
Amulticriteria decision-making method for
additive manufacturing process selection

Diqian Ren and Jun-Ki Choi
Department of Mechanical and Aerospace Engineering, University of Dayton, Dayton, Ohio, USA, and

Kellie Schneider
Department of Engineering Management, Systems, and Technology, University of Dayton, Dayton, Ohio, USA

Abstract
Purpose – Because of the significant differences in the features and requirements of specific products and the capabilities of various additive
manufacturing (AM) solutions, selecting the most appropriate AM technology can be challenging. This study aims to propose a method to solve the
complex process selection in 3D printing applications, especially by creating a new multicriteria decision-making tool that takes the direct certainty
of each comparison to reflect the decision-maker’s desire effectively.
Design/methodology/approach – The methodology proposed includes five steps: defining the AM technology selection decision criteria and
constraints, extracting available AM parameters from the database, evaluating the selected AM technology parameters based on the proposed
decision-making methodology, improving the accuracy of the decision by adopting newly proposed weighting scheme and selecting optimal AM
technologies by integrating information gathered from the whole decision-making process.
Findings – To demonstrate the feasibility and reliability of the proposed methodology, this case study describes a detailed industrial application in
rapid investment casting that applies the weightings to a tailored AM technologies and materials database to determine the most suitable AM
process. The results showed that the proposed methodology could solve complicated AM process selection problems at both the design and
manufacturing stages.
Originality/value – This research proposes a unique multicriteria decision-making solution, which employs an exclusive weightings calculation
algorithm that converts the decision-maker’s subjective priority of the involved criteria into comparable values. The proposed framework can reduce
decision-maker’s comparison duty and potentially reduce errors in the pairwise comparisons used in other decision-making methodologies.
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1. Introduction

Almost 40 years have passed since Charles Hull invented the
first 3D printer in 1983 (Hull, 2015). Since then, 3D printing
[also known as additive manufacturing (AM)] has become a
technology that cannot be ignored in today’s manufacturing
decisions. AM refers to a technology that creates parts by
adding materials layer by layer. This process can transfer a
product designer’s idea into a physical product more rapidly
and simply than traditional manufacturing processes. AM also
has some other advantages over traditional manufacturing,
such as unlimited geometry complexity, flexible inventory,
shorter manufacturing lead times and lower costs for
low-volume production (MacDonald and Wicker, 2016;
Savolainen and Collan, 2020). It has been widely adopted in
such areas as rapid prototyping, medical implants, automotive,
aerospace, sports and construction industries (Tofail et al.,
2018). Sharing the same core concept of adding material
successively as the first 3D printer, many new 3D printing

technologies have been developed. Based on their
characteristics, these technologies are generally classified into
seven categories, all of which are discussed in more detail in the
following section: binder jetting (BJ) (Do et al., 2017; Gonzalez
et al., 2016); direct energy deposition (DED) (Stender et al.,
2018; Javidani et al., 2017); material extrusion (ME)
(Dhinakaran et al., 2020; Weng et al., 2016); material jetting
(MJ)(Yap et al., 2017; Vdovin et al., 2017); powder bed fusion
(PBF) (Khairallah et al., 2016; Allison et al., 2019); sheet
lamination (SL) (Norfolk and Johnson, 2015; Qi Zhang, 2018;
Bhatt et al., 2019); and vat polymerization (VP) (B�artolo and
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Gibson, 2011; Yang et al., 2019). Although some AMmethods
are mature, the AM industry is still thriving; many 3D printing
processes are currently available, and more are emerging
and developing, such as metal fused deposition modeling
(metal FDM), ARBURG plastic freeforming and multi jet
fusion (Ramazani and Kami, 2022; Mele et al., 2022; Avanzini
et al., 2022). When selecting a 3D printing method for a
specific application, decision-makers need to consider
many aspects, such as mechanical, chemical and physical
properties, 3D printers’ build volume, postprocessing,
resolution, environmental impact, production time and cost.
Rigorous consideration of these decision variables is crucial to
optimizing the complicated AM technology selection process.
Many researchers have addressed the important decision
parameters involved in the AM selection process and facilitated
that process by developing some advisory tools based on
different multicriteria decision-making methods. These
methods include analytic hierarchy process (AHP) (Lokesh
and Jain, 2010; Armillotta, 2008; Kadkhoda-Ahmadi et al.,
2019; Zaman et al., 2018; Mançanares et al., 2015; Liu et al.,
2020), analytic network process framework (ANP) (Vimal,
2016), technique for order preference by similarity to ideal
solution (TOPSIS) (Byun and Lee, 2005), VlseKriterijuska
Optimizacija I Komoromisno Resenje (VIKOR) (Liao et al.,
2014), fuzzy AHP (Zhou and Chen, 2010), fuzzy logic (Khrais
et al., 2011), fuzzy TOPSIS (Vahdani et al., 2011), fuzzy
VIKOR (Vinodh et al., 2014), fuzzy information aggregation
operators(Qin et al., 2020), fuzzy decision (Mahesh et al.,
2005), graph theory (Rao and Padmanabhan, 2007), hybrid
decision-making tools (Anand, 2018; Borille et al., 2010;
Zhang, 2014; Wang, 2018), fuzzy axiomatic design (Zheng
et al., 2017) and posteriori articulation of preferences approach
(Wang, 2017).
A common misconception regarding these tools, however, is

