 3 \text {-Train } 2 \end{gathered}$			
Departure time and headway/s	0	240	480	720	960	1200	240	240	240	240	240
First model kilometre marker/km	7.57	7.57	7.57	7.57	7.57	7.57	-	-	-	-	
First model start-up time and headway/s	78	318	558	798	1038	1278	240	240	240	240	240
Kilometre marker (speed limit $75 \mathrm{~km} / \mathrm{h}$) before home signal/km	17.665	17.665	17.665	17.665	17.665	17.665	-	-	-	-	-
Time and headway before home signal (speed limit $75 \mathrm{~km} / \mathrm{h}$)/s	241	481	721	961	1201	1441	240	240	240	240	240
Inbound stopping kilometre marker/km	18.515	18.515	18.515	18.515	18.515	18.515	-	-	-	-	-
Inbound stopping time and headway/s	301	541	781	1021	1261	1501	240	240	240	240	240
Overall running time/s	301	301	301	301	301	301	-	-	-	-	-

Train track statistics points	Time and kilometre markers for continuous train tracking runs								Train headway Train 4-Train 3	Train 5-Train 4	Train 6-Train 5
	Train 1	Train	$\begin{gathered} \text { Train } \\ 3 \end{gathered}$	$\begin{gathered} \text { Train } \\ 4 \end{gathered}$	$\begin{gathered} \text { Train } \\ 5 \end{gathered}$	$\begin{gathered} \text { Train } \\ 6 \end{gathered}$	Train 2-Train 1	Train 3-Train 2			
Departure time and headway/s	0	240	480	720	960	1200	240	240	240	240	240
First model kilometre marker/km	7.57	7.426	7.426	7.426	7.426	7.426	-	-	-	-	-
First model start-up time and headway/s	78	317	557	797	1037	1277	239	240	240	240	240
Kilometre marker (speed limit $75 \mathrm{~km} / \mathrm{h}$) before home signal/km	17.665	17.665	17.665	17.665	17.665	17.665	-	-	-	-	-
Time and headway before home signal (speed limit $75 \mathrm{~km} / \mathrm{h}$)/s	241	482	722	962	1202	1442	241	240	240	240	240
Inbound stopping kilometre marker/km	19.315	19.315	19.315	19.315	19.315	19.315	-	-	-	-	-
Inbound stopping time and headway/s	339	580	820	1060	1300	1540	241	240	240	240	240
Overall running time/s	339	340	340	340	340	340	-	-	-	-	-

Study on the pattern of train arrival headway

Table 5. Simulation results of 6 trains stopping continuously at $350 \mathrm{~km} / \mathrm{h}$ with 4 min headway when the length of the throat area is 1000 m

RS
3,3

356

Table 6.
Simulation results of 6 trains stopping continuously at $350 \mathrm{~km} / \mathrm{h}$ with 4 min headway when the length of the throat area is 1600 m

Train track statistics points	Time and kilometre markers for continuous train tracking runs								Train headway Train 4-Train 3	Train 5-Train 4	Train 6-Train 5
	Train	$\begin{gathered} \text { Train } \\ 2 \end{gathered}$	Train 3	Train 4	Train 5	$\begin{gathered} \text { Train } \\ 6 \end{gathered}$	Train 2-Train 1	Train 3-Train 2			
Departure time and headway/s	0	240	480	720	960	1200	240	240	240	240	240
First model kilometre marker/km	7.57	7.426	7.426	7.426	7.426	7.426	-	-	-	-	-
First model start-up time and headway/s	78	317	557	797	1037	1277	239	240	240	240	240
Kilometre marker (speed limit $75 \mathrm{~km} / \mathrm{h}$) before home signal $/ \mathrm{km}$	17.665	17.665	17.665	17.665	17.665	17.665	-	-	-	-	-
Time and headway before home signal (speed limit $75 \mathrm{~km} / \mathrm{h}$)/s	241	483	723	963	1203	1443	242	240	240	240	240
Inbound stopping kilometre marker/km	19.915	19.915	19.915	19.915	19.915	19.915	-	-	-	-	-
Inbound stopping time and headway/s	368	610	850	1090	1330	1570	242	240	240	240	240
Overall running time/s	368	370	370	370	370	370	-	-	-	-	-

3.1 Train headway in section: 3 min

The simulation results of the station throat length of $200 \mathrm{~m}, 1000 \mathrm{~m}$ and 1600 m are listed in Table 7-Table 9 respectively. When the length of throat area is 200 m and 1000 m , respectively, 6 consecutive trains run at $200 \mathrm{~km} / \mathrm{h}$ speed into the station without interfering with each other, and the headway of train groups can be achieved in 3 min . When the length of throat area reaches 1600 m , the first group of trains' headway is 181 s , then the next 4 groups of trains' headway are converged to 180 s , and the train running time are increased by 1 s . At the same time, it shows that the high-speed railways which enter the station at the speed of $200 \mathrm{~km} / \mathrm{h}$ can reach the arrival headway of 3 min as long as the throat area is not more than 1000 m .

