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Abstract
Purpose – The purpose of this paper is to review cases of artificial reefs built through additive manufacturing (AM) technologies and analyse their
ecological goals, fabrication process, materials, structural design features and implementation location to determine predominant parameters,
environmental impacts, advantages, and limitations.
Design/methodology/approach – The review analysed 16 cases of artificial reefs from both temperate and tropical regions. These were
categorised based on the AM process used, the mortar material used (crucial for biological applications), the structural design features and the
location of implementation. These parameters are assessed to determine how effectively the designs meet the stipulated ecological goals, how AM
technologies demonstrate their potential in comparison to conventional methods and the preference locations of these implementations.
Findings – The overview revealed that the dominant artificial reef implementation occurs in the Mediterranean and Atlantic Seas, both accounting for
24%. The remaining cases were in the Australian Sea (20%), the South Asia Sea (12%), the Persian Gulf and the Pacific Ocean, both with 8%, and the
Indian Sea with 4% of all the cases studied. It was concluded that fused filament fabrication, binder jetting and material extrusion represent the main AM
processes used to build artificial reefs. Cementitious materials, ceramics, polymers and geopolymer formulations were used, incorporating aggregates from
mineral residues, biological wastes and pozzolan materials, to reduce environmental impacts, promote the circular economy and be more beneficial for
marine ecosystems. The evaluation ranking assessed how well their design and materials align with their ecological goals, demonstrating that five cases
were ranked with high effectiveness, ten projects with moderate effectiveness and one case with low effectiveness.
Originality/value – AM represents an innovative method for marine restoration and management. It offers a rapid prototyping technique for design
validation and enables the creation of highly complex shapes for habitat diversification while incorporating a diverse range of materials to benefit
environmental and marine species’ habitats.

Keywords Artificial reefs, Additive manufacturing, Design, Biomimetic, Marine ecosystem restoration

Paper type General review

1. Introduction

As oceans confront unprecedented threats and stressors that damage
the entire natural reef ecosystem (Berman et al., 2023), artificial reefs
(ARs) have become a key strategy for marine restoration and
management. Historically, a variety of objects, ranging from sunken
train carriages and discarded tires to modular cement blocks have
been deployed to the ocean (Wang et al., 2022). However, recent
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developments in AR manufacturing have shifted towards designs
with specific ecological goals and targeted species. Within this
context, driven by environmental needs, ecological concerns and
technological advances, has particularly highlighted the role of
additivemanufacturing (AM) tobuildARs.
This paper provides a detailed review of how AR

manufacturing and deployment have evolved from traditional
to modern AM methods. Although the paper provides a broad
background on various types of structures, it focuses especially
on ARs with biomimetic design features, mimicking natural
patterns like those in coral reefs.
AM presents novel opportunities for marine diversity and

biomass. Its main benefits include the ability to create intricate
structures (Mostafaei et al., 2021) and use innovative materials
that support ecological goals and preferred designs while
reducing environmental impacts.

1.1 Reef ecosystem
Reef structural complexity plays a crucial role in ecology
because of its ability to offer habitats and enhance biodiversity
(Yanovski et al., 2017). This complexity refers to the reefs’
physical three-dimensional (3D) structure (Graham and Nash,
2013). Such structural complexity in ecosystems foster a range
of microhabitats (Figure 1) increasing the diversity and
population of related organisms (Crowder andCooper, 1982).
Reef structures may have substrates that are geogenic (rocky

from stone) or biogenic (derived from the carbonate deposition
of habitat-forming organisms like trees, oysters, wetland grasses
and corals (Jackson-Bu�e et al., 2022; Richardson et al., 2017)).
These substrates host large communities of sessile species, which
remain attached to a substratum, andmobile-reef species seeking
shelter within the reef environment (Bu�e et al., 2020).

Coral reefs, significantly impacted by climate change, are
renowned for their ability to form diverse structural shapes.
This ability often linked to competitive survival and
vulnerability to disturbances (Madin et al., 2014), makes then a
reference for developing underwater structures. Understanding
their shape’s adaptation to meet functional needs influenced by
local environmental and biological factors (Connell et al.,
2004)may be useful to design ARs.
Five common feature configurations have been identified

(Figure 2). Although all configurations have the same growth
potential, their different shapes allow them to occupy more
space, reach greater heights and provide wider areas of shade
(Cresswell et al., 2020).
The literature identifies two zones of reef ecosystems,

characterised by spatial distribution, water temperature and depth.
These are classified in this research as tropical and temperate
regions (Ebeling andHixon, 1991; Stuart-Smith et al., 2022).
In tropical regions, most biogenic reefs consist of Scleractinia

coral calcification (Miller, 1995). These corals thrive in shallow
areas (up to 30m) where sunlight facilitates their
photosynthesis (Li and Asner, 2023). Beyond their biological
role, coral reefs act as barriers against shoreline erosion and
provide various ecological services (Hoegh-Guldberg et al.,
2017), such as tourism, commercial fishing, scientific research
and management activities. All those activities contribute
significantly to the economy of that region (Economics, 2013).
In temperate regions, cold-water coral species are known to form

reefs in deeper zones (between 30 and 900m). Advanced offshore
technology has unveiled the true extent of Europe’s hidden coral
reef ecosystems (Freiwald, 2003). These habitats primarily
comprise macro-algae forests, light-dependent Scleractinia corals
and non-photosynthetic organisms such as azooxanthellate
gorgonians, Antipatharia and sponges (Kahng andKelley, 2007).

Figure 1 The diagram illustrates the impact resulting from the loss of structural complexity in marine habitats on the ecosystem, leading to the decline
of organisms that shelter on them

Figure 2 Most commonmorphologies of Scleractinia corals (biogenic reef-forming) classification
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Unfortunately, ocean warming and acidification pose
significant threats to coral reef growth, particularly in tropical
regions, resulting in highmortality rates duringmassive bleaching
events every year (Selwood et al., 2015). The calcium carbonate
of coral structure is highly sensitive to these anthropogenic factors
(Cornwall et al., 2021). Studies indicate that while initial
disturbances may not immediately impact the reef structure, a
loss or erosion of structural complexity can drastically affect
associated organisms, such as fish communities, leading to severe
consequences (Sano et al., 1987;Graham andNash, 2013).

1.2 Artificial reefs
ARs are defined as submerged structures intentionally placed on the
seabed to protect, regenerate and/or enhance populations of living
marine resources (Cardenas Rojas et al., 2021). The definition is
outlined in various assessments, including those by the Guidelines
for thePlacement at Sea ofMatter for aPurpose other than theMere
Disposal (UNEP-MAP, 2005), the Guidelines for the Placement of
Artificial Reefs (London Convention and Protocol/UNEP, 2009),
the Assessment of construction or placement of ARs (OSPAR,
2009) and the Guidelines and management practices for artificial
reef siting, use, construction and anchoring in Southeast Florida
(Lindberg and Seaman, 2011), becoming a significant technique for
resource enhancement (Bohnsack and Sutherland, 1985). ARs are
considered human engineering interventions aimed at restoring and
improving damage habitats, increasing fishery resource efficiency,
managing aquatic resources and promoting underwater tourism
(Spagnolo et al., 2015). The deployment of ARs may serve multiple
purposes: protecting sensitive habitats from fishing industry
activities; restoring degraded habitats; mitigating habitat loss;
enhancing biodiversity; offering shelter to marine populations;
providing new substrates for benthic communities; boosting
professional and recreational fisheries and diving areas; managing
coastal activities; fostering research and education; and forming
networks ofmarineprotected areas (MPAs) (Spagnolo et al., 2015).

1.2.1 Trends in the evolution of manufacturing artificial reefs
Over the years, a diverse array of construction methods,
materials and morphologies has emerged (Fauzi et al., 2017).
Selecting the right materials is crucial for achieving the desired
outcomes as it influences the design and durability of the ARs,
colonisation by marine organisms and consequently the fish
populations residing in these structures (Spagnolo et al., 2015).
Thematerials used for buildingARswere classified in twogroups:

1 Natural raw materials. Unprocessed substances obtained
from natural environment (Marschallek and Jacobsen,
2020). Common materials for ARs include quarry rocks
(Palmer-Zwahlen and Aseltine, 1994), rocky conglomerates
(Baine, 2001; Feary et al., 2011), bivalve shells (Fabi et al.,
2011), wood (Alam et al., 2020) and organic residues like
banana particles waste (Mat Jusoh et al., 2018).

2 Composite materials. These are produced by combining two
or more substances with varying properties, such as cement
(Baine, 2001; Dennis et al., 2018), metal (Mercader et al.,
2017; Scarcella et al., 2015), polymers (Omar, 1995),
ceramics (Kalam et al., 2018) and fibreglass (Kheawwongjan
andKim, 2012). Cement is notably preferred for its suitability
and cost-effectiveness in AR manufacturing, facilitating the
creation of specific designs (Spagnolo et al., 2015) through
castingmoulds or AM.

Concerning the design typology used for ARs, a range of
shapes, from randomly placed objects to purposefully designed
structures, have been implemented over the years (Bohnsack
and Sutherland, 1985). Three design typology classification
have been identified:
1 Underwater sculptures. Structures with artistic and

narrative significance, often created by well-known artists.
Designed to enhance marine biodiversity, support citizen
science and foster education (Smith et al., 2021). Their
primary aim is to attract subaquatic tourism, offering
underwater museum experiences, accessible through
scuba diving or snorkelling. Notable examples include the
Museum of Underwater Art (Smith et al., 2021), the
Museum of Art (Bujniewicz, 2019), and the Neptune
Memorial Reef (NeptuneMemorial, 2007).

