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Abstract

Purpose — Recent years have witnessed an unexpected and astonishing rise of Al-generated (AIGC), thanks to
the rapid advancement of technology and the omnipresence of social media. AIGCs created to mislead are more
commonly known as DeepFakes, which erode our trust in online information and have already caused real
damage. Thus, countermeasures must be developed to limit the negative impacts of AIGC. This position paper
aims to provide a conceptual analysis of the impact of DeepFakes considering the production cost and overview
counter technologies to fight DeepFakes. We will also discuss future perspectives of AIGC and their counter
technology.

Design/methodology/approach — We summarize recent developments in generative Al and AIGC, as well
as technical developments to mitigate the harmful impacts of DeepFakes. We also provide an analysis of the
cost-effect tradeoff of DeepFakes.

Research limitations/implications — The mitigation of DeepFakes call for multi-disciplinary research
across the traditional disciplinary boundaries.

Practical implications — Government and business sectors need to work together to provide sustainable
solutions to the DeepFake problem.

Social implications — The research and development in counter-technologies and other mitigation measures
of DeepFakes are important components for the health of future information ecosystem and democracy.
Originality/value — Unlike existing reviews in this topic, our position paper focuses on the insights and
perspective of this vexing sociotechnical problem of our time, providing a more global picture of the solutions
landscape.
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Introduction
Since late 2017, DeepFake [1] has become a buzzword frequently featured in the news and
media. The term is a portmanteau of deep learning and fake media, and the namesake refers to
the multimedia (texts, audio, images, and videos) created using generative Al models that
often rely on deep neural network models.

Fabrication and manipulation of digital media are not new phenomena (Farid, 2012).
However, the process with the pre-Al tools is usually lengthy, costly, and technically
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demanding for ordinary users—the current widespread of DeepFakes results from the
“democratization” of powerful generative Al technologies. The generative Al systems can
train on vast amounts of unlabeled data, and these models are potent enough to generate
convincing media. As a result, the technical threshold has been significantly lowered, making
it more accessible and cheaper for users to generate DeepFakes in large quantities and better
quality. With social media’s rapid and broad reach, DeepFakes can now spread wide and fast.

The generative Al technology has many beneficial uses. Examples include immersive
communication (e.g. Apple Vision Pro to be released in late 2023) and faster video streaming
(e.g. Nvidia Maxine), reducing cost and effort in the movie and advertisement industry, and
rehabilitation efforts for stroke victims and individuals with hearing impairment.

On the other hand, the DeepFakes can be weaponized and pose significant threats across
multiple societal dimensions, including personal security, democratic processes, financial
sectors, and the integrity of digital media. Personal security risks emerge as DeepFake can be
used to fabricate convincing yet false representations of individuals, leading to reputation
damage and psychological distress for anyone with accessible personal images or videos.

DeepFakes can escalate the scale and danger of online fraud and disinformation when
used for deception to threaten our cognitive security. Similar to threats to our physical security
or cybersecurity, which aims to break into our physical infrastructure or cyber systems,
threats to cognitive security target our perceptual system and decision-making process.
In particular, by creating illusions of an individual’s presence and activities that did not occur
in reality, DeepFakes can influence our opinions or decisions. For instance, a fake video
showing a politician engaged in an inappropriate activity or maybe enough to sway an
election. A voice call from a CEO requesting an employee to wire transfer funds to an offshore
bank account could lead to actual financial losses to the company. A fake social media post
with an Al-generated image of an emerging crisis could send the stock market awry. Using a
synthesized realistic human face as the profile photo for a fake social platform account can
significantly increase the effect of deception. An online predator can masquerade as a family
member or a friend in a video chat to lure unaware victims. In addition, the training of
generative Al models may use personal or copy-righted data, a gray area challenging the
current laws.