3.2 Train headway in section: 2.5 min

The simulation results of the station throat length $200 \mathrm{~m}, 1000 \mathrm{~m}$ and 1600 m are listed in Table 10-Table 12 respectively. When the throat length is $200 \mathrm{~m}, 6$ consecutive trains run at $200 \mathrm{~km} / \mathrm{h}$ speed into the station without interfering with each other, and the headway between train groups can all be achieved in 2.5 min . When the length of the throat area reaches 1000 m , the first group and the second group of trains' headway are 151 s , then the three groups of trains' headway are converged to 150 s , and the train running time are increased by 2 s . When the length of the throat area reaches 1600 m , the headway of the first group of trains is 154 s , then the four groups of trains' headway are converged to 150 s , and the train running time are increased by 4 s .

The simulation also encompasses the operational performance of trains at speeds of $300 \mathrm{~km} / \mathrm{h}$ and $250 \mathrm{~km} / \mathrm{h}$ prior to their entry into the station, which exhibit a consistent pattern. Further checking shows that 2.5 min arrival headway can be achieved for the high-speed train entering the station at $200 \mathrm{~km} / \mathrm{h}$ as long as the throat area is not more than 500 m .

4. Conclusions and recommendations

The simulation results with running speeds of $350 \mathrm{~km} / \mathrm{h}$ and $200 \mathrm{~km} / \mathrm{h}$, headway of 3 min , 4 min and 2.5 min , and throat lengths of $200 \mathrm{~m}, 1000 \mathrm{~m}$ and 1600 m are summarized in Table 13. The fourth column in the table is the increase value of the whole running time of the 6 consecutive trains, the first value is the basis of the comparison, which refers to the increase value of the running time of Train 1 , which is definitely 0 , and the rest of the values are the difference between the running time of Train 1 and Train 6, which is subtracted from the running time of Train 1 . The rest of the value is the difference between the running time of Train 2 to Train 6 and the running time of Train 1. Taking the first section of the throat area with a length of 200 m as an example, the comparison between Train 2 and Train 1 shows an increase of 5 s in the running time. Consequently, the headway for the first group of trains is 185 s . When comparing Train 3 with Train 1, the additional time is also 5 s , which is identical to the increase in Train 2's running time. Therefore, the headway for the second group of trains is 180 s . This pattern continues for subsequent comparisons.

Combining the above simulation results and the statistical data in Table 13, the following conclusions can be obtained:
(1) The headway between the intensive arrival of high-speed trains at stations is regular. When trains arrive intensively, the arrival headway between the first group or groups may be greater than the headway in section, but the subsequent arrival trains' arrival headway are converged to the headway in section, the specific patterns are: under the conditions of low running speed, long headway in the section and short length of the throat area (e.g., rows 4, 7, 8 and 10 of Table 13), the value of arrival headway is the same as the headway in section; under the conditions of high running speed, short

Study on the pattern of train arrival headway

RS
3,3

Table 7.
Simulation results of 6 trains stopping continuously at $200 \mathrm{~km} / \mathrm{h}$ with 3 min headway when the length of the throat area is 200 m

Train track statistics points	Time and kilometre markers for continuous train tracking runs								Train headway		
	$\begin{gathered} \text { Train } \\ 1 \end{gathered}$	$\begin{gathered} \text { Train } \\ 2 \end{gathered}$	$\begin{gathered} \text { Train } \\ 3 \end{gathered}$	$\begin{gathered} \text { Train } \\ 4 \end{gathered}$	$\begin{gathered} \text { Train } \\ 5 \end{gathered}$	$\begin{gathered} \text { Train } \\ 6 \end{gathered}$	$\begin{gathered} \text { Train } \\ 2-\text { Train } 1 \end{gathered}$	$\begin{gathered} \text { Train } \\ 3 \text {-Train } 2 \end{gathered}$	$\begin{gathered} \text { Train } \\ 4 \text {-Train } 3 \end{gathered}$	$\begin{gathered} \text { Train } \\ 5 \text {-Train } 4 \end{gathered}$	$\underset{\text { Train }}{6 \text {-Train } 5}$
Departure time and headway/s	0	180	360	540	720	900	180	180	180	180	180
First model kilometre marker/km	15.146	15.146	15.146	15.146	15.146	15.146	-	-			-
First model start-up time and headway/s	273	453	633	813	993	1173	180	180	180	180	180
Kilometre marker (speed limit $75 \mathrm{~km} / \mathrm{h}$) before home signa/km	17.665	17.665	17.665	17.665	17.665	17.665	-	-	-	-	-
Time and headway before home signal (speed limit $75 \mathrm{~km} / \mathrm{h}$)/s	338	518	698	878	1058	1238	180	180	180	180	180
Inbound stopping kilometre marker/km	18.515	18.515	18.515	18.515	18.515	18.515	-	-	-	-	-
Inbound stopping time and headway/s	398	578	758	938	1118	1298	180	180	180	180	180
Overall running time/s	398	398	398	398	398	398	-	-	-	-	-