2 Unit shape. Structures with geometric or abstract
morphology are developed individually or as assemblies of
multiple units. While capable of functioning
independently, they are typically grouped together as
modular components. This design approach primarily
facilitates manufacturing via mould casting or AM.
Common shapes include cubes, pyramids, triangular
prisms and various organic forms (Yaakob et al., 2016).

3 Discarded elements. Objects originally intended for other
uses, which were dropped offshore at the end of their life
cycle or after discontinuation of their production, have
been adapted as ARs. Examples include shipwrecks
(Santos et al., 2010), car tires (Sherman and Spieler,
2006), war tanks/armed force vehicles (Sheehy et al.,
2020) and subway cars (Galiano, 2003), among others.
Accidentally sunken elements also fall into this category.
The primary advantage of anchoring these structures to
the seabed is the elimination of their fabrication needs
while inadvertently promoting a non-targeted
biodiversity. However, they typically do not support
microstructural habitat development, may contain
corrosive materials to certain species, lack potential for
enhancing marine abundance and are introduced into
environments where they do not naturally exist.

Depending on the selected materials and shape, ARs can either
emulate patterns found in the marine environment or stand as
completely foreign elements within it. Biomimetics involves
structural transformation, drawing from nature’s sustainable and
resilient designs and solutions (Chen et al., 2015). ARs built with
biomimetic-based features enhance the local environment’s
benefits (Vivier et al., 2021). This paper concerned with AR
characteristics like structural complexity, surface rugosity and
morphology. Structures incorporating design features from
natural reefs are specially effective in increasing and sustaining
biodiversity (Dafforn et al., 2015; Loke et al., 2015; Tokeshi and
Arakaki, 2012; Torres-Pulliza et al., 2020).
The key aspects discussed in this section are presented in the

conceptmap illustrated in Figure 3.
Over time, the emphasis on using sustainable materials and

integrating artificial structures into the natural environment has
become a key trend in the development of ARs (Figure 4).
Technological advancements have facilitated the use of innovative
tools andmethods for their fabrication.Notably, the trend towards
designing structures with parametric shapes, which allow

Artificial reefs through additive manufacturing

Ilse Valenzuela Matus et al.

Rapid Prototyping Journal

Volume 30 · Number 11 · 2024 · 87–122

89



dimensions to change shape and geometry, represents a significant
future direction inARmanufacturing (Levy et al., 2022).

1.2.2 Effectiveness of artificial reefs
The efficiency of ARs depends on several critical factors
highlighted in various studies. These factors include the
importance of design management and reef complexity (Baine,
2001), targeting species and habitats for cost-effective ARs
(Gibson Banks et al., 2021) and understanding the
hydrodynamic, morphological and ecological behaviour of ARs
(Cardenas Rojas et al., 2021). Performance criteria for
developing these structures should include detailed information
of the target species like population abundance, size structure and
the reef-dependent biota; and detailed information of the habitat,
such as larval recruitment, immigration, growth, reproduction,
mortality and emigration (Carr and Hixon, 1997). A deep
understanding or targeted species and recruitment mechanisms
is essential for predicting colonisation rates in ARs.
To ensure the effective implementation of ARs, a

comprehensive guideline has been compiled (Figure 5) outlining
necessary considerations (Baine, 2001; Jahan and Strezov, 2019;
Matus, 2020; Vivier et al., 2021). These parameters are divided
into seven categories: planning and management, design
features, material compositions, habitat conditions, structural
stability, environmental variables andmonitoring techniques.
A novel approach to marine reef restoration uses AM to

support natural reef-building processes, serving educational
and scientific development purposes. While this technology
cannot eliminate anthropogenic influences or the coral
bleaching phenomenon impacting coral reefs globally, it offers

innovative solutions for sheltering species and fostering the
settlement of benthic organisms reliant on reefs for survival.

1.3 Additive manufacturing technologies
AM has become an important technology integrating
machinery, computer numerical control and a variety of
materials including polymers, metals, ceramics, cementitious
and composite materials in the global manufacturing field (Shi
et al., 2021). AM offers mass customisation, prototype
production and competitive advantages depending on the
application, such as lighter products, multi-material capability,
ergonomic design, efficient production times, fewer assembly
errors and reduced costs along with a combination of more
sustainable manufacturing processes (Jim�enez et al., 2019).
This innovative technology uses an additive approach to

build complex shapes layer by layer (Pereira et al., 2019). The
3D models are created using 3D computer-aided design
(CAD) software or obtained via reverse engineering tools like
3D scanners (Zhang and Liou, 2021). Expanding across
various industrial sectors, AM enhances functionality,
productivity and competitiveness, revolutionising numerous
production methods (Vafadar et al., 2021; Lim et al., 2016).
Unlike conventional subtractive manufacturing and formative
manufacturing, which involve casting into moulds or removing
material through machining, AM offers industry benefits in
customisation, complexity (Pereira et al., 2019), reducedwaste,
and improved sustainability (Pilz et al., 2020; Rouf et al., 2022).
While conventional processes can produce complex

geometries, they often demand significant process planning,

Figure 3 Concept map of AR manufacturing classifications according to the material and typology used
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assembly steps and post-processing efforts to achieve the
desired final product geometry.
AM applications in marine ecosystems hold vast potential

for future research and development, playing a key role in

the manufacture of ARs compared with conventional
industrial processes. There are several reasons why
traditional methods might be considered less effective than
AM processes:

Figure 5 Concept map of general considerations to ensure the effectiveness of manufactured ARs

Figure 4 Evolution map of AR manufacturing trends over the years
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� Limited customisation. Traditional manufacturing processes
often provide restricted flexibility in creating customised
design features for specific ecological goals or targeted
species. In contrast, AM technologies facilitate the
production of ARs with variations in shape, texture or
size. This versatility can be tailored to various purposes,
deployment areas or the scalability of AR implementation.
Unlike conventional methods, which require different
moulds for material casting (thus increasing production
costs) or use subtractive methods to sculpt the desired
shape (leasing to considerable waste), AM offers a more
efficient and adaptable solution.

� Material limitations. Traditional manufacturing may face
limitations in using materials that enhance durability and
ecological compatibility. In contrast, AM technologies
allow for experimentation with newmaterial combinations,
reducing environmental impact and benefiting marine
species.

� Complex morphologies. ARs intended to support specific
marine life and mimic natural reefs often require complex
shapes. Traditional methods may have difficulties to
produce intricate designs, internal cavities and specific
reliefs needed for these purposes.

� Resource efficiency. AM technologies often provide
greater resource efficiency by minimising material waste
during the production process. Conventional methods
might be less precise and generate more waste, raising
environmental concerns.

� Time and cost. The speed and cost-effectiveness of
manufacturing methods can vary based on the urgency of
marine conservation goals. AM offers faster prototyping
and production capabilities. However, for large-scale
production, traditional processes might be more
advantageous and faster due to the moulding techniques.

� Adaptability. As the marine environment is dynamic, ARs
need to be adaptable to changing conditions. Traditional
manufacturing may restrict the adaptability of structures,
while AM allows rapid modifications and enhancements
in a short time frame.

In summary, the limitations of traditional manufacturing in
terms of customisation, material selection, shape complexity,
resource efficiency, speed and adaptability make it less effective
to meet the requirements of building ARs and to address their
ecological and conservation goals.
Experimental studies have highlighted how AM technologies

bring innovative methods and materials to this field. 3D bio-
printing (Wangpraseurt et al., 2020) has shown the potential for
cultivating microalgae with high cell density. In addition, hybrid
photosynthetic materials have been synthesised to replicate the
morphological, optical and mechanical characteristics of living
coral tissue and skeletons.
Coral propagation substrates (Matus et al., 2021) developed

using AM and silicone moulds to convert 3D models into
limestone and Portland cement substrates have helped assess
the impact of textured surfaces, complex morphology and
chemical composition on coral propagation and growth.
Sensory materials for AM (Guti�errez-Heredia et al., 2016)

react to environmental changes like temperature, ultraviolet
(UV) light and pH, serving as indicators for changes in water,

temperature, salinity or pollution. These materials have
significance for AR applications.
Coral skeletons (Albalawi et al., 2021) have used AM to

create artificial coral skeletons using calcium carbonate photo-
initiated ink, enhancing the growth rate of live coral fragments
and streamlining the reef transplantation process while also
reducing costs.
Finally, 3D tiles (Levy et al., 2023) were manufactured with

ceramic terracotta clay through material extrusion to mimic
natural reef topographies, acting as valuable tools for
monitoring coral reef reformation.
AM technology processes are classified by ISO/ASTM

52900 standard, which further subdivides them based on the
type of material used: solid, powder, or liquid-based (Alghamdi
et al., 2021). The AM processes are identified using the
following nomenclature: binder jetting (BJ); direct energy
deposition (laser engineered net shaping, electron beam
melting); material extrusion (ME) (fused filament fabrication –

FFF, paste deposition modelling – PDM); material jetting
(polyjet, multijet and nanoparticle jetting); powder bed fusion
(selective laser sintering, selective laser melting, direct metal
laser sintering, selective heat sintering); sheet lamination
(ultrasonic consolidation, laminated object manufacturing);
and vat photopolymerisation (stereolithography; digital light
processing; liquid crystal display; continuous liquid interface
production and two-photon polymerisation).
In this paper, the most common techniques for AR

manufacturing are highlighted in blue colour in Figure 6.