Although few DeepFakes can cause long-lasting effects, they are effective in creating
short-term chaos and confusion, and polarizing opinions when strong confirmation biases
exist. The more fundamental impact of DeepFakes is the erosion of our trust in digital media
— the fact that digital media can be synthesized or manipulated with Al makes it possible to
challenge the authenticity of all digital media, particularly those conflicting with a particular
agenda, a phenomenon often known as the lar’s dividend or plausible deniability (Citron and
Chesney, 2019). We have already seen a few recent cases of DeepFakes with real-world
impact. GAN-generated face images were used as the profile photos for fake accounts on
social platforms such as Twitter, Facebook, Instagram, and Linkedin. In 2020 alone, there
have been 4,000 fake accounts found on these social platforms. Using such realistic face
images as profile photos significantly increases the deceptiveness of those fake accounts.
Another recent incident is that a scammer successfully used a synthesized voice using Al
algorithms to impersonate the CEO of a UK company and misled an employee to wire transfer
a substantial amount of money to the scammer’s bank account (WSJ, 2019). In addition,
reports show that hackers use DeepFakes to falsify biometric data to gain access to essential
information systems (Verge, 2022). A DeepFake video of the Ukrainian President calling for
Ukrainian troops to surrender began circulating on social media and Ukrainian news
websites before being debunked and removed. As a recent case, on May 22nd, 2023, an Al-
generated image showing a supposed explosion at the Pentagon building circulated on
Twitter. Minutes later, the S&P 500 index dropped by 0.26%, showing such disinformation’s
impact [2].



The mounting concerns over the DeepFakes have spawned increasing interest in counter
technologies, with substantial support from government and private companies [3].
On October 30th, 2023, the US Government issued an executive order on Al with a focus
on the generative Al technology, to provide guarding rails for potential misuse including
spreading falsified information and breaching privacy. This position paper aims to provide a
high-level overview of the countermeasures to DeepFakes as a harmful impact of generative
Al While there have been numerous articles and surveys on the technical aspects of
DeepFakes and counter technologies, e.g. Juefei-Xu et al (2022), we focus on the insights and
perspective of this vexing sociotechnical problem of our time, trying to provide a more global
picture of the solutions landscape. The remaining of the position paper will be organized as
follows. In Section 2, we will go over existing forms of DeepFakes and their underlying
technology. Section 3 analyzes DeepFakes based on the production cost and perceptual
impact tradeoff. Section 4 overviews current countermeasures to DeepFakes. Section 5
concludes the article with predictions on the future of DeepFakes and their countermeasures
and some recommendations.

What is DeepFake?

From its original narrow meaning of face-swap videos created using deep neural network
models, DeepFake is nowadays broadly used to refer to any digital media created or edited by
generative Al algorithms. The rapid developments of DeepFakes are enabled by the ready
availability of four key elements, namely.

(1) Data and dissemination channel: The fast growth and maturity of the Internet and
social media since the 1990s provide a massive source of digital media data that can
be used to train powerful generative Al models. They also offer fast and broad
dissemination channels for DeepFakes.

2) Computation power: Training deep neural network models requires high computing
power and storage space that was nonexistent two decades ago. The rise of
generative Al and the underlying deep learning technology can only be possible with
the fast development of parallel high-performance computing hardware such as
graphical processing units (GPUs) and advanced storage technology such as solid-
state disks and flash memory.

) Advancement in the generative Al models, including the variational auto-encoder
models (VAEs), generative adversarial networks (GANSs), the diffusion models, and the
large-language models. We briefly overview each type of model here:

o The VAE model (Kingma and Welling, 2014) consists of two DNNs, an encoder,
and a decoder, trained using the target and the donor’s faces. The encoder retains
the target’s facial expressions, and head poses while the decoder combines these
with the target’s identity. The auto-encoder is trained on the faces of the subjects
whose faces will be swapped. The two issues share the same encoder, and they
have different decoders. We then form two other encoder-decoder pairs. Training
proceeds by adjusting the networks to minimize the difference between the input
face images and the reconstructions, typically measured in L1 or L2 losses. This
arrangement ensures that the encoder can capture common characteristics
between the images of the two subjects. At the same time, the decoders can retain
the individualities of each issue.