that the precise weighting of various criteria is easy to obtain
from decision-makers. Yet, precisely reflecting decision-
maker’s requirements numerically is not a straightforward
matter, and translating decision-maker’s preferences into
numbers in complicated decision-making cases often leads to
errors and biases in weighting that can skew the final selection
result. The new decision-making tool described in this article
includes a special process for calculating the weightings of the
criteria that more accurately translates the decision-maker’s
demands into calculable numbers.

2. Literature review

This section reviews the current literature on existing and
commercial AM technologies, raw materials and decision-
making tools.

2.1 Additivemanufacturing technologies
This section briefly introduces the diversity of the AM
processes and reveals the necessity of decision-making tools
under complicated circumstances, while not all the features are
discussed. Certain features should be covered when critical for
a specific AM process selection. For example, in the design
stage, the optimization of parts geometries is essential and
could affect the environmental impacts(CHEN et al., 2016;
Xiong and Chen, 2021; Mele et al., 2019a). However, they are

not considered for some cases when the decision-maker does
not use them tomake a decision.
Currently, the most popular 3D printing options are BJ,

DED, ME, MJ, PBF and VP. These six AM processes
dominate today’s 3D printing market and a seventh, SL, is
widely used for rapid prototyping. Each 3D printing
option includes several subsets of techniques, many of
which are similar across technologies, even though each
technology also has unique features that reflect its specific
principles and lead to differences in the attributes of the
printed parts.
In the first of these processes, BJ is an AM method that

drops a liquid bonding agent to bind powder particles. A BJ
printed part is developed by strategically moving the print
head and depositing the bonding agent (Meteyer et al.,
2014). The parts printed from BJ process do not need to be
anchored on a build plate, which saves powder material and
can be critical when printing with costly materials. A
common application of BJ is producing a ceramic part.
Recent studies show that the bulk density of BJ printed parts
has improved (Díaz-Moreno et al., 2019; Wheat et al.,
2018), approaching fully dense stainless steel parts and
suitable for metallic foam structures. BJ’s advantages also
include a high resolution that provides the possibility of
creating detailed finishes.
DED processes use focused energy to melt materials directly

when adding them layer by layer to the workpiece. The
raw materials are in the form of a wire or powder, and the
concentrated energy source is typically a laser, electron beam or
arc light (Gibson et al., 2015). More materials are involved in
DED printing than in some of the other processes. The fatigue
performance of DED printed parts has also improved (Gordon
et al., 2019). Recent research has shown that DED’s powder
capture efficiency changes as the working distance changes and
can improve as the material’s surface temperature increases
(Haley et al., 2019).
ME is similar to the traditional plastic extrusion process in

that both processes need to melt the material being molded. A
common ME technology is FDM, where a nozzle will deposit
thematerial in a soft and semiliquid state onto a build platform,
a small amount each time to produce the 3D product. The
production rate is lower than that in the extrusion process,
but ME can produce more complex parts. Generally, the cost
of ME is the lowest among all the AM technologies,
contributing to its being the most popular 3D printing method.
Considerable efforts have been dedicated to creating new
materials and improving the printing speed, process parameters
and thermal activities of the FDM process (Luo et al., 2020;
Costa et al., 2017).
MJ is a group of AM processes that selectively jet liquid

raw materials. If those materials are plastics, they are usually
light-sensitive and are ultraviolet (UV)-cured right after
deposition. MJ’s printing speed is faster than many AM
technologies (Gaynor et al., 2014), and it has the ability to print
different materials simultaneously. This feature offers great
opportunities to create new materials for various applications
and to print microstructures (Cheng et al., 2020; Dilag et al.,
2019). For example, some researchers have employed MJ’s
ability to simultaneously print different materials to print fluid
circuit components (Sochol et al., 2016).
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PBF is a series of AM technologies that places a thin layer
of powder raw material on a platform called the powder bed.
After fusing the material at selected positions, another thin
layer of powder material is spread over the previous layer, a
process that is repeated to print the 3D part. The energy source
can be a laser, electron beam or infrared lamp (Mele et al.,
2019b). Postprocessing is usually necessary for PBF, such as
blowing away residual powders or cutting the printed part off
the building platform (King et al., 2014). The different
microstructures cause the bulk anisotropy of PBF parts
(Lowther et al., 2019), and recent research revealed that this
bulk anisotropy can be reduced by applying a large beam width
(Shi et al., 2020).
VP is the process where the polymerization of liquid

photosensitive resin takes place in a vat. The resin can undergo
a chemical change initiated by either a laser or arc light source
to form a solid 3D part. There are several types of VP, such as
stereolithography, digital light process and continuous liquid
interface product (Tumbleston et al., 2015). Recent research
indicates that for certain parts geometries, such as length/
diameter ratio is higher than 2, the “bottom-up” and “top-
down” print methods could lead to different results. For
example, “bottom-up” parts may have more defects
(Santoliquido et al., 2019). Table 1 summarizes the major pros
and cons of these AM technologies.