1.3.1 Binder jetting process
This process is an inkjet-based method used to create 3D
shapes (Sachs et al., 1993). It involves spreading powdered
material into a layer and selectively binding it into the desired
shape with a binder, typically a polymeric liquid (Mostafaei
et al., 2021). This technique enables the relatively low-cost
production of complex geometries without thermal distortion,
as it operates at room temperature (Leary, 2020, p. 13).
Figure 7 illustrates the process where thin layers of powder are

spread, and the printhead selectively ejects and deposits the binder
droplets into the power bed, building the final geometry layer by
layer (Mostafaei et al., 2017, 2021). An integrated computer
numerical control (CNC) system provides three-axis movement.
TheZ-axis allows the bed platform tomove up and down, whereas
theX- andY-axis enable the printhead tomove and draw the layer
shape using the binder as ink (Caldeira, 2021).
Comparedwith other AMprocesses, BJ allows notable scalability

(Zocca et al., 2017), uses a diverse range of materials (Chen et al.,
2022a; Mostafaei et al., 2021), eliminates the need for support
structures for overhanging features (Rouf et al., 2022), allows full
recyclability of unprinted powders (Gibson et al., 2021a) and
processes the largest build volume (up to 2,200 � 1,200 �
600mm)among all AMtechniques (Mostafaei et al., 2021).
The BJ process uses a wide range of materials (Figure 8) such

as ceramics, metals, polymers, composites, glass, wood,
composites (Shrestha and Manogharan, 2017) and sandstone
(Hodder and Nychka, 2019). The binder is crucial for filling the
interstitial spaces between powder layers (Mostafaei et al., 2021).
Various binders are used according to the material used,
including water-based binders like maltodextrin (Suwanprateeb
and Chumnanklang, 2006), sucrose (Sachs et al., 1993) and
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Figure 6 Concept map of AM process categories based on ISO/ASTM 52900

Figure 7 Binder jetting additive manufacturing scheme of the operation machinery process

Figure 8 Concept map illustrates the category of materials used in binder jetting process, including powders, liquids and additives
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sodium silicate; and versatile organic liquids such as butyral
resins (Sachs et al., 1993), polymeric resins (Utela et al., 2008),
various polyvinyl (Feenstra, 2005) and preceramic polymers like
polycarbosilane (Sachs et al., 1993), polysiloxanes (Greil, 2000)
and aluminium amides (Peuckert et al., 1990).
Additives, highlighted in grey in Figure 8, can be optionally

used to improve the performance of the powder deposit ability,
printing behaviour, mechanical properties and post-processing
(Utela et al., 2008). Fibre additions, such as polymeric,
ceramic, graphite and fiberglass, may also be incorporated to
reinforce the powdermaterial (Bredt et al., 2002).
The impact of binder material on the marine environment

varies depending on the additives used. The binder provides
essential cohesion for the printed layers and is vital for the
structural integrity of the printed part. It is not feasible to
exclude this component from the mixture. Common binders
like polymers and resins may harm marine life, but recent
studies have developed bio-friendly binders (Ahn et al., 2021;
Boukhelf et al., 2022; Salari et al., 2022) aimed at reducing
environmental impact in marine applications such as ARs. BJ
has been used to build ARs using marine-safe materials such as
cement, mineral composites, sand or clays (Boskalis, 2017).
This process shows high potential in AR development, with

significant scalability, the ability to build large volumes, use
sustainable materials and create a rough surface finish that
provides more area for organisms to colonise. However, the
fabrication of large structures presents challenges such as the need
for heavy machinery, logistical issues and high transportation
costs to the deployment site.

1.3.2Material extrusion process
It is a process that involves extruding material and depositing it
layer by layer, facilitated by the relative movement between the
nozzle and the print bed. During extrusion, the semi-solid
material solidifies upon reaching its final position and shape
(Gibson et al., 2021b; Oleff et al., 2021). Various sub-categories
are defined by the type of extruder, as illustrated in Figure 9(a):
plunger, gear or screw; the feedstock form: filaments, paste or
pellets; and the kinematic design represented in Figure 9(b):
cartesian, delta, polar or robot arm (Kampker et al., 2019).
FFF is a widely used AMprocess (Rashid andKoç, 2021) that

works by heating the nozzle and extruding a filament of various
thermoplastic materials (Sola, 2022). This technology enables
rapid prototyping of experimental samples for design validation
and cost-effective manufacturing. It includes small-scale desktop
3Dprinters (with a build volume of up to 300� 300� 300mm3)
and larger 3D printers up to 1,005 � 1,005 � 1,005 mm3.
However, most consumables are limited to polymer materials,
which are not ideal for ARs because of their negative
environmental impact, reduced durability in seawater conditions
and limited scalability for producing large structures.
ME also encompasses PDM, the denomination used in this

paper due to the lack of clarity in the literature regarding the
appropriate terminology for this technique. In PDM, paste
material is extruded and deposited at room temperature,
solidifying through the evaporation of water or other solvents
(Ruscitti et al., 2020). The principal AM process stages include
mixing, pumping and extruding (Zhong and Zhang, 2022).
The extrudability factor is critical in this process as the

mixtures must resist gravity to ensure consistent extrusion

throughout the printing period. Any interruptions or head
repositioning may affect the extrusion flow rate, geometry,
density and other properties (Perrot et al., 2018).
This technique enables the creation of large volumes for ARs

and the use of a broad range of sustainable materials
(Bhattacherjee et al., 2021). For mortar development, PDM
primarily uses three types of materials illustrated in Figure 10:
ceramics (Romanczuk-Ruszuk et al., 2023), cementitious (Buswell
et al., 2018) and geopolymers (Zhong andZhang, 2022).
For cementitious-based materials, ordinary Portland cement

(OPC) is typically used (Albar et al., 2020), combined with
supplementary aggregates of natural or artificial origin. These
aggregates include pozzolanic materials like fly ash, silica fume,
metakaolin and blast-furnace slag; sandstone; recycled rubble
from construction and demolition waste such as brick (Christen
et al., 2022); glass waste (Ting et al., 2021); and biological
residues like seashells. In addition, mixtures are used to alter
density or viscosity, enhance flowability, reduce water content,
strengthen the mixture or generally improve the printability and
rheological properties. These mixtures includes superplasticizers,
viscosity modifiers, accelerators or retarders (Ahmed, 2023;
Robayo-Salazar et al., 2023).
Ceramic-based materials are classified into five categories

(Table 1): oxides, non-oxides, mixed oxides, bio-ceramics and
clays (Romanczuk-Ruszuk et al., 2023). The mixture typically
includes solids, water and additives such as polymer plasticizers
or inorganic electrolytes to control particle dispersion and
viscosity (Ben-Arfa and Pullar, 2020; Lamnini et al., 2022). The
ceramic paste should possess a high concentration of ceramic
powder and enough plasticity to be extruded (He et al., 2021)
and subsequently sintered at high temperatures for solidification
(He et al., 2021).
For geopolymers-based materials, the mixture must be

thixotropic, meaning its viscosity decreases under mechanical
stress, a crucial characteristic for this AM process. Geopolymers
offer benefits like high strength, resistance to high temperatures,
corrosion and permeability (Panda et al., 2019). Their ability to
incorporate waste materials and reduce CO2 emissions makes
them a promising “green” alternative to OPC (Lazorenko and
Kasprzhitskii, 2022). Geopolymers are a type of inorganic
material with a 3D framework, formed through the alkaline-
silicate activation of aluminosilicate precursors at room or
elevated temperatures (Ren et al., 2021). Recent studies have
explored the use of geopolymers as binders in the extrusion of
cementitious-based materials (Chen et al., 2022b; S� ahin and
Mardani-Aghabaglou, 2022).
The composition of the AM mixture may include

aluminosilicate activating agents, plasticizers, accelerators,
hardening retarders and aggregates like silica (quartz), tailored to
the required properties (Lazorenko and Kasprzhitskii, 2022).
Including fine and medium-sized sand particles in the mixture
can enhance its extrudability (Bong et al., 2021).

1.3.3 Advantages and limitations of additive manufacturing
processes to build artificial reefs
BJ andME are the primary processes in ARmanufacturing as they
use favourable and diverse materials for marine habitats and
benthic ecosystems, such as non-toxic substances with inert pH
(Berman et al., 2023). These processes also facilitate the
implementation of innovative mortar formulations, enable the
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creation of complex geometries and allow the construction of large
and dense structures to ensure stability on the seabed. In addition,
they offer benefits of low production costs and require less
equipment and labour operation comparedwith othermethods.
Figure 11 illustrates the main advantages and limitations of

AM processes to build ARs. BJ and ME have been favoured

for their suitability with the material properties required for
deposition (Berman et al., 2023) and their capability to create
structures with large volume, rugosities and cavities, crucial
features for supporting reef life (Torres-Pulliza et al., 2020).
Various AR studies have used BJ processes (Erioli and
Zomparelli, 2012; Gardiner, 2011; Reef Arabia, 2012). TheME
process, particularly PDM, offers a range of extruded materials
for AR manufacturing, including cementitious (Dunn et al.,
2019; Ly et al., 2021; Yoris-Nobile et al., 2023) and clay ceramic
materials (Lange et al., 2020; Levy et al., 2022)materials.
Other AMprocesses appear unsuitable for ARmanufacturing,

particularly those using metal materials, which are not
considered ideal for ecological solutions (Shah, 2021). The
equipment and production costs of manufacturing large
volumes with metal are high (Martin et al., 2022), making the
process less cost-effective compared with subtractive methods.
Heavy metals cannot be degraded by chemical or biological
processes and when accumulate in sediments, may cause

Figure 9 The diagram classifies the material extrusion process according to (a) three extruder mechanisms and (b) four kinematic designs for material
deposition

Figure 10 Concept map categorizes the materials used in the paste deposition modelling process, into base material, coarse aggregates and mixtures

Table 1 Classification of ceramic-type materials used in paste deposition
modelling process

Material group Material

Oxides Aluminium oxide, titanium oxide, zirconium oxide
Mixed oxides Lead Zirconate titanate, barium titanate
Non-oxides Zirconium diboride, silicon carbide
Bio-ceramics Calcium phosphate, hydroxyapatite
Clays Kaoline

Source:Table courtesy and adapted from Romanczuk-Ruszuk et al. (2023)
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toxicity in various marine organisms (Pan and Wang, 2012). In
addition, factors like oxygen, temperature, salinity, pH and
water flow can cause corrosion, affecting the longevity of metal
structures (Nassar, 2022). However, some ARs do use small
metal components as auxiliary materials for structural
reinforcement or assembly needs (Goad, 2018; Yoris-Nobile
et al., 2023). Given these considerations, processes primarily
using metal-based materials, such as sheet lamination and
directed energy deposition, have not been considered for AR
manufacturing.
Conversely, polymers are well-known to accumulate in

sediments, forming microplastics that adversely affect ingestion
and egestion processes in marine biota (Huang et al., 2021;
Pantos, 2022). This leads to the potential degradation and
consequent production of marine debris, contributing to
environmental pollution (Boström-Einarsson et al., 2020).