o The GAN model (Goodfellow et al., 2014) consists of a pair of deep neural networks
called the generator and discriminator. The generator creates a face from random
noise. At the same time, the discriminator performs a binary classification
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between the real images and the fake images synthesized by the generator—the
training proceeds as a competition between the generator and the discriminator.
The generator aims to create more realistic images to beat the discriminator, while
the discriminator tries to be more accurate in its classification. The training ends
when the two DNNs reach an equilibrium. The inputs of these networks are
random vectors, while the outputs are high-quality fake face images. The classic
examples are DCGAN (Radford et al, 2015), WGAN (Arjovsky et al., 2017),
PGGAN (Karras et al., 2017), and StyleGAN (Karras et al., 2019). GAN images are
becoming much easier to make (e.g. a user can obtain high-resolution human faces
created by the most recent StyleGAN model from thispersondoesnotexist.com).

« The diffusion models work under a different mechanism. The process is iterative:
the input image is smeared with additive noise, and then a “denoiser” in the form
of a deep neural network is used to remove the noise and recover the original
image. This noise-adding-removal process is stacked into several steps until the
final output becomes indistinguishable from pure random noise. Then to generate
anew image, in a similar way as in the GAN model, we start with a random noise
sample and use the denoising process to create an image. The forward process of
adding consecutive noises resembles a physical diffusion process (e.g. the
dispersion of heat in a medium), hence the model’s name. An additional feature of
the diffusion model is its ability to incorporate text inputs (known as prompts) to
create images per the user’s description. Diffusion models have become
mainstream image synthesis models since 2021 with commercial systems such
as Midjourney and Stable Diffusion.

« Since 2020, there has been a surge in the popularity of Large Language Models
(LLMs) in creating human-level texts using a variant of deep neural networks
known as the transformers. Unlike typical deep neural networks, a transformer is
a sequential neural network model that predicts a sample’s new component
following specific order (e.g. the sentence structure in texts) based on the
components created. The transformer also uses the attention mechanism, which
understands the relative importance of the existing component in predicting the
new component. Transformer-based LLMs such as the GPT family (GPT1.0,
GPT2.0,ChatGPT, GPT4.0) can create highly convincing texts that are difficult to
distinguish from human written texts.

4) Open source software and web-based tools: Most generative Al tools currently have
code or implementations on open-source platforms like GitHub.com or HaggingFace.
com. This has dramatically facilitated generative Al research’s dissemination,
reproduction, and augmentation. Furthermore, many generative Al tools, notable
examples including ChatGPT, DALL-E2, Stable Diffusion, and Midjourney, have
user-friendly, web-based interfaces, which further obviate the need for users’
knowledge of programming, machine learning, and underlying computer systems.

Regarding the input/output type of media, current DeepFakes can also be summarized into
ten major categories [4]. The relations between different types of DeepFake synthesis
modalities are given in Figure 1.

(1) @Zimg (input: null, output: image): This corresponds to the synthesis of images of
objects (e.g. faces, vehicles, buildings) or scenes (indoor or outdoor) from random
noises. The underlying models are GANs and diffusion models, which can
synthesize images, and there is typically no user input or control over the
synthesized image.


http://thispersondoesnotexist.com/
http://github.com/
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@2aud (input: null, output: audio): This is the process of synthesizing audio signals
of specific types (e.g. music, animal sounds) or scenes (e.g. crowded restaurants,
tropical forest) from random noises. Commonly used models for audio synthesis are
also GANs and diffusion models. As in the case of image synthesis, there is typically
no user input or control over the synthesized results.

txt2txt (input: text, output: text): This is the process of generating longer texts based
on input text prompts from the users, and the models behind this task are sequential
models trained on large text corpus (i.e. the large language models).