2.2 Additivemanufacturingmaterials
This section introduces the AM materials typically used for
the mature AM solutions that are the scope of this study.
Material can affect the selection of AM technology for a
specific application because a process can often produce
several types of materials. Sometimes, when the decision-
maker has already designated the material, some AM
processes can be canceled from the alternative list if they are
not capable of printing the selected material. In addition, the
same material printed by different processes could lead to a
significant difference in the parts. This study evaluates this
point when required decision-making data is collected
for a specific application. A material’s performances under
different AM processes are reflected in collecting the
corresponding data.
The first of these materials under the scope in this study are

polymers that have many advantages that other materials
cannot match, such as their lightweight, high strength-to-
weight ratio and resistance to corrosion. Thermoplastics are
widely used for FDM, including polylactic acid, acrylonitrile

butadiene styrene, acrylonitrile styrene acrylate and nylon 12
(Lee et al., 2017). Thermosets, which are the main materials
used for MJ and VP, must be UV-curable and in a liquid state;
normal AM thermosets are epoxies, acrylates and acrylics. The
parts printed from these photosensitive thermosets, however,
degrade over time and start to lose some of their mechanical
properties (Bourell et al., 2017).
Metals and alloys are popular engineering materials because

of their excellent mechanical properties, such as tensile
strength, hardness and elongation. Typical metal materials for
AM are stainless and tool steel, aluminum alloys, titanium and
its alloys and nickel-based alloys (Ngo et al., 2018; Herzog
et al., 2016). The quality of 3D printed parts is determined by
powder quality, whose flowability, particle size and surface
morphology are influenced by metal powder manufacturing
processes (Vock et al., 2019). It is also easier to change the
composition of the parts by changing the ratio of the mixed
alloy powders in AM than in traditional manufacturing
processes (DebRoy et al., 2018). Researchers have been
improving the mechanical properties of metal AM materials
and creating new metal AM materials (Carroll et al., 2015;
Shafranek et al., 2019).
Ceramic materials have great resistance to chemicals, low

electrical conductivity and high strength, although they are
brittle. All of the main AM technologies discussed above can
print ceramic parts (Wang et al., 2019a) through direct or
indirect ceramic printing methods. Direct methods sinter
the material directly to form a part, while indirect methods
print a green body and then sinter it (Chen et al., 2019).
Ceramic AM solutions can print a wide range of ceramics,
such as boron carbide, alumina and zirconia (Yang and
Miyanaji, 2017).

2.3Multicriteria decision-making tools
Multicriteria decision-making (MCDM) tools are designed to
help decision-makers solve complex AM process selection
problems. This section briefly reviews current MCDM
methods, from which our research adopted some concepts to
create a novel pairwise comparison MCDM framework that
can translate decision-maker’s subjective priorities more
efficiently.
Among current methods, the AHP uses a pairwise

comparison in complex decision-making processes (Saaty,
2001; Saaty, 1990). The advantages of AHP are its modeling of
a real problem in a hierarchical manner, ability to translate
verbal judgments and guaranteed consistency (Ishizaka and

Table 1 Comparison of advantages and disadvantages of main AM technologies

AM Technologies Advantages Disadvantages

VP Low cost, high-detail surfaces, high printing speed Low mechanical properties, parts degrade over time, limited
materials

FDM Low cost, easy to use, simple post-processing if necessary Low mechanical properties, low resolution, low accuracy
BJ No support structures needed, high resolution, cost effective Difficult to print full-density parts, low mechanical properties, high

porosity
MJ High accuracy, high printing speed, full-color parts Costly, low mechanical properties, parts degrade over time
DED Large build size without support structures, high printing

speed with full density, cost effective
Low resolution, low accuracy, rough surface