Photopolymers like UV resins, often used in processes such as
material jetting (MJ) and vat polymerisation, tend to be fragile
and biologically incompatible (Li et al., 2023). Although theMJ
process can produce high-quality parts with smooth finishes
and multi-material/colour options (Gülcan et al., 2021), there
are non-essential characteristics for AR manufacturing.
Furthermore, the equipment and raw material costs for MJ are
high, and its build volume, ranging from 380� 250� 200mm3

to 1,000 � 800 � 500 mm3 (3D Systems, 2017), is smaller
comparedwith BJ andME.

2. Methods

The review, presented in Figure 12, analysed 16 ARs from
temperate and tropical regions. These were compiled from 27
scientific papers from the Web of Science and Google Scholar,

Figure 11 The diagram illustrates the advantages of the two AM processes most used for the fabrication of ARs, highlighted in blue, and the main
limitations of the other five processes highlighted in red
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and 39 publications and reports obtained from the website of
the manufactured companies and institutions. The review
focused solely on ARs manufactured through AM technologies
(either directly fabricated or assisted with mould casting) that
have been deployed in marine environments such as natural
reserves, degraded areas or subaquatic tourisms zones.
Artificial substrates used in small-scale tests, like those in
studies Chamberland et al. (2017), Levy et al. (2023), Matus
et al. (2021) and Ruhl and Dixson (2019) were excluded from
this work as they may not offer the same level of complexity and
habitat diversity as larger ARs.
The review focused on ARs implemented from the first

reported case in 2012 up to 2022. Given the advancements in
AM, it is plausible that more cases exist, which have not yet
been documented or lack sufficient scientific data for inclusion
in this research.
The systematic diagram in Figure 13 evaluates the

performance of the ecological goals for each ARs, detailing the

AMprocess used,materials used, structural design features and
implementation locations.

2.1 Ecological goals identified according to the Practical
Guidelines for the Use of Artificial Reefs
After selecting the AR cases, their purposes are identified (as
defined by the authors in the referenced publications) and
compared against the ten ecological goals outlined in the
Practical Guidelines for the Use of Artificial Reefs (PGUAR)
(Scarcella et al., 2015). The identified purposes include:
1 protecting sensitive habitats from fishing industry

activities;
2 restoring degraded habitats;
3 mitigating habitat loss;
4 enhancing biodiversity;
5 providing shelter to marine populations during their life

stages;

Figure 12 Artificial reefs manufactured through AM technologies and categorized by the process used
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6 providing new substrates for benthic communities to
settle on them;

7 enhancing professional and recreational diving areas;
8 promoting research and the educational field;
9 creating potential networks of MPAs; and

10 enhancing coastal erosion protection.

2.2 Additivemanufacturing process used for artificial
reefs
The parameters and variables of the AM process, presented in
Table 2, are used to classify the manufacturing methods of the
ARs.
For the dimension size and weight of unit modules that work

as an assembly, average values were considered due to the
design variations between each module. In some instances, the
FFF process may be used to 3D print units for subsequent
mould casting, where developed mortars will be poured. The
weight and dimensions of ARs are intrinsically linked to the
required machinery and logistics for implementation,
impacting the overall costs and CO2 emissions. Larger and
heavier ARs require transportation and a crane boat for
submersion.
In addition, the kinematic design category used to

manufacture each AR, whether cartesian, delta or robot arm,
was also identified and reviewed.

2.3 Classification of thematerial selection used to build
artificial reefs
The parameters and variables of material selection, as
presented in Table 3, are used to classify the ARs. The
material used is critical for biological applications as it can
directly or indirectly influence the impact on target species
and the environment, contribute to a circular economy and

determine the durability of the ARs, as well as their
suitability for developing printable mortar. This
classification considers the base material, aggregates,
binders and additives (subject to the availability of the data
information in the literature).

2.4 Structural design features incorporated to the
artificial reefs
The ability of ARs to create complexity and/or mimic the
marine environment significantly influences species’ behaviour
and interactions within the structure. Three indicators analysed
in Table 4, help to establish structural features based on their
shape, function and design pattern. Regarding to the
importance of ARs shape for performance evaluation, two
classifications were applied to the cases:
1 Geometric: Recognised geometric volumes or variations

of them, with straight faces, symmetrical patterns, sharp
edges and generally shapes not found in nature.

2 Irregular: Asymmetrical patterns, predominant curves and
the absence of edges or straight faces, which mimic
natural reefs.

One of the primary functions of ARs is to provide habitat
for different marine organisms. The morphology and
structural complexity play an important role in meeting the
ecological goals. The ARs shape complexity offers hiding
spots and microhabitats for a diverse array of marine
species. These features include sheltering zones to protect
species from predators, overhangs and ledge areas to
provided shaded zones for specific organisms, and a rough
surface texture to provide settlement substrates for benthic
species.
Some studies introduced computer algorithms to create

lattice structures (repeating patterns forming 3D shapes),

Figure 13 The systematic method review of ARs that describes the process of scientific paper selection and their analysis to evaluate the performance
according to the purpose
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textures and self-supporting patterns through PDM controlled
material deposition (Est�evez and Abdallah, 2022) or through
tool path planning (Hergel et al., 2019). This novel method
enhances paste material viscosity to create textures, thereby
increasing the roughness essential for the settlement of marine
organisms within micro-habitat. The diversity of structural
elements per unit area, positively correlates with increased
biodiversity (Huston, 1979; Kovalenko et al., 2012).
An effectiveness evaluation ranking was implemented for the

AR cases to assess how well their designs and materials align
with the intended ecological goals. This evaluation considered
various parameters, including design, material, monitoring
techniques and manufacturing costs. The scoring system is as
follows: 0 ¼ ineffective, indicating that the evaluation
parameter does not apply or fails to meet the required function;
1 ¼ moderately effective, where the ARs partially meets the
established function; and 2¼ highly effective, meaning that the
ARs fully serves its intended purpose.

2.5 Implementation climate zone preferences and
deploymentmethods of artificial reefs
To identify relevant aspects of the habitat and implementation
of AR methods, they were classified based on the parameters
presented in Table 5.
ARs are placed in different sea regions: tropical (up to 25°

latitude) and temperate (up to 60° latitude) and may be
deployed at different depths depending on the specific purpose

of each case. The geolocation categorised by climate regions
and countries has been reviewed to identify where most
implementations occur.
The deployment method can be categorised in three

modalities of implementation: sediments zones (subtidal or
marine soft bottom), predominantly where natural reefs are
degraded or absent; floating structures, similar to aquaculture
method, anchored and easily monitored by buoys; and attached
to existing marine structures, such as seawalls or shoreline
protections.

3. Results

3.1 Artificial reef purpose and ecological goals
The study identified primary and secondary ecological
purposes in the manufacture of the 16 ARs using AMmethods,
presented in Table 6. The purpose indicator was obtained from
the author’s references and publications. According to the
PGUAR, the results demonstrated that all ARs cases aimed to
enhance biodiversity: 15 ARs (94%) provided new substrates
for the settlement of benthic communities; 13 ARs (76%)
aimed to mitigate habitat loss; 12 ARs (70%) provided shelter
to marine life and promoted ongoing research, monitoring and
education in this field; 8 ARs (47%) aimed to restore degraded
habitats and establish a network of MPAs; 6 ARs (35%)
promoted professional and recreational diving or snorkelling
areas; 3 ARs (17%) targeted the protection of sensitive habitats
from fishing activities; and a single case (5%) focused on
enhancing coastal erosion protection.
All ARs proposed more than four ecological goals, reflecting

an ambition to address a broad spectrum of ecological
concerns, not just enhancing biodiversity – the primary goal of
AR manufacturing – but also adding new features like coastal
protection. The 3D ReefVival was the most successful,
achieving eight of the ten ecological goals outlined by PGUAR.

Table 2 Variables and specifications under analysis of AM process methods used to build ARs

AM process 3D printer Manufacturing purpose Typology Dimension Weight

FFF BJ PDM Equipment Moulding process Final shape Unit Assembly L�W� H (m3) (kg)

Source: Table by authors

Table 3 Variables and specifications under analysis of AM materials used and their environmental impacts or concern

Material (specification) Environmental impacts

Cementitious Ceramics Geopolymers Polymers Marine life

Source: Table by authors

Table 4 Variables and specifications under analysis of ARs morphology features and design pattern

Shape Function Design pattern

Geometric Irregular Shelter Settlement Path algorithm
Holes, crevices, tunnels and overhangs Rough surface, texture Lattice structure

Source: Table by authors

Table 5 Variables and specifications under study of ARs climate zone of
implementation

Climate zone Depth zone Target species Placement zone

Tropical Temperate (m) Coral
fish
bivalves

Sediments Floating Attached

Source: Table by authors
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3.2 Artificial reef manufactured process
The results indicated a predominance of PDM process in AR
manufacturing. For cases using FFF, two different approaches
were identified: to assist the creation of casting moulds for
cementitious or ceramic mortars [e.g. MARS, Living Seawalls
and Wave break (Goad, 2022; Reef Design Lab, 2019, 2018)]
and to produce the final shape through an assembly method
(e.g. Hope 3D (Suchin, 2018)).
Technical data of ARmanufacturing is presented in Table 7.