Train track statistics points	Time and kilometre markers for continuous train tracking runs								Train headway Train 4-Train 3	Train 5-Train 4	Train 6-Train 5
	Train 1	$\begin{gathered} \text { Train } \\ 2 \end{gathered}$	$\begin{gathered} \text { Train } \\ 3 \end{gathered}$	$\begin{gathered} \text { Train } \\ 4 \end{gathered}$	$\begin{gathered} \text { Train } \\ 5 \end{gathered}$	$\begin{gathered} \text { Train } \\ 6 \end{gathered}$	Train 2-Train 1	Train 3-Train 2			
Departure time and headway/s	0	180	360	540	720	900	180	180	180	180	180
First model kilometre marker/km	15.146	15.146	15.146	15.146	15.146	15.146	-	-	-	-	-
First model start-up time and headway/s	273	453	633	813	993	1173	180	180	180	180	180
Kilometre marker (speed limit $75 \mathrm{~km} / \mathrm{h}$) before home signal $/ \mathrm{km}$	17.665	17.665	17.665	17.665	17.665	17.665	-	-	-	-	-
Time and headway before home signal (speed limit $75 \mathrm{~km} / \mathrm{h}$)/s	338	518	698	878	1058	1238	180	180	180	180	180
Inbound stopping kilometre marker/km	19.315	19.315	19.315	19.315	19.315	19.315	-	-	-	-	-
Inbound stopping time and headway/s	436	616	796	976	1156	1336	180	180	180	180	180
Overall running time/s	436	436	436	436	436	436	-	-	-	-	-

Study on the pattern of train arrival headway

Table 8.
Simulation results of 6 trains stopping continuously at $200 \mathrm{~km} / \mathrm{h}$ with 3 min headway when the length of the throat area is 1000 m

RS
3,3

Table 9.
Simulation results of 6 trains stopping continuously at $200 \mathrm{~km} / \mathrm{h}$ with 3 min headway when the length of the throat area is 1600 m

Train track statistics points	Time and kilometre markers for continuous train tracking runs								Train headway		
	$\begin{gathered} \text { Train } \\ 1 \end{gathered}$	$\begin{gathered} \text { Train } \\ 2 \end{gathered}$	$\begin{gathered} \text { Train } \\ 3 \end{gathered}$	$\begin{gathered} \text { Train } \\ 4 \end{gathered}$	$\begin{gathered} \text { Train } \\ 5 \end{gathered}$	$\begin{gathered} \text { Train } \\ 6 \end{gathered}$	$\begin{gathered} \text { Train } \\ 2 \text {-Train } 1 \end{gathered}$	$\begin{gathered} \text { Train } \\ \text { 3-Train } 2 \end{gathered}$	Train 4-Train 3	$\begin{gathered} \text { Train } \\ \text { 5-Train } 4 \end{gathered}$	$\begin{gathered} \text { Train } \\ \text { 6-Train } 5 \end{gathered}$
Departure time and headway/s	0	180	360	540	720	900	180	180	180	180	180
First model kilometre marker/km	15.146	14.916	14.916	14.916	14.916	14.916	-				-
First model start-up time and headway/s	273	449	629	809	989	1169	176	180	180	180	180
Kilometre marker (speed limit $75 \mathrm{~km} / \mathrm{h}$) before home signal/km	17.665	17.665	17.665	17.665	17.665	17.665	-	-	-	-	-
Time and headway before home signal (speed limit $75 \mathrm{~km} / \mathrm{h}$)/s	338	519	699	879	1059	1239	181	180	180	180	180
Inbound stopping kilometre marker/km	19.915	19.915	19.915	19.915	19.915	19.915	-	-	-	-	-
Inbound stopping time and headway/s	465	646	826	1006	1186	1366	181	180	180	180	180
Overall running time/s	465	466	466	466	466	466	-	-	-	-	-