mgZimg (input: image(s), output: image): This process creates new images based on
the input image(s). It subsumes tasks such as image style transfer — rendering an
image in the style of another image, face image editing — modification of facial
attributes such as hair color, baldness, and smile and retouching complex
characteristics like gender, age, etc., and image retouching, restoration, and super-
resolution — filling missing or damaged image details.

txt2aud (input: text, output: audio): This task is more commonly called text-to-
speech (TTS), which converts the input text to corresponding audio. Many TTS
systems can create a model of someone’s voice, which can read the text in the same
manner, intonation, and cadence as the target person. Others, such as Modulate.ai
and lyrebird.ai, allow users to choose a voice of any age and gender rather than
emulate a specific target.

audZaud (input: audio, output: audio): This task is more commonly referred to as
voice conversion (VC), which transfers the input audio of one person’s voice into
another.

vid2vid (input: video, output: video): This task is also known as video rewrite, and it
is the original media synthesis technique that made DeepFakes widely known. The
most prominent example of a vid2vid task is face replacement (or face-swapping),
which involves generating an image of someone’s face (the source) and carefully
“stitching” it onto that of another person (the target). The target’s identity is
concealed, with the focal point being the source. Face replacement is often created
using the auto-encoder model (AE). The approach of synthesizing face-swap videos
has been mainstreamed through open-source software implementations on GitHub,
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e.g. FakeApp (FaceApp, 2021), DFaker, and face swap-GAN (Lu, 2018), face swap
(FaceSwap, 2016), and DeepFacelLab, Zao (2022). Another widely used vid2vid
method is face re-enactment (or face puppetry), which entails manipulating the
features of a target’s face, including the movement of their mouth, eyebrows, eyes,
and head tilting. Re-enactment does not aim to replace identities but rather to contort
a person’s expressions so they appear to be saying something they are not. Face
puppetry videos can be made with AE-based models, similar to face-swap videos. In
this case, the difference is that we will use the whole head and upper shoulder
regions as input. Face puppetry is implemented in several commercialized apps,
including Pinscreen (2021) and Face2face (Thies et al., 2016).

(8 txtZimg (input: text, output: image): This process creates images representing the
information in user-provided text prompts. Unlike the unconditional image
synthesis, txt2img gives users more control over the content of the generated
content. Several text-prompted image synthesis platforms exist, including OpenATI’s
DALL-E2, Google’s ImageGen, Stable Diffusion, and Midjourney.

9) aud2vid (input: audio, output: video): This subsumes the task of lip-synching, which
generates the lips of a person conditioned on the input audio, to create a manipulated
video in which he/she speaks according to the input audio. A state-of-the-art lip-
syncing method is wav2lip (Prajwal et al., 2020).

(10) mg2vid (input: image, output: video): This includes the task of face animation, which
transfers the target video’s facial expressions and head motions to the “animate”
input image. Face animation fulfills the same function as face-swap or face puppetry,
but it can make synthesized videos of faces using only a single input image. An easy-
to-use app, Avatarify (2022), has been developed to provide face animation functions
on mobile phones.

A cost-perception analysis of DeepFakes

Given the ever-increasing levels of sophistication of the models, the realism of the deepfakes,
and the easiness of access to the tools, the public media on generative Al models that create
DeepFakes often portray a future of dooming dystopia or even an apocalypse, leading to
outcries of limiting the generative Al technology from the media and the scientific
community.

These reactions are predicated on two assumptions: that deepfakes can be cheaply made
and that humans cannot tell them apart from the real media. However, other than some
sporadic works, the two hypotheses have not been carefully examined. For one thing, we
know that the cost of making generative Al models is hefty. For instance, training the OpenAl
ChatGPT model, which has 175 billion parameters, will cost more than $12 million for three
weeks [5], and the cost includes the utility (electricity and water for cooling), facility (space),
equipment (computing servers or cloud charges), personnel (payment to workers who collect
data and operate the models), etc. In addition, an aware and dedicated human can spot a
synthesized medium given sufficient time and context. What we need to take into
consideration when making predictions about generative Al and deepfakes are the more
complex cost and effect factors.