In terms of the AM equipment and the kinematic design used,
the cartesianmethod was themost used formaterial deposition,
revealed in nine AR cases (Figure 14).
The study identified three AR manufacturing typologies,

detailed in Figure 15: the independent unit reef (eight cases),
the most common but limited by AM equipment print volume;
the composed unit reef (two cases), which allows for the largest
ARs reported to date; and the assembly reef (six cases), offering
high scalability and potential to expand the coverage area.
The typology of manufacturing is closely linked to logistics

and implementation costs, as heavier and larger ARs require
heavy machinery for transport and deployment, thus increasing
costs (Yoris-Nobile et al., 2023). Conversely, modular assembly
reef systems, like the 3Dprinted reef tiles, manually deployed by
small boats and divers (ArchiReefs, 2020) eliminates the need
for such machinery, offering a more accessible solution for
communities (Reef Design Lab, 2019).
The results demonstrated that assembly reef units weighed

between 3 and 40kg per module, significantly lighter than the
independent units, which ranged from 500 to 1,000kg. The
composed unit reef, however, allowed for the manufacturing of
mega-structures weighing up to 105,000kg, as it combined
several modules into one large AR, making it the heaviest and
largest recorded to date (Seaboost Ecological Engineering, 2022).

3.3 Artificial reef material selection
Regarding the selection of materials presented in Table 8,
cementitious mortar was the most used, featuring in ten AR cases
(62%); ceramics were used in 5 (31%); and geopolymers and
polymers in 1 (6%). The data indicates a trend towards
incorporating recycled materials (Reef Design Lab, 2018), bio-
residues such as seashells (Goad, 2022; Yoris-Nobile et al., 2023),
bio-based resins derived from bamboo (Schofield, 2020a) and
marine cement aimed to replace Portland cement, the primary
source of CO2 emission in cement productions (Dennis et al.,
2018). The aggregates include pozzolans (Meyer, 2009), waste
materials (Cuadrado-Rica et al., 2016; Yang et al., 2005),
ceramics, end-of-life cement and natural fibres (Pandey et al.,
2010). The incorporation of pozzolans can lower the surface pH
of cement (Fern�andez Bertos et al., 2004), a critical factor for
marine colonisation. One project (Suchin, 2018) used polylactic
acid (PLA), a biodegradable plastic known for its minimal
negative environmental impact, although its degradability remains
under question (Tarazi et al., 2019). Some studies revealed that
PLA can attract marine bacterial communities (Birnstiel et al.,
2022;Cheng et al., 2021).
SomeARs have raised concerns about themarine environment

due to the materials used. Table 9 outlines the main concerns
and impacts of these materials on marine ecosystems, identifying
specific issues raised by certain ARs.
Hope 3D project used PLA plastic material and it was placed in

mangrove and sea grass habitats (Hol Chan Marine Reserve,
2018). Despite PLA being a bio-based polyester derived from
renewable sources like sugarcane or cornstarch (Balla et al., 2021),
it is nor recommended for marine environments because of its
biodegradable condition. Although there are no scientific updates
about its current status on the seafloor, various studies have
documented that PLAmay affect marine species (Ali et al., 2023).

Table 7 ARs technical classification through their AM technology

No. ARs
AM
process 3D printer equipment

Dimension
L�W� H (m3) Weight (kg) Reference

(a) Hope 3D FFF Robo 3D r11 0.1� 0.1� 0.1 (un)
1� 1� 2 (as)

100–150 (as) Suchin (2019, 2018)

(b) MARS FFF Desktop FFF 0.4� 0.4� 0.6 (un)
1.8� 1.7� 1.7 (as)

40 (un)
2,000 (as)

Reef Design Lab (2019)

(c) Living Seawalls FFF Makerbot 0.5� 0.5� 0.5 (un) 23–30 Reef Design Lab (2018)
(d) Wave Break FFF BigRep One 2� 2� 1 (un) 300–400 Goad (2022)
(e) Snapper Reef Unit BJ D-shape 1� 1� 1 (un) 500 Reef Arabia (2012)
(f) Boskalis Reef BJ D-shape 2� 2� 1 (un) 2,500 Boskalis (2017)
(g) Hanging Fish House BJ Zprinter 310 plus 0.1� 0.1� 0.5 (un) 3 (un)

9 (as)
Schofield (2020a)

(h) 3D ReefVival BJ D-shape 0.5� 0.5� 1.2 (un) 1,000 Kardinaal et al. (2020)
(i) X-Reef PDM ABB 1.1� 0.9� 1.1 (un) 900 XtreeE (2017)
(j) Biomimetic Reef PDM ABB 0.9� 1.6� 1.3 (un) 550 XtreeE (2019)
(k) X-Coral PDM LDM-Wasp 3L Clay Tank 1� 1� 3 (as) 20 (un) Berman et al. (2023)
(l) 3DPARE PDM Wasp 3MT 1� 1� 1 (un) 1,000 Yoris-Nobile et al. (2023)
(m) Recif’Lab L1 PDM ABB 0.9� 0. 9 mx 1 (un) 1,000 Seaboost Ecological Engineering (2021)
(n) 3D Printed Reef Tiles PDM ABB 6700 0.6� 0.6� 0.4 (un) 10 Lange et al. (2020)
(o) InnovaReef PDM Wasp 1.5� 1� 0.7 (un) 700 Chulalongkorn (2020)
(p) Recif’Lab L2 PDM ABB CyBe RC 6� 8� 6.5 105000 Seaboost Ecological Engineering (2022)

Notes: fused filament fabrication (FFF), binder jetting (BJ) or material extrusion process through paste deposition modelling (PDM); 3D printer equipment;
dimension and weight considered for a single unit (un) and/or the assembly reef (as)
Source: Table by authors
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It becomes brittle because of the environmental stress and the
infiltration of impurities, which harms marine life, affects
fertilisation and leads to biological accumulation. Slower
degradation increases the risk of marine species ingesting it,
whereas faster degradation is less sustainable in terms of a
circular economy. No reports have been documented regarding
fish seeking refuge within the PLAARs. Regarding the inhibitory
effect of PLA on algae growth, as described by some authors in
the previous table, this case revealed the successful formation of
algae covering the structure.
3DPARE has raised concerns about the mortars developed

using cement and geopolymer-basedmaterials. Thesematerials
induce the elevation in the pH levels of the surrounding surface,
increasing the pH from the normal values of 7.4 to over 10
within a fewminutes. This alkaline effect can negatively impact
various organisms. However, this initial pH elevation may be
considered as a potential strategy for anti-fouling defence. The
pH increase affect mainly the surface area surrounding the
ARs. The large volumes of seawater in the ocean effectively

balance the early pH “toxicity” effects caused by geopolymers
and cement through dilution. After sevendays in seawater, the
adverse impact on microorganism colonisation is mitigated (Ly
et al., 2021).
Boskalis project conducted a comparative analysis of

dolomite and cement materials used during the manufacture of
the ARs. It was revealed that bacterial communities form
biofilms on both materials. However, the biofilm formation
occurs at slower rate on cement-based aggregates (Kramer and
Lescinski, 2017).

3.4 Structural complexity features
Among the 16 ARs, 3 structural design features were identified
in Figure 16: shelter and settlement features for ecosystem
function and shape feature for environmental integration.
To provide shelter for various species, ARs should

incorporate holes, internal tunnels and overhang zones. These
features offer refuge from marine currents and predators (Jung
et al., 2022). The results revealed that 8 ARs integrated holes
for smaller species like fish, crabs and shrimps; 6 ARs
incorporated internal tunnels for larger species such as
octopuses, crabs and large fish; and 14 ARs included overhang
areas for starfish and flatworms (Hall et al., 2018). Four ARs
combined these three shelter features, enhancing habitat
diversity with different sizes and lengths of holes and tunnels
(Boskalis, 2017; Hall et al., 2018; Reef Design Lab, 2017;
Seaboost Ecological Engineering, 2022).
The analysis of various geometries in the case studies

identified five common structural design patterns across all
ARs (Figure 17):
1 Modular spatial assembly: two cases (Hope 3D andMARS)

used a LEGO-like system for easy manufacturing, transport
and assembly, offering scalability.