PBF Full-density parts, high mechanical properties, high resolution Expensive, low printing speed, post-processing required
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Labib, 2011). A recent study has shown that combining a
problem structuring approach with the AHP process can
improve the reliability of AHP assessments (Marttunen et al.,
2017).
The best worst method (BWM) uses a unique algorithm to

determine the weights of criteria, picking and using the best and
the worst criteria based on their desirability (Rezaei, 2016;
Rezaei, 2015). The benefits of BWM include its improved
consistency, relative ease to use and ability to combine
smoothly with other MCDMmethods (Rezaei, 2015). Created
by Jafar Rezaei in 2015 (Rezaei, 2015), the BWM is a relatively
young MCDM tool but a robust one that has been used in
many areas, such as the airline industry, supply chain
assessment and education (Badri Ahmadi et al., 2017; Gupta,
2018; Salimi and Rezaei, 2016).
Using linear normalization, VIKOR is good at comparing

alternatives with opposing criteria and different units
(Opricovic and Tzeng, 2007). Because of its ability to handle
complex multicriteria optimization, VIKOR has been widely
used in the areas of renewable energy, sustainability (Mardani
et al., 2016) andmaterial selection (Jahan et al., 2011).
The ANP is an extension of the AHP that considers

component dependence and feedback. The weightings
delivered by the ANP algorithm assess the interaction of the
criteria involved (Saaty and Vargas, 2013). ANP has been
applied in such areas as human resources management,
energy management, business and financial management,
design and engineering and manufacturing systems (Kheybari
et al., 2020).
Preference ranking organization method for enrichment

evaluations (PROMETHEE) offers simplicity, clearness and
stability but does not elaborate the weightings of criteria (Brans
et al., 1986), a weakness that can be improved by adopting
the weightings process from other decision-making tools.
PROMETHEE can also be enhanced by applying some
features of AHP (Macharis et al., 2004). According to a review
paper, PROMETHEE has been applied in such areas as
environment management, hydrology and water management,
business and financial management, chemistry, logistics and
transportation and manufacturing and assembly (Behzadian
et al., 2010).
TOPSIS is among the most widely used multicriteria

decision-making solutions, especially within the supply chain

and logistics, design, engineering and manufacturing systems
(Behzadian et al., 2012; Zyoud and Fuchs-Hanusch, 2017). A
comparison of fuzzy TOPSIS and fuzzy AHP in a supplier
selection scenario found that fuzzy TOPSIS had a better
performance inmost cases (Lima Junior et al., 2014).
The introduced MCDM tools have their special strengths

and limitations, as shown in Table 2. They have been applied
to solve decision-making problems across a wide range of
fields; some of them are used to select AM processes and
demonstrate the feasibility. Some of these MCDM methods
rank the alternatives through pairwise comparisons. However,
when the pairwise comparisons are conducted, the certainty of
each pairwise comparison is not collected or used. This
information, the direct certainty of every pairwise comparison,
is a part of the decision-making process and can have an effect
on the final selection result. This work proposed a MCDM
tool that applies this direct certainty in the decision-making
process to evaluate the alternatives, especially for the selection
of AMprocess. To the best of our knowledge, no work has been
performed that collects the direct certainty. The proposed tool
gathers the direct certainty from the decision-maker and
interprets this information to apply in determining criteria
weightings, which is a primary step among decision-making
tasks. It is suitable for decision-making tasks when uncertainty
is a critical factor affecting the decision.

3. Methodology

Pairwise comparison can be used in many MCDM methods
to determine the weightings of criteria, such as AHP, BWM
and VIKOR. When a pairwise comparison is made, the
corresponding certainty of this judgment appears. This direct
certainty reveals the decision-maker’s reliability of the judgment.
Direct certainty is valuable information for decision-making
because it shows the reliability of the judgments. When a set of
pairwise comparisons are conducted, some pairwise comparisons
could have high certainty, which means the decision-maker feels
more confident about these judgments. Because the judgments
with high certainty express the decision-maker’s preference more
precisely and clearly, they should play a more important role,
compared with judgments with low certainty. If there is a scale to
measure the direct certainty, the certainty can be required
directly from the decision-maker when the comparisons are
executed. The direct certainty is critical to the weighting

Table 2 Brief summary of the advantages and disadvantages for introduced MCDM tools

MCDM tools Advantages Disadvantages

AHP Using a hierarchy system to evaluate tangible and intangible factors
to achieve a structural solution

Large number of comparisons when the problem is
complicated

BWM High consistency for pairwise comparisons, yet few steps, and
judgments

It employs parsimonious AHP, which may cause unknown side
effects

VIKOR Obtaining compromise solution at the beginning of system design Impropriate preference ranking may occur because of the use
of VIKOR’s maximum group utility calculation equation

ANP The interdependence of alternatives is included by a network
structure

The different effects between clusters could be neglected

PROMETHEE The criteria does not need to be proportionate; easy to apply Additional tool is needed for weighing the criteria preference
TOPSIS Simple process based on logic of human choice study The relevant importance of solution distance is not considered