Train track statistics points	Time and kilometre markers for continuous train tracking runs								Train headway Train 4-Train 3	Train 5-Train 4	Train 6-Train 5
	Train 1	Train 2	Train 3	Train 4	Train	$\begin{gathered} \text { Train } \\ 6 \end{gathered}$	Train 2-Train 1	Train 3-Train 2			
Departure time and headway/s	0	150	300	450	600	750	150	150	150	150	150
First model kilometre marker/km	15.146	15.146	15.146	15.146	15.146	15.146	-	-	-	-	-
First model start-up time and headway/s	273	423	573	723	873	1023	150	150	150	150	150
Kilometre marker (speed limit $75 \mathrm{~km} / \mathrm{h}$) before home signal/km	17.665	17.665	17.665	17.665	17.665	17.665	-	-	-	-	-
Time and headway before home signal (speed limit $75 \mathrm{~km} / \mathrm{h}$)/s	338	488	638	788	938	1088	150	150	150	150	150
Inbound stopping kilometre marker/km	18.515	18.515	18.515	18.515	18.515	18.515	-	-	-	-	-
Inbound stopping time and headway/s	398	548	698	848	998	1148	150	150	150	150	150
Overall running time/s	398	398	398	398	398	398	-	-	-	-	-

Study on the pattern of train arrival headway

Table 10.

RS
3,3

362

Table 11.
Simulation results of 6 trains stopping continuously at $200 \mathrm{~km} / \mathrm{h}$ with 2.5 min headway when the length of the throat area is 1000 m

Train track statistics points	Time and kilometre markers for continuous train tracking runs								Train headway Train 4-Train 3	Train 5-Train 4	Train 6-Train 5
	Train 1	Train	$\begin{gathered} \text { Train } \\ 3 \end{gathered}$	$\begin{gathered} \text { Train } \\ 4 \end{gathered}$	$\begin{gathered} \text { Train } \\ 5 \end{gathered}$	$\begin{gathered} \text { Train } \\ 6 \end{gathered}$	Train 2-Train 1	Train 3-Train 2			
Departure time and headway/s	0	150	300	450	600	750	150	150	150	150	150
First model kilometre marker/km	15.146	14.916	14.916	14.916	14.916	14.916	-	-	-	-	-
First model start-up time and headway/s	273	419	569	719	869	1019	146	150	150	150	150
Kilometre marker (speed limit $75 \mathrm{~km} / \mathrm{h}$) before home signal/km	17.665	17.665	17.665	17.665	17.665	17.665	-	-	-	-	-
Time and headway before home signal (speed limit $75 \mathrm{~km} / \mathrm{h}$)/s	338	492	642	792	942	1092	154	150	150	150	150
Inbound stopping kilometre marker/km	19.915	19.915	19.915	19.915	19.915	19.915	-	-	-	-	-
Inbound stopping time and headway/s	465	619	769	919	1069	1219	154	150	150	150	150
Overall running time/s	465	469	469	469	469	469	-	-	-	-	-

Study on the pattern of train arrival headway

Table 12.
Simulation results of 6 trains stopping continuously at $200 \mathrm{~km} / \mathrm{h}$ with 2.5 min intervals in the throat area when the length of the throat area is 1600 m

| RS
 3,3 | Running
 speed
 $/ \mathrm{Km} / \mathrm{h}$ | Headway in
 section
 $/ \mathrm{min}$ | Length of
 throat area
 $/ \mathrm{m}$ | Added value in running time for
 continuous 6 trains/s |
| :--- | :---: | :---: | :---: | :---: | Arrival headway/s

headway and long throat length, the arrival headway of the first one or two groups of trains is greater than the headway in section, and the subsequent groups of trains' arrival headway could be converged to the headway in section (e.g., rows 1, 2, 3, 5, 6, 9 , 11 and 12 in Table 13). The higher the running speed, the larger the headway in section, and the longer the throat area, the larger the arrival headway of the first group of trains (such as rows 1,2 and 3 in Table 13), which exceeds the headway in section, only the exceeding value is not large and the maximum is not more than 7 s in Table 13.
(2) The convergence of the arrival headway to the headway in section comes at a certain cost, which is manifested as preemptive deceleration of trains starting from the second one and an extension of their section running times. Nonetheless, this cost is relatively small, with the extension in section running time being quite minimal, peaking at no more than 7 s , which is nearly negligible.
(3) When the running speed before the train enters the station is $350 \mathrm{~km} / \mathrm{h}$, the headway in section of 4 min compared with the headway of 3 min , the arrival headway is easier to approach or realize the train headway in section, such as the length of the throat area is 1600 m , the arrival headway for the first train group are 242 s and 187 s , respectively, differing by 2 s and 7 s from the 4 min and 3 min . When the running speed is $200 \mathrm{~km} / \mathrm{h}$ before the train enters the station and the length of the throat area is 1600 m , the arrival headway for the first train group are 181 s and 154 s , respectively, differing by 1 s and 4 s from the 3 min and 2.5 min .
The same pattern is obtained by simulating the situation of high-speed trains running at $250 \mathrm{~km} / \mathrm{h}$ and $300 \mathrm{~km} / \mathrm{h}$ with 3 min continuous arrival.