2 Hexagonal shape and biomimetic textures: two cases (3D
Printed Reef Tiles and Living Seawalls) used hexagonal
plates with biomimetic textures inspired by coral brain and
mangroves. The design shape not only increased the surface
area available for colonisation but also facilitated spatial
expansion. The 3D Printed Reef Tiles were designed for
horizontal expansion on the seafloor, whereas the Living

Figure 14 Diagram illustrates the AM kinematic design used to AR
cases determined by their percentage

Figure 15 AR build typology classification by three design features
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Table 8 Materials used in the manufacture of the ARs

No. ARs Material specification Reference

(a) Hope 3D Polylactic acid (PLA) Suchin (2018)
(b) MARS Ceramic filled with cement and steel reinforcement Reef Design Lab (2019)
(c) Living Seawalls Glass fibre reinforced cement (with recycled polymer fibres)

Stainless steel rods drilled for installation
Living Seawalls (2018),
Reef Design Lab (2018)

(d) Wave Break Cement and recycled shell aggregate Goad (2022)
(e) Snapper Reef Unit Magnesia cement (binder), dolomite sand and sedimentary rocks

(aggregate)
Dini and Monolite (2016)

(f) Boskalis Reef Dolomite sand (material base), magnesium oxide (binder) Jacqueline et al. (2017)
(g) Hanging Fish House Calcium carbonate (limestone) and bio-based resin derived from

bamboo
Schofield (2020a)

(h) 3D ReefVival Dolomite sand, trass flour (TubagTM), white cement (CEM I/II) and
fresh tap water

Colsoul et al. (2020),
Kardinaal et al. (2020);
Reef Design Lab (2017),
Tubag (2024)

(i) X-Reef Cement LafargeHolcim Holcim (2024), XtreeE
(2017)

(j) Biomimetic Reef Cement Vicat. Vicat (2024), XtreeE
(2019)

(k) X-Coral Atomised clay mixture (Goerg and Schneider Body 0311)
composed of iron oxide (6.5%), sodium-silicate (binder)

Berman et al. (2023)

(l) 3DPARE Cement mortar
Cement CEM III/B, fly ash, kaolin, limestone, seashells, glass

Yoris-Nobile et al. (2023)

Geopolymer mortar
Fly ash, sodium hydroxide (NaOH), nano-silica, micro-silica,
limestone, seashells and glass

(m) Recif’Lab L1 Cement Vicat Seaboost Ecological
Engineering (2021); Vicat,
2024)

(n) 3D-Printed Reef Tiles Red terracotta clay (P1331, Potterycrafts Ltd), crystalline silica Lange et al. (2020)
(o) InnovaReef Recycled cement Chulalongkorn (2020)
(p) Recif’Lab L2 Cement Vicat Seaboost Ecological

Engineering (2022)
Source: Table by authors

Table 9 Environmental impact and associated concerns arising from the materials used in AM to build ARs

Main material used Marine environmental impacts/concern Reference

Polylactic acid (PLA) PLA gradually disintegrates into microplastic in underwater conditions, inhibiting
algae growth and reducing the survival of up to 40% of phytoplankton. While it has
a minimal effect on molluscs, it can adversely affect fish behaviour through
ingestion, resulting in negative impacts

Ali et al. (2023)

Cement Portland Cement, composed of calcium carbonate, is conducive to the colonisation of benthic
calcareous skeletons. However, a surface with high alkalinity (pH 12–13) might
inhibit the settlement of species that are intolerant to such alkaline conditions

Natanzi et al. (2021)

Shell aggregate Enhances the circular economy and reduce carbon dioxide emissions.
The use of oyster shell waste increases surface porosity due to its material
properties, thereby facilitating the initial biological attachment

Hou et al. (2016),
Kong et al. (2022)

Fly ash Its specific constituents like selenium in high concentrations has the potential to
impact the early life stages of fish. Containing a range of metals and other
elements, fly ash can become toxic to biological ecosystems at high concentrations

Greeley et al. (2012)

Terracotta clay and ceramics Its composition featuring non-toxic oxides and a neutral pH, is ideal for marine
environments applications, supporting biological productivity and ensuring no
adverse effects

Kalam et al. (2018)

Source: Table by authors

Artificial reefs through additive manufacturing

Ilse Valenzuela Matus et al.

Rapid Prototyping Journal

Volume 30 · Number 11 · 2024 · 87–122

104



Figure 16 Graph illustrates AR structural design features, highlighting shelter, settlement and shape characteristics identified in all the cases

Figure 17 Identification of five common structural design features found in AR cases
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Seawalls were intended for vertical expansion on port walls,
demonstrating versatile applications and functions.

3 Repeating pattern of stacked elements: three cases (X-
Coral, Hanging Fishing House and Recif’Lab) used
abstract shapes in modules for vertical expansion.

4 Random contouring lines extruded: three cases (X-Reef,
Biomimetic Reef and Recif’Lab L2) used the extrusion
method using random curved lines to shape the reef units.
This technique created multiple internal tunnels of
various sizes, providing shelter for different species.

5 Solid unit with random holes, tunnels and intricate zones:
six cases (Snapper Reef Unit, Boskalis Reef, Wave Break,
3DPARE, Innovareef and 3D ReefVival) demonstrated a
trend of ARs manufacturing individual solid units that
worked independently. These units were designed with
random tunnels, holes, intricate zones and surface
textures, creating diverse habitats within a single
structure. They can work independently or be combined
with multiple units to cover a larger area.

The ARs vary in size but share common design elements that
support similar biological functions. In terms of physical
characteristics, such as the effect of material colour, only
two cases, 3D Printed Reef Tiles and Hope 3D, were
notable for their unique red-brown and vibrant material
colours. The rest used neutral colours from materials like
cement, sand and ceramics. However, the potential impact
of ARs colour on species colonisation or attraction remains
unexplored.
According to settlement features, the adhesion phenomena

are crucial for marine community colonisation, such as algae,
corals and molluscs (Petersen et al., 2020). Only one AR opted
for a smooth surface, whereas the others implemented rough
surfaces with varying patterns and depths to facilitate
organisms attachment (Colsoul et al., 2020). A novel method
used PDM, to create a path lattice matrix through parametric
design tools to control the ceramic material’s spatial deposition
(Berman et al., 2023). Three texture typologies were identified
in Figure 18: random soft crevices designed in 3D CAD
software; a sandy roughness characterised by the BJ process
used, for enhance surface texture; and rough layers, extruded
through a path lattice matrix, creating a textured relief whose
detail is determined by the extruder’s diameter.

Two shape configurations, defined by previously reviewed
functional features, were identified as geometric and irregular.
Two ARs (Lange et al., 2020; Reef Design Lab, 2018) used
hexagonal panels (a recognised geometric pattern) to enable
modular and scalable expansion. However, they also incorporated
natural texture elements such as branches/ramifications (Reef
Design Lab, 2018) and a brain pattern inspired by the Diploria
labyrinthiformis coral species (Lange et al., 2020), demonstrating
the potential to combine shape configurations. The versatility of
AM process, allows the customisation of solutions through
variations in morphology and texture, as illustrated in Figure 19.
This adaptability can address a wide range of species,
implementations regions and specific purposes.

3.5 Effectiveness of the design formeeting ecological
goals
The Hope 3D case demonstrated the lowest effectiveness,
scoring only 6, in its primary goal of preserving threatened coral
species. The project failed to identify suitable structural zones
for coral transplantation and lacked the necessary rough
surfaces and environmentally friendly materials for coral
settlement. While the intention was to use a biodegradable
polymer to reduce environmental impact compared with
petroleum-based polymers, concerns were raised due to the
biodegradable condition of the PLA material and the potential
ingestion of plastic debris by marine fish. The ARs partially
succeeded in attracting fish species, which was established as a
secondary ecological goal and reported in the weeks following
implementation. However, it is challenging to ascertain
whether this observer trend has persisted over time due to the
absence of updated information.
The Hanging Fish House scored 8, indicating moderate

effectiveness. Its complex geometry algorithms, both in terms
of volume and internal spaces, contribute to enhancing
biodiversity and align with the ecological goal of
accommodating fouling organisms and juvenile fish. However,
the design faces challenges, as its complex shape initially
provided small fish refuges but became covered with fouling
organisms in a short time, compromising its “fish house”
functionality. In contrast, the ARs, mimicking coral shapes and
using coral calcium carbonate as raw material, provide a
smooth surface with relief features for settlement functions.

Figure 18 Typologies comparison of surfaces with biomimetic textures identified in the ARs
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X-Coral, InnovaReef and Snapper Reef Unit achieved a
moderate effectiveness score of 10. X-Coral aimed tomimic the
structural patterns of Hexacorallia coral variations, exploring
diverse morphologies and algorithms of clay material extrusion
to enhance marine habitats. The variety of module shapes
increased habitat complexity, aligning with the goal of
attracting fish communities. However, vertical modules lacked
stability and durability compared with the robust cement
structure of InnovaReef. A notable advantage is the easily
modular design system, like the Hanging Fish House and Hope
3D ARs. This system facilitates implementation and reduces
deployment costs.
InnovaReef ARs aims to replicate the structural form of

coral reefs, aligning with its intended purpose, but it lacks on
specific biomimetic features. The ARs do not fully achieve
their primary ecological goal, which is to restore coral
ecosystems by promoting the settlement of coral larvae and
juvenile transplantation. This limitation primarily results
from the absence of appropriate zones for these purposes.
While the structure offers a textured and rough surface to
facilitate benthic settlement, the inclusion of internal holes
and the composition of the cement material do not promote
coral larvae settlement.
Snapper Reef Unit was the first AR manufactured with AM

technologies. Beyond ecological goals, the primary challenge
was to demonstrate the effectiveness of AM to build a
structurally complex unit that could enhance marine
biodiversity. The robust, dolomite sand-based structure
features numerous branches of varying sizes and directionals
levels, fosteringmarine biodiversity.
Recif’Lab L1 and Boskalis Reef both scored 11, indicating

moderate effectiveness. While lacking biomimetic inspiration,
their complex random shapes with various holes and tunnels

serve ecological goals by promoting biodiversity and attracting
juvenile fish. The structures offer multiple refuge zones for fish,
and their weight and robust shapes enhance stability and
durability, ensuring their effectiveness in fulfilling ecosystems
functions.
3D ReefVival, X-Reef, Biomimetic Reef and Recif’s Lab l2

all achieved a score of 12, indicating moderate effectiveness.
None of these projects integrated waste materials into their
formulations, and they also did not implement biomimetic
design elements. X-Reef, Biomimetic Reef and Recif’s Lab L2
aimed to mimic structures resembling the Coralligenous (reef
habitat in the Mediterranean). However, the real intention was
to recreate the marine ecosystems found in the Coralligenous
habitat within the ARs, and not to mimic morphological
elements from that habitat. All projects were well-designed to
meet their ecological goals, including creating habitat for
macro-invertebrates and fish, preserving biodiversity and
enhancing fish resilience. The 3D ReefVival used specific hole
sizes in four platforms connected by pillars and elevated from
the seafloor to support native oyster recruitment and
restoration. In addition, a rough surface was integrated to
promote the colonisation of stationary organisms.
Regarding the post-processing operations of the different