Sources: Al-Harbi (2001), Emovon and Oghenenyerovwho (2020); Moslem et al. (2020), Opricovic and Tzeng (2004); Velasquez and Hester (2013), Jahan
et al. (2011); Huang et al. (2009), Opricovic and Tzeng (2007); Shih et al. (2007)
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calculation, but it was ignored before, or there was not an
effective measure tool for the direct certainty. A measuring tool
for direct certainty is first developed for this purpose, and the
weightings with the consideration of the judgments’ direct
certainty are calculated in thismethodology.
In addition, the demands from decision-makers can be

classified into two categories: constraints and criteria. Constraints
are the primary demands that must be met. Criteria are the
demands that are not mandatory but can be used to judge.
Constraints can screen the alternatives, and criteria can be used
to compare the screened alternatives. A characteristic can be a
constraint and a criterion at the same time. The purpose of
classifying demands is not only to screen the alternatives but also
to delete the constraints from pairwise comparisons. Because in
some close comparisons, unnecessary criteria can change the
final selection result. Meanwhile, the clarification of criteria and
constraints reduces the following pairwise comparison load.
For these reasons, a novel and comprehensive framework is

proposed to solve the AM process selection problem called
the certainty pairwise comparison (CPC) decision-making
tool. This method first uses a new measuring tool to determine
direct certainty and then calculates the weightings with the
consideration of the judgments’ direct certainties. The
framework also constructs a system that can reduce a decision-
maker’s comparison duty and potentially reduce the errors of a
decision-maker’s pairwise comparisons.

3.1 Certainty pairwise comparison decision-making
steps
Figure 1 shows the steps of the proposed CPC decision-making
process. The first step is defining the decision criteria and
constraints, during which a decision-maker selects the range of
desired parameters, such as the printing speed and the tensile
strength of the part. If a constraint is numerical, at least one of
the maximum or minimum quantities is mandatory. Next,
based on the selected constraints and criteria, the related data is

extracted from the database, which includes all the information
on AM technologies and materials to construct a tailored
subdatabase. In the third step, a decision-maker performs the
pairwise comparisons of the selected criteria and, by applying
the direct certainty measure tool, determines the certainty of
each comparison. In the fourth step, by applying the CPC
weighting calculation method, the weightings can be acquired
with the contribution of the judgments’ certainties. Finally, the
CPC suggests the optimized solution based on the integration
of the weightings and the required criteria information.

3.2 Theoretical backgrounds
Assume there arem criteria. Once the pairwise comparisons are
made, a result matrix A is obtained as in equation (1):

A ¼
a11 � � � a1m
..
. . .

. ..
.

am1 � � � amm

2
64

3
75 (1)

where aij is the preference of criterion i to j, it can be obtained
based on a pairwise comparison scale, such as Saaty’s (1988)
scale. If aij = 1, that means that i and j have the same
importance; if aij > 1, i is more important than j. The certainty
of an arbitrary judgment aij is defined as the reliability of the
pairwise comparison of criterion i to j, represented by cij. The
certainty, which must be assigned by the decision-makers who
make the comparison, quantitatively reflects the reliability of a
judgment. The certainty scale of values is shown inTable 3.
All the values between 20% and 100% are acceptable,

depending on the certainty of a judgment. For example, if the
decision-maker is more than 80% but less than 100% confident
in a judgment, any value between 80% and 100% can be
assigned based on the certainty level. If certainty is lower than
20%, a suggestion of reconsidering this judgment will be given.
These certainty values make up the certainty matrix C, which
has the same dimension as result matrix A.
Equation (2) is the certaintymatrix C:

C ¼
c11 � � � c1m
..
. . .

. ..
.

cm1 � � � cmm

2
64

3
75 (2)

where the arbitrary element cij corresponds to the certainty of
the judgment aij.
Lettingwi represent the optimized weightings, which are also

decision variables deciding on weights based on preferences
and their certainty. The absolute difference between a
decision-maker’s comparison result and optimized weighting
comparison is expressed as j wi

wj
� aij j. With the consideration of

Figure 1 Schematic diagram of the proposed AM selection process

Table 3 Judgment certainty scale

Certainty of
a judgment (%) Term Description

100 Certain The reliability of a judgment is the highest
80 Confident The decision-maker feels confident about

this result; the judgment is reliable
60 Uncertain The decision-maker has some doubt about

the judgment, but it is still reliable
40 Unconfident The reliability of the judgment is low
20 Hesitant The judgment is not reliable
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the certainty, the absolute difference needs to be multiplied by
the corresponding certainty cij, to get the convinced absolute
difference, that is, j wi

wj
� aij j � cij. The objective of CPC is then

to minimize the sum of each convinced absolute difference z,
and the optimized weightings can be determined by solving
equation (3):

Minimize z ¼
Xm

i¼1

Xm

j¼1

����wi

wj
� aij

����� cij

 !
(3)