Here we analyze the interaction between the cost of making DeepFakes and the impact on
human perception and cognition. This is not an actual data analysis, as such data have been
systematically collected in the literature, which would be a good future research topic. We
base our analysis on a gloss estimation from our experience, and our primary purpose is to
demonstrate the general relation. In addition, to simplify the analysis, we need to consider the
effect of other information sources that can verify media authenticity. In Figure 2, the x-axis is
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the minimum response time (MRT), a term in cognitive psychology and neuroscience that
quantifies how quickly an individual perceives, processes, and reacts to a specific stimulus.
Here it is used to quantify how long it takes an average human to identify a synthetic media in
an unaware state, 1.e. not consciously looking for a DeepFake. This is the case for most online
users when they use social media. This is a crude simplification of all the complex factors,
such as the user’s understanding, educational background, demographics, and other
cognitive and perceptive differences. It is, therefore, a different value for different subjects.
For explanation, we assume an average user and use this to demonstrate the overall trend.
MRT corresponds to a measure of difficulty or challenges for a subject to spot deepfake
without prior knowledge of their presence. One bane of the ever-growing social media is that
our attention span (i.e. the time spent examining a media) is limited and getting shorter (Kies,
2018). The y-axis corresponds to the hypothetical dollar amount per hour for making a
DeepFake. This value amortizes all the costs involved in the process of making deepfakes.
We hypothesize the relation between cost and perception of DeepFakes as the curve
shown in Figure 2[6], emphasizing again that this is not based on actual data and our purpose
is to illustrate the general relation. The overall trend is a shape of a sigmoid curve (S-curve)
with three segments. The initial relatively flat segment corresponds to low-cost mass
production of DeepFakes with off-the-shelf tools and minimal post-processing. The quality of
the DeepFakes is often good enough to evade an unaware or occupied user who only spends a
short time inspecting them, for instance, when the user is browsing social media posts. The
middle range of the curve is a sharp increment of cost that can be regarded as the “uncanny
valley” [7]for DeepFakes. This corresponds to the scenario when the user is more likely to be
aware of DeepFakes, hence will spend more time examining the media. The available
generative Al tools, albeit easy to use, often struggle to make consistently high-quality
syntheses, resulting in conspicuous artifacts in the synthetic media that a conscious user can
quickly spot. The last segment of the curve is another relatively flat region but with higher
costs in production. This corresponds to the situation when the effort in production goes
beyond a certain threshold — using specially designed tools, careful choice of the original
media, and extensive post-processing to remove or conceal artifacts, the resulting “crafted”
DeepFakes will become difficult to detect for an average user within a reasonable time range.
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This curve also illustrates the battlefield frontier between DeepFake making and
countermeasures. The advancements of generative Al technology are to “lower and flatten”
this curve, ie. reducing cost and producing DeepFakes less noticeable or detectable.
The countermeasures to DeepFakes, on the other hand, aim to heighten the curve. In the case
of non-technical countermeasures, we can view various governmental policies and
regulations and industrial content moderation efforts [8] as increasing the cost of
producing DeepFakes. The United States and the European Union have recently taken a
major step toward regulation of generative Al technologies, such as ChatGPT, Midjourney,
and Stable Diffusion, by implementing comprehensive measures for their development,
deployment, and utilization. In the case of already released powerful generative models, if
regulators require that all GPUs/CPUs can only execute generative models that create digital
content with watermarks, all manufacturers would need to update their settings and produce
such cards in the future. Consequently, pre-existing models without watermarks would
become inoperative, making all Al-generated digital content identifiable. It provides an
additional layer of protection instead of totally replying to deep fake detectors. On the other
hand, enhancing user awareness and building resilience through improved user education on
generative Al and synthetic media, especially for vulnerable groups such as teenagers and
seniors, help to reduce the response time and are the keys to mitigating the negative social
impacts of DeepFakes. The same is true for technical countermeasures — detection facilitates
the users to spot DeepFakes while the obstruction and tracing methods increase the
production costs of DeepFakes. We will overview these counter technologies in the sequel.