The above pattern is very useful for the study of determining the train headway (I). Train arrival headway $\left(I_{a r r}\right)$ was once considered to be the main factor limiting the train headway, but the simulation results proved that it is not completely so. As long as the highspeed train departs from the station, the headway in section can be realized 3 min , and after the intensive arrival at the station, the final headway of 3 min can still be realized, so as to achieve the compression of the train headway. Therefore, when determining the train headway (I), it is not necessary to over-emphasize the impact of the train arrival headway $\left(I_{a r r}\right)$ on I, and under general conditions, it can even be simply considered as $I=\max \left\{I_{\text {sec }}, I_{\text {dep }}, I_{\text {pas }}\right\}$, which plays an important role in compression of I to improve the capacity of high-speed railway.

It should be noted that some large passenger stations have speed limits before entering the station, which provide natural conditions for shortening the arrival headway and it should be fully utilized. If in order to compress the train arrival headway, the concept and practice of artificially setting a speed limit before entering the station is inappropriate and undesirable.

References

Tian, C., Zhang, S., Zhang, Y., \& Jiang, X. (2015). Research on train tracking interval time of highspeed railway. Journal of Railway, 37(10), 1-6.
Zhang, Y., Tian, C., Jiang, X., \& Wang, Y. (2013). Calculation method of train interval time in highspeed railway. China Railway Science, 34(5), 120-125.
Zhang, S., Tian, C., \& Yan, H. (2017). Adaptability of the removal coefficient method in calculation method of high-speed railway's passing capability. Journal of Transportation Systems Engineering and Information Technology, 17(2), 148-153.

Further reading

China National Railway Group Corporation (2023). Q/CR 996-2023 Measures for checking the interval time between trains on ordinary speed railway. Beijing: China Railway Press.
China National Railway Group Corporation Corporate Ltd (2020). Q/CR 744-2020 Technical specification for CTCS-3 level train control vehicle-mounted equipment. Beijing: China Railway Press.
China Railway Corporation (2014). Railway general science and Technology [2014] No. 172 railway Technology management regulations. Beijing: China Railway Press.
China Railway Corporation (2015). Q/CR 471-2015 high-speed railway train interval time checking methods. Beijing: China Railway Press.
Ministry of Railways of the People's Republic of China (1984). Measures for calculating passing capacity between railway zones. Beijing: China Railway Press.
State Railway Administration (2015). TB10621-2014 Design specification for high-speed railway. Beijing: China Railway Press.
State Railway Administration (2018). TB/T-3529-2018 Technical conditions for CTCS-2 level train control vehicle-mounted equipment. Beijing: China Railway Press.
Tian, C. (2020). Speed, density and weight of railway trains in developing China. China Railway Science, 41(4), 127-135.
Wei, H. (2013). Research on the calculation method of high-speed railway on-board ATP brake control mode curve. Railway Communication Signal Engineering Technology, 10, 33-38.
Yuan, H. (2015). Analysis of the impact of long ramp and split-phase zone setting on train control system. Railway Communication Signal, 51(1), 10-11.

Study on the pattern of train arrival headway

Corresponding author

Changhai Tian can be contacted at: tch-tch-tch@163.com

[^0]: © Changhai Tian and Shoushuai Zhang. Published in Railway Sciences. Published by Emerald Publishing Limited. This article is published under the Creative Commons Attribution (CC BY 4.0) licence. Anyone may reproduce, distribute, translate and create derivative works of this article (for both commercial and non-commercial purposes), subject to full attribution to the original publication and authors. The full terms of this licence may be seen at http://creativecommons.org/licences/by/4.0/ legalcode

 State Railway Corporation of China Limited under the Science and Technology Research and Development Programme (J2021X007) and the China Academy of Railway Research (2021YJ012), National Natural Science Foundation of China (52302417), Natural Science Foundation of Sichuan Province of China (2023NSFSC0906).