Subject to Xm

i¼1

wi ¼ 1

As for theAMselection, some criteria aremeasurable in numerical
terms, such as Young’s modulus. These values are proportionally
condensed under a 1–10 scale to compensate for the effect of the
criteria’s different units. For some other criteria, when the
numerical values are too small to comparewith others, this process
can be proportionally enlarging within a 1–10 scale. The
condensed/enlarged values are expressed as Ruv, where u
represents the numerical value of a criterion and v for an
alternative. More details will be given in the next paragraph.
However, for some criteria, Ruv is not available, such as the
complexity of postprocessing. To optimize the AM selection, Ruv

for the criteria such as postprocess complexity is also obtained by
using the introduced CPC certainty method (comparing the
alternatives in regard to the unavailable criteria). Finally, the
overall score of an alternative v can be determined by equation (4):

S� ¼
Xm

�¼1

w�Ru� (4)

3.3 Consistency
Consistency is a key factor in evaluating MCDM tools. A high
consistency means a reasonable application for a MCDM
method. However, as a direct certainty embedded method,

CPC combines its pairwise comparison process with other
MCDM tools. It will not affect the consistency, although it will
lead to different criteria weightings and final alternative
ranking. Because CPC is a new weighing MCDM tool, it does
not change the pairwise comparison sequence, and it will
inherit the consistency from theMCDM tool combinedwith.

3.4 Database
The AM processes database includes the characteristics of each
potential AM technology and the features of the corresponding
AMmaterials. The information on which the initial selection of
material/process combinations is made should be available
during the early decision-making process.
The database is still under development. However, the data

that supports the following case studies is available. Please
contact the authors to acquire access if necessary. Further, the
data is tailored for each case in the following case studies. For
example, because of the low production volume, the initial
cost of printers is not considered, despite the fact that it can be
essential for other situations. The 3D print parts can be
purchased from 3D printing services companies, especially
when low production volume. To get precise selection results,
only related data is required for each application of the CPC
AM selection. The information that is mandatory should rely
on the decision-maker requirements.
The selection of appropriate processes for the AM of a

particular part is based upon a matching of the required
attributes of the part and the various process capabilities. Once
the overall function of a part is determined, a list can be
formulated giving the essential geometrical features, material
properties and other attributes that are required. Figure 2
summarizes some commercial AM processes and their
characteristics.

4. Case study

This section consists of two case studies: investment casting
patterns and an adjustable pasta drying rack prototype to

Figure 2 Classification of commercial 3D printing processes and their characteristics
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validate the CPC selection tool. The decision-maker’s specific
requirements for each case study decide the selection criteria
and constraints. The related data is collected to perform the
CPC method separately. Finally, the AM technologies are
ranked, and themost appropriate technology is recommended.

4.1 Investment casting patterns
3D printing technologies have gradually become involved in
investment casting, a manufacturing process based on lost-wax
casting that can produce intricate near net-shape parts with
isotropic properties. Investment casting employs master
patterns that are similar in size to the final parts to make molds
for the parts. The lead time for producing the pattern molds
increases as their complexity increases, and the cost of the
molds is high, especially when production volume is low. It is
also difficult to produce highly complex molds, which limits
the shape of the final products. AM is a good solution for this
problem, as it can skip the production of molds and print the
patterns directly. As a result, AM technologies are able to print
highly complicated parts at a lower cost when production
volume is low. In addition, AM offers greater dimensional
accuracy and can reduce casting defects by 99.5% (Wang et al.,
2019b).
Figure 3 illustrates the steps involved in the conventional

investment casting process (Serope Kalpakjian, 2008). Seven
steps are used to produce the investment casting mold.
Molten metal is then poured into the mold in Step 8. After
solidification, the mold is removed and the metal takes the
shape of themold.
The illustrated part shown in Figure 4 is a customized joining

structure that supports and connects machine components, is
intended to be produced using investment casting patterns
through a 3D printing process. Using the Visual Basic for
Applications in MS Excel, the CPC method is developed
to select the most suitable AM solution based upon the
customer’s requirements. The data and CPC model for this
case study are available; please contact the authors to acquire if
needed.
For this application, the printed patterns will be melted and

burnt out after making the molds (i.e. Step 7 in Figure 3). To

ensure that the melted pattern material can flow out of the
casting molds, the customer indicated that its melting point
should be lower than 1,400°F because the customer’s furnace
temperature ranges to 1,500°F. The 100°F difference is
selected to guarantee the flow and removal of the patterns.
Because the customer did not want postprocessing to be
complicated, the surface finish and dimensional accuracy of the
process are critical to the selection process. The surface finish is
measured by Ra, and the dimensional accuracy is measured by
the dimensional tolerance6a%.
Three different scenarios were developed to examine the

performance of the proposed AM solution under different
circumstances. The proposed constraints and criteria for each
scenario are presented in Table 4. For example, in Scenario 1,
the melting point is treated as both a constraint and a criterion,
but in the other two scenarios, it is only considered as a
constraint. Also, the printing speed is a constraint in Scenario 1
but a criterion in Scenario 2.
The CPC method can be combined with many pairwise

comparison tools, such as the classic AHP, where the
certainty of each comparison is applied to the weighting
calculation. In this application, the BWM was selected
because it is a brief process with high consistency. The BWM
requires the selection of the most and least appropriate

Figure 3 Schematic illustration of main steps in the conventional investment casting process

Figure 4 Configuration of the joining structure pattern
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criteria and is used by the customer to compare the
importance of each criterion with that of other criteria in a
particular sequence. A decision-maker conducted the pairwise
comparison following the BWM pairwise comparison order and
provided certainty in their decision. The comparison results and
the certainties are presented in Table 5. Each comparison needs
to be executed carefully.