AM processes used, 3D ReefVival, which used BJ process,
involved steps such as removing excess powder material,
sintering and finishing. In contrast, the other AR cases that
used cement extrusion only required drying the water content
from the paste, reducingmanufacturing steps and costs.
3DPARE achieved a high effectiveness score of 15. Its

structural design, which includes larger-sized holes, was
implemented to enhance biodiversity and ecosystem services.
The ARs also considered mitigating the negative effects of
sediment dynamics by elevating the positions of surface reliefs

Figure 19 AR comparison cases about the versatility of AM to manufacture and customize texture and shape variables for different biological
purposes
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and internal tunnels. However, they feature rough surface
reliefs and a robust geometric main shape (cube and cylindrical
variations) without addressing any biomimetic design pattern.
MARS, Living Seawalls, Wave Break, 3DPARE and 3D

Printed Reef Tiles achieved the highest effectiveness scores,
ranging from 15 to 17. Each of them integrated biomimetic-
inspired structural designs tailored to their specific ecological
goals:MARS incorporated Scleractinia coral textures in the ARs
to create underwater nurseries conducive to the attachment,
settlement and growth of coral species; Living Seawalls
expanded colonisation areas with customised panels inspired
by mangroves, natural rockpools, sedimentary rocks, holdfast
root structures and natural sandstone rocks; Wave Break,
placed in the intertidal zone, mimicked rocky reefs with natural
pools to mitigate wave forces with its robust dome shape and to
foster marine organisms; and 3D Printed Reef Tiles drew
inspiration from the stony coral species Platygyra for its
textures. With the addition of three base legs, stability was
ensured, preventing sinking into the seafloor and protecting
against sedimentation. The texture is tailored to meet
restoration needs.
The evaluation scores for each ARs, presented in

Tables 10 and 11, were determined by ranking parameters
across the following categories: material, design, monitoring
and costs.
The evaluation of ARs involved assessing various parameters

to determine how well their design and materials aligned
with their ecological goals (Figure 20). Monitoring techniques
were crucial for evaluating effectiveness and tracking changes

over time. Projects that applied monitoring methods were
considered. In addition, the AM process, design and size
influenced cost reduction. The results revealed that five ARs
were highly effective; ten ARs had moderate effectiveness and
one AR showed low effectiveness.

3.6 Implementation location
The data collection revealed a global diversity of 16 ARs
manufactured using AM technologies. However, this number is
considerably lower than the overt 1,074 ARs identified in 71
countries build through traditional manufacturing processes
(Ramm et al., 2021).
Two ARs were implemented in multiple locations across

various countries and different ocean regions. Living Seawalls
were deployed in seven locations, including Australia,
Singapore, Gibraltar and Wales, whereas 3DPARE was
implemented in four locations across Portugal, France, Spain
and the UK. The ARs were adapted and customised for each
deployment zone, with adjustments to the texture and shape
features to suit the respective habitat and ecological goals
determined in each location.
There are twoARs projects that were implemented in various

locations, countries and different ocean regions. Living
Seawalls were placed in seven locations between Australia,
Singapore, Gibraltar andWales; and 3DPARE in four locations
between Portugal, France, Spain and the UK. The projects
were adapted for each deployment zone, adjusting texture and
shape features to be appropriated for the habitat and purposes
established.

Table 10 Evaluation ranking of ARs effectiveness considering the material and design used to assess the ecological goals proposed

Evaluation of material and design category scores
Material Design

ARs
No.

The material used
positively
contribute with no
adverse impact on
marine life

The material
mixture integrates
waste materials to
promote circular
economy

The material used
exhibit high level
of structural
durability and
longevity

The design geometry is
inspired by biomimetic
patterns, emphasising
both texture and/or
shape

The design
incorporates rough
surface to facilitate
the settlement of
organisms

The structural design
features are
implemented to meet
the proposed
ecological goals

Sub-
total
score

(a) 1 0 0 0 0 1 2
(b) 2 0 2 2 2 2 10
(c) 2 2 2 2 2 2 12
(d) 2 2 2 2 2 2 12
(e) 2 0 2 1 2 2 9
(f) 2 0 2 1 2 2 9
(g) 1 0 1 2 1 1 6
(h) 2 0 2 1 2 2 9
(i) 1 0 2 1 2 2 8
(j) 1 0 2 1 2 2 8
(k) 2 0 1 1 2 1 7
(l) 2 2 2 1 2 2 11
(m) 1 0 2 0 2 2 7
(n) 2 0 2 2 2 2 10
(o) 1 1 1 1 2 1 7
(p) 1 0 2 1 2 2 8

Notes: The score numbers consider 0 ¼ ineffective; 1 ¼ moderately effective; 2 ¼ highly effective; (a) Hope 3D; (b) MARS; (c) Living Seawalls; (d) Wave
Break; (e) Snapper Reef Unit; (f) Boskalis Reef; (g) Hanging Fish House; (h) 3D ReefVival; (i) X-Reef; (j) Biomimetic Reef; (k) X-Coral; (l) 3DPARE; (m) Recif’Lab
L1; (n) 3D Printed Reef Tiles; (o) InnovaReef; (p) Recif’Lab L2
Source: Table by authors
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The 16 ARs examined were deployed in eight sea regions
(Figure 21) distributed as following: 24% in the Mediterranean
Sea; 24% in the Atlantic Sea; 20% in the Australian Sea; 12% in
the South Asian Sea; 8% in the Persian Gulf; 8% in the Pacific
Ocean; and 4% in the Indian Sea. South America and Africa
regions did not present any ARs cases yet. The results

demonstrated that they are mostly implemented in temperate
regions (17 AR deployments) rather than in tropical regions (8
ARdeployments).
The state of AM adoption in the world may be related to the

implementation zones presented in this work. Reports from 2019
showed that the primary markets for AM technologies were

Table 11 Evaluation ranking of ARs effectiveness considering the ongoing monitoring techniques and how the design and process may reduce manufacturing
costs

Evaluation of monitoring and cost category scores
Monitoring Costs

Ars
No.

Ongoing monitoring
techniques are used to study
the AR evolution

The design and size of ARs are efficiently managed
without the need for heavy machinery, reducing
associated costs for logistics

The AM process eliminates the need for
post-processing finishing, reducing
production and workforce costs

Sub-
total
score

(a) 0 2 2 4
(b) 2 2 1 5
(c) 2 2 1 5
(d) 2 1 2 5
(e) 0 1 0 1
(f) 2 0 0 2
(g) 0 2 0 2
(h) 2 1 0 3
(i) 2 0 2 4
(j) 2 0 2 4
(k) 0 2 1 3
(l) 2 1 2 5
(m) 2 0 2 4
(n) 2 2 1 5
(o) 0 1 2 3
(p) 2 0 2 4

Notes: The score numbers consider 0 ¼ ineffective; 1 ¼ moderately effective; 2 ¼ highly effective. (a) Hope 3D; (b) MARS; (c) Living Seawalls; (d) Wave
Break; (e) Snapper Reef Unit; (f) Boskalis Reef; (g) Hanging Fish House; (h) 3D ReefVival; (i) X-Reef; (j) Biomimetic Reef; (k) X-Coral; (l) 3DPARE; (m) Recif’Lab
L1; (n) 3D Printed Reef Tiles; (o) InnovaReef; (p) Recif’Lab L2
Source: Table by authors

Figure 20 The evaluation results of the effectiveness ranking of ARs based on design and material features in meeting ecological goals
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dominated by North America (40%), followed by Europe (28%)
andAsia (around 27%) of themarket (Marak et al., 2019).
Figure 22 shows the deployment bathymetry of every ARs

under study. Most placement occurred between 15 and 26m
being implemented at greater depth preferably in temperate
zones. On the opposite, in tropical zones, most cases were
deployed between 6 and 12m of depth. The established depths
may define monitoring techniques to evaluate the effectiveness
and productivity of ARs over time. Monitoring is a process
of measuring, recording and comparing the achievements
against a set of predefined target species (Kumar et al., 2021).
Due to the anchoring depth, all cases are accessible by scuba
diving.
In terms of implementation methods, the results showed

that 14 ARs were placed on the seabed, being the
predominant approach; 1 AR used the floating method
suspended by a buoy; and 1 AR case was affixed to existing
marine walls.
There is a concern and tendency for AR placement inMPAs

in the different countries of implementation. Protected areas

provide additional habitat for biodiversity conservation,
potentially providing management solutions for both natural
reefs and ARS (Kirkbride-Smith et al., 2016). Table 12
shows the ten AR projects identified within these protected
areas.