By applying equation (1), the weight of each criterion can be
calculated. As shown in Figure 5, which illustrates the
breakdown in importance for Scenario 1, dimensional accuracy
was the most dominant criterion in this application,
contributing up to 41% of the whole importance. The surface
finish formed 31% of the total importance, which is predictable
given that the surface finish and dimensional accuracy of the

Table 4 Required constraints and criteria for the AM application selection

Property Description Scenario 1 Scenario 2 Scenario 3

Melting point It must be lower than 1,400°F as
required by the foundry company.
The low melting point assists the
flow of the melting pattern material

Constraint and Criterion Criterion Criterion

Young’s Modulus This reflects the pattern’s stiffness. A
high Young’s modulus can improve
the precision of the molds made by
the patterns

Criterion Constraint Criterion

Surface finish The better surface finish of the
patterns leads to a smoother surface
of the cast parts

Criterion Criterion Criterion

Printing speed This affects the production time of
the final parts

Constraint Criterion Constraint and Criterion

Dimensional accuracy This relates to the utilization of some
machining processes that can
improve dimensional accuracy

Criterion Criterion Criterion

Autoignition temperature A low autoignition temperature
facilitates the removal of the patterns
in the investment casting process

Criterion Criterion Constraint

Cost This refers to the cost of pattern
production

Criterion Criterion Criterion

Table 5 Certainty pairwise comparisons with the best worst method

(The best) Criterion Criteria Importance Certainty (%) (The worst) Criterion Importance Certainty (%)

Scenario 1
Dimensional accuracy Autoignition temperature 7 90 Melting point 2 90

Cost 4 100 3 80
Surface finish 3 90 6 70
Dimensional accuracy 1 100 8 60
Young’s Modulus 6 80 2 60
Melting point 8 60 1 100

Scenario 2
Cost Autoignition temperature 9 90 Autoignition temperature 1 100

Cost 1 100 9 80
Surface finish 6 90 2 90
Dimensional accuracy 5 90 2 90
Printing speed 3 80 5 80
Melting point 8 70 2 100

Scenario 3
Printing speed Young’s Modulus 8 100 Cost 2 90

Cost 9 80 1 100
Surface finish 3 90 5 100
Dimensional accuracy 4 90 2 80
Printing speed 1 100 9 80
Melting point 7 60 2 70
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patterns directly affect the quality of the final parts created by
the investment casting process.
The collected numerical data were scaled to the same

dimension, so the attributes with different units were
comparable. We converted every nonnumerical attribute to
numerical data for the purposes of this analysis. After
determining the relevant criteria for this application, the tool
created a tailored datasheet that contained only the related
data. For this application, those data included printing speed
and material costs, which can be costly, even though this is not
a high-volume production situation. Printing speed not only
affects the production rate, but a very high printing speed may
have a negative effect on the accuracy and surface finish of the
final part(Galantucci et al., 2015; Miyanaji et al., 2018). While
other properties are not always decisive, they can also sway the
ranking result in a specific scenario. Figure 6 shows the related
attributes’ performance during the CPC AM selection, which
illustrates the importance of each criterion in different
scenarios. In Scenario 1, the surface finish and dimensional
accuracy are critical, but the cost is the most important for
Scenario 2. For Scenario 3, printing speed shares the highest
weight.

The optimized ranking results produced using equation (4) are
shown in Figure 7, where the x-axis stands for each process
under different scenarios and the y-axis stands for the CPC
score. They show that in Scenario 1, the most appropriate
method for printing the joining structure patterns would be VP,
which can produce high-dimensional accuracy parts with a
smooth surface finish. The recommended method for Scenario
2 is MJ technology, which can print wax parts that, in
investment casting, will leave less residual in the mold after
burning. Also, for Scenario 2, it shows that ME can also be a
great solution where cost is a major issue for the decision-
makers. The high printing speed of MJ makes it leading in the
results for Scenario 3. The scores for BJ and directed energy
deposition are extremely low because the low burning
temperature materials used for those methods are still under
development. The results also illustrate that plastic PBF shows
potential for investment casting patternmaking.

4.2 Adjustable pasta drying rack prototype
Rapid prototyping is still a primary application of AM
technologies, even AM is getting more and more involved in
production. The second case study is on producing a prototype

Figure 5 Weighted importance of Scenario 1
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for an adjustable pasta drying rack. As shown in Figure 8, the
adjustable pasta drying rack can adjust the height by the threads
on the body. Other advantages over traditional rack are it can
disassemble when not used, saving the kitchen room and
making it easy to clean. The decision-maker indicates that the
mechanical properties are not crucial for this prototype. The
essential criteria are surface finish, cost and accuracy. Because
only one prototype is needed, it is not recommended to buy a
3D printer. The main cost of this application is the 3D printing
material cost. Further, the final product will be made of plastic,
so thematerial of this prototype is also plastic.
The CPC pairwise comparison is conducted following the

BWM’s sequence, and the comparisons and CPC weightings
are listed in Table 6. The VP is the leading technology for
the pasta drying rack prototype, as shown in Figure 9, where
the y-axis stands for theCPC score.

5. Comparing results with other decision-making
tools

To demonstrate the influence of CPC, a comparative study is
done by applying the results of the pairwise comparisons
from the casting case study. Both CPC and BWM applications
used the same normalization method. As shown in Table 7, the
ranking results for CPC and BWM are listed for three
scenarios. The employment of direct certainty affects the BWM
ranking results, especially in competitive ranking, where some
alternative scores are close, such as Scenario 2, the most
suitable AM process is changed fromMJ to ME. For Scenarios
1 and 3, the alternative scores change, but the rankings do
not change much because some alternatives have stronger
dominant potential under certain circumstances. Table 7
applies the same pairwise comparisons, and the corresponding
certainty is added for CPC. It demonstrates how the ranking
results will change with the same pairwise comparisons
using certainty in decision-making and proves the effectiveness
of CPC in MCDM. Similar changes could happen when
CPC combines with other MCDM tools that use pairwise
comparisons to find theweightings of criteria.

Figure 7 Optimized AM process selection ranking results
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Figure 8 Adjustable pasta drying rack

Table 6 CPC of drying rack prototype

(The best) Criterion Criteria Importance Certainty (%) (The worst) Criterion Importance Certainty (%) Weighting

Cost 3 80 3 90 0.28

Surface finish Surface finish 1 100 Printing speed 7 100 0.42
Dimensional accuracy 5 90 2 90 0.24
Printing speed 7 100 1 100 0.06

Source:With the best worst comparison sequence

Figure 9 CPC result of pasta drying rack prototype
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Compared with other successful pairwise MCDM tools, such
as AHP and BWM, CPC has its novel weighting determining
process and precisely reflects the decision-maker’s preferences.
CPC can be applied to them and modify their results by
including certainty in the weighting determining process. Some
MCDM tools, such as fuzzy AHP, also deal with the
uncertainty in decision-making by fuzzy numbers. However,
CPC fixes the uncertainty by acquiring direct certainty from the
decision-maker and employs this information to compensate
for the uncertainty. In addition, CPC can be more convenient
to apply because fuzzy numbers can take more time for a
decision-maker to decide. Future studies should illustrate more
differences betweenCPC and otherMCDMtools.
Also, by observing the case study and Table 7, high direct

certainty judgments can lead to a ranking that is close to the
original BWM method. This observation needs to be further
studied in the future.

6. Conclusion

This study offers a new 3D printing process selection tool that
employs a CPC to analyze and optimize the selection process.
The case study illustrates the various steps applied to the
rapid investment casting of a given part. The proposed CPC
algorithm consists of two parts: the criteria comparisons and
the certainty level of each comparison. In essence, all these
comparisons and their certainties constitute an information
pool that can be used to comprehensively understand the
user’s decision-making process. A significant benefit of the
CPC method over existing MCDM methods is that it
calculates weightings that account for certainty levels. Using
the certainty information, the CPC translates the decision-
maker’s requirements into numerical information to decide
the criteria weightings. After obtaining those weightings, the
CPC ranks the six main AM solutions and identifies the most
suitable technology. The CPC method can also be easily
combined with other MCDM tools to help them take certainty
levels into account and support a more informed decision. The
AM selection tool developed here inherits all the benefits of the
CPC method and can solve complicated AM process selection
problems at both the design and manufacturing stages. It is
important to note that because the AM industry is fast
developing, information about AM materials and technologies
must be continually updated when commercializing promising
AM technologies and releasing new AM materials. Future
research may uncover further ways in which the AM process
selection tool can be improved by combining it with other
MCDM tools and obtaining the benefits of those other
methods. However, the CPC requires more information to
make a decision, and it can be extra work compared with other
decision-making tools, even though the final result involves

certainty. Therefore, another future research could be finding a
solution to simplify the CPC tool. In addition, the CPC could
also help solve other decision-making problems whenever an
alternative needs to be selected among all the alternatives, such
as supply chain selection, logistics, sustainable manufacturing
and education.
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