4. Insights and outcomes

The research highlights a global commitment to achieving
multiple ecological goals in the planning and manufacturing
of ARs. All cases examined aligned with at least four
ecological goals outlined in the PGUAR. These goals
include enhancing biodiversity, providing new substrates for
benthic settlement, mitigating habitat loss and offering
shelter to marine life. Notably, this commitment goes
beyond biological conservation and extends to
incorporating design features that promote subaquatic
tourism, mitigate waves and coastal erosion and enhance
water quality by encouraging filtering organisms. This trend
suggests that ARs are increasingly incorporating multiple

Figure 21 World map illustrates the implementation preferences of ARs placed in climate zones between temperate and tropical areas
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ecological goals within a single structure, achieved through
material selection and the implementation of complex
design features facilitated by AM technologies.
PDM and BJ emerged as the most commonly used AM

processes, showcasing adequate performance. They exhibit
notable versatility to incorporate cementitious, ceramics
and geopolymers materials and to facilitate the inclusion

of residues or bio-receptive materials into the formulations.
This adaptability enhances their suitability for the marine
environment, target species and promotes a circular
economy. Moreover, there is a prominent trend towards the
exploration of new materials to replace Portland cement,
such as pozzolan materials, aggregates derived from mineral
and organic waste and bio-based resins. In this context,

Figure 22 AR graph indicates the bathymetry deployment between temperate and tropical zones

Table 12 Identification of ARs placed in marine protected areas (MPA)

ARs MPA location The ecological goal of MPA Reference

Hope 3D Hol Chan Marine
Reserve, Belize

Protect the coral reef community health and promote
abundant fishery resources (including conch and lobster)
associated with seagrass and mangrove habitats

Hol Chan (1987)

Boskalis Reef Calanques Park,
France

Protect and preserve seagrass meadows, Coralligenous
areas, fish, turtles,and cetaceans

Calanques Park (2012)
X-Reef
3DReefVival Borkum Reef Ground,

the Netherlands
Maintain and restore of habitat-type reefs Kardinaal et al. (2020),

Pogoda et al. (2020)
Biomimetic Reef Cap’ dAgde, France Protect habitat diversity, including Posidonia meadows,

rocky habitats, Coralligenous, sandy bottoms; conserve
natural heritage, maintain integrated activities, control
external factors and assess management effectiveness

Cap d’Agde (2020)
Recif’Lab L1
Recif’Lab L2

X-Coral Eliat Coral Beach
Nature Reserve, Israel

Protect and preserve coral reef ecosystems Eilat Coral Beach Nature
Reserve (1964)

3D Printed Reef
Tiles

Hoi Ha Wan Marine
Park, Hong Kong
China

Protect coral communities and species diversity
(mangroves and marine organisms)

Hoi Ha Wan (1996)

Wave Break Clifton Springs Beach
marine protected
area in Victoria,
Australia

Protect and improve biodiversity values Thompson Berrill
Landscape Design Pty
Ltd (2008)

Source: Table by authors
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ceramic materials, with their non-toxic, pH-neutral
properties, present a particularly advantageous option,
offering sustainability benefits for the manufacturing of
ARs.
Several cases were built through the AM process to

create moulds for material casting. FFF proved to be
cost-effective for carrying out this method. This approach
allows the production of complex geometries not
achievable through traditional methods, speeding up
production and lowering costs. FFF also enables the
casting of moulds near deployment zones, reducing
transportation and logistics expenses. The PDM process is
more cost-effective compared to BJ, considering both
equipment and materials, though it does require laborious
post-processing. When manufacturing takes place far from
deployment areas, transportation costs become crucial.
Using modular assembly methods, like Hope 3D, MARS,
Living Seawalls, Hanging Fish House and 3D-Printed Reef
Tiles, has proven to be cost-effective. Smaller modules
provide better material control, customised textures,
streamlined logistics and adaptability for larger areas as
needed.
ARs through AM processes exhibit a trend toward

incorporating structurally complex design features for
ecological purposes. These include the integration of holes
or tunnels for shelter zones; overhangs to mitigate
sedimentation effects or to prevent the marine trawl nets
effect; texture relief to enhance the area of the organism’s
colonisation; and platforms at varying levels to elevate the
habitat structure from the seafloor. Innovative parametric
methods, like lattice structures and algorithms of path
generation for developing complex shapes, are becoming
more prevalent in the PDM process. This technique allows
to adjust the number of repeating patterns (internal
architectural structure) or path directions to increase
complexity, shape, reduce weight or strengthen the ARs.
Half of the studied cases used these techniques. X-Coral
combined lattice structures with the gravity-stimulated
printing design technique (Berman et al., 2023), which
involves controlled gravity-assisted extrusion deposition.
This combination of methods increased the acquired
complexity, representing a novel strategy to achieve
intricate and sophisticated shapes in AR developments.
Future advancements in AM technologies are expected

to reduce costs, shorten printing times, decrease labour for
post-processing, introduce new materials and control their
dosage. AR projects have shown innovative solutions
through AM technologies, but it is crucial to recognise that
these projects are location specific. Standardising a
universal solution may be challenging because of the
diverse underwater conditions and habitat requirements.
The primary advantage of AM resides in their capacity to
create complex and customised geometries with a range of
mortar materials suitable for marine ecosystems.
The effectiveness of ARs in achieving ecological goals

has been evidenced by numerous cases that successfully
aligned their design features with these objectives. The
evaluation ranking presented both promise and challenge

due to the urgent impact of climate change on marine
ecosystems, the rapid evolution of AM technologies and
materials and their accessibility. Furthermore, efforts
are also being made to extend the benefits of AR
implementations to countries that may currently lack
access to these technologies or the resources needed for
such applications.

5. Conclusions

This work critically examined the design, purposes and
fabrication process of ARs through AM technologies for
marine restoration and management. The review aims to
offer valuable insights to researchers involved in the
development of AM approaches for a wide range of marine
applications, especially ARs. The conclusions extracted
from the study are the following:
� Global commitment to ecological goals. The study

identified primary and secondary ecological goals in the
fabrication of ARs using AM methods, including
biodiversity enhancement, substrate provision, habitat
loss mitigation, marine life shelter, research/education
support, habitat restoration, marine protected area
creation, diving promotion, sensitive habitat protection
and coastal erosion protection.

� Efficiency and versatility of AM technologies. ARs
developed through AM processes are characterised by
the potential to incorporate structural complexity to
serve ecological functions. The versatility of AM allows
customising the solution with morphology and texture
variations adapted to different species and zones of
implementation.

� Effectiveness and ecological impact of ARs. The ranking
scores varied among AR projects, with considerations
for ecological goals, biomimetic patterns, structural
design features and environmental impact. 3D-Printed
Reef Tiles, MARS, Living Seawalls, Wave Break
and 3DPARE demonstrated the highest effectiveness
score due to their design features and specific ecological
goals.

� Trend towards sustainable materials. Innovative
approaches, such as incorporating waste materials and
advanced post-processing techniques, were observed
in various AR cases. The review emphasised the
importance of considering circular economy principles
in AR manufacturing.

� Manufacturing impacts on logistics. The fabrication
process directly affects logistics and associated costs. The
modular assembly reef typology offers cost-effective
implementation methods, particularly in areas with
limited heavy machinery access.

� Future projections of AM in AR applications. The
results provided insights for readers and researchers
in marine ecology and/or AM fields, encouraging
the need for continued innovation, sustainable
environmental considerations, design features and
material selection based on specific ecological goals
and local conditions.
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6. Glossary

Term Definition

Design, materials and technology terminology
Additive manufacturing (AM) Technology that regroups all the manufacturing processes where three-dimensional objects are built by

the deposition of material layer by layer
Biomimetics Approach that mimics biological processes, models or pattern from nature to implement technical

solutions
Subtractive manufacturing (SM) Conventional manufacturing process that removes unnecessary materials to create the desired geometry,

involving turning, milling, drilling, grinding, cutting and boring processes
Formative manufacturing (FM) The conventional manufacturing process uses force, heat or pressure to mould materials into the desired

shape. Examples of such processes include forging, casting, stamping, extrusion and injection moulding
Computer-aided design (CAD) Digitally process to assist in the creation, modification, analysis or optimisation of two-dimensional or

three-dimensional models of physical objects
Computer numerical control (CNC) Automated control of machining tools to manage the movements and operations of machinery
Binder material Substance that holds or draws other materials together to form a cohesive whole mechanically and

chemically by adhesion or cohesion
Geopolymers Inorganic polymeric materials obtained by mixing a dry solid (aluminosilicate) with an alkaline solution.

An environmental alternative to traditional Portland cement by recycling waste materials and reducing
environmental impact associated with the production or traditional cement

Alkaline material Substances that have a pH level greater than 7, indicating that they are basic or alkaline in nature. The pH
ranges from 0 to 14, with 7 being neutral, values below 7 being acidic and values above 7 being alkaline

Fused filament fabrication (FFF) Additive manufacturing process that involves the layer-by-layer deposition of thermoplastic filament
material to create three-dimensional object

Paste deposition modelling (PDM) Additive manufacturing process that involves viscous paste-like materials to create three-dimensional
objects, also known as paste extrusion

Kinematic design In the context of AM, involves the movement control of the mechanical equipment, such as print bed and
extruders

Lattice structures Complex three-dimensional framework composed of interconnected geometric patterns, characterised by
repeating unit cells or modules

Polylactic acid (PLA) Biodegradable thermoplastic polymer derived from renewable resources, usually corn starch of sugarcane
Pozzolan materials Group of materials, that when combined with calcium hydroxide in the presence of water, react

chemically to form cementitious hydration products

Biological aspects terminology
Biomass Organic materials derived from living organisms, plants or animals, and their byproducts
Geogenic reef Reef structure substrate derived from rocky stone
Biogenic reef Reef structure substrate derived from carbonate deposition of habitat-forming organisms such as trees,

oysters, wetland grasses and corals
Scleractinia corals Commonly known as stony or hard coral, it plays a crucial role in the formation of reef habitats
Bleaching event Phenomenon that occurs when coral polyps expel the symbiotic algae (zooxanthellae) living within their

tissues. The expulsion of these algae results in coral death turning white, most known as bleaching event
Benthic communities Group of marine organisms that inhabit on the bottom sediments of aquatic habitats
Sessile communities Marine organisms that are attached to a substrate and do not have the ability to move around

independently
Biota All living organisms from a specific region or habitat
Bathymetry Method of measurement and mapping underwater depths and the topography of the ocean floor
Anthropogenic facts Phenomenon, substance or effect that arises from human activities, such as pollution, climate change,

overfishing, habitat destruction, invasive species, etc.

Sources: Figure courtesy of Lange et al. (2020) and Reef Design Lab (2018)
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