Counter technologies: detection

DeepFake forensics, focusing on counter technologies of DeepFakes, has become an active
research area in response to the concerns around DeepFakes. The current efforts in DeepFake
Forensics heavily tilt towards detection, formulating as a binary classification problem. So
far, we have detection methods for all types of DeepFakes, as described in the previous
section. There is a vast literature on DeepFake detection methods, and our purpose here is not
to survey existing works thoroughly. More technical and detailed overviews of existing
DeepFake detection methods can be found in, e.g. Juefei-Xu et al. (2022).

In practice, DeepFake detection methods are used for two primary purposes: triage and
evidence. A DeepFake detector used for #riage screens out a smaller subset of likely
DeepFakes from a large number of images, audio, and videos for closer scrutiny. For triage
detectors, the primary issue is detection accuracy, minimal human intervention, and run-time
efficiency. As such, they are often implemented with data-driven methods, directly employing
machine learning models trained on real media and DeepFakes to classify them. Data-driven
triage detection is effective for low-cost DeepFakes (initial flat region of the S-shaped curve in
Figure 2). However, they often lack explainability. If a data-driven detection method tells us
that the result is 70% of confidence that the input is a DeepFake, it often sheds little light on
the reasons or evidence supporting the result.

A DeepFake detector for evidence is required to have high explainability, i.e. the results
must be accompanied by supporting evidence that is explainable and understandable to
humans. Because of this requirement, DeepFake detection for evidence is often cue-based,
exposing DeepFakes based on their lack, inconsistency, or violations of physical or
physiological characteristics of the event that was supposed to be captured by the media in
question. Cue-based evidence detection targets more carefully crafted DeepFakes with
production costs corresponding to the middle and final segments of the S-shaped curve in
Figure 2. We also point out that the triage classifier and the evidence classifier can be used in
the same workflow, where the former is first used to narrow a large amount of media down to



a smaller manageable subset of likely DeepFakes. The evidence classifier is applied to each
case for a more detailed analysis.

Data-drive triage detection methods: The data-driven strategies apply various
classification models, the majority of which are deep neural networks, to the problem of
DeepFake detection. Most popular deep neural networks for other computer vision problems
have been used, and data-driven methods achieve state-of-the-art performance on benchmark
datasets. Many DNN-based DeepFake detection methods are developed for GAN-generated
images or AE-generated face swap videos. For the former case, a common approach is to take
the whole image as input and employ various forms of DNNs for classification, e.g. (Do ef al.,
2018; Mo et al., 2018; Chen et al., 2021). Some recent methods, e.g. Wang ef al. (2020), further
use frequency-domain features based on the observations that GAN-synthesized images
exhibit statistical differences from the original photographic images in the high-frequency
range. DNN-based detection methods for face-swap videos follow the general intuition that
each frame in the DeepFake video is created by blending the AE-synthesized faces into the
face region in the original video frame. Many methods construct classifiers based on the
difference between the interior and the exterior parts relative to the face regions. Other
approaches focus on the boundary where blending is applied and expose the traces of
blending operation as a trace of manipulation.

Early generations of the DNN-based DeepFake detection methods, e.g. (Afchar et al., 2018;
Giliera and Delp, 2018; Liand Lyu, 2019; Nguyen et al., 2019), focused on using various types of
DNN architectures used in other Computer Vision tasks. This includes CNNs, RNNs, Capsule
Networks, Vision Transformers, etc. However, the increasing model complexity entails larger
datasets with higher qualities, which are complex and time-consuming. Subsequently, more
current detection methods, e.g. (Sun ef al., 2021; Dong et al., 2022; Chen et al., 2022), explore
novel approaches for training data synthesis and augmentation, ie. to apply various
transforms to existing training data to simulate the generation process. This is particularly
true for detecting face-swap videos, where augmented training data can be obtained by
randomly grafting faces into authentic images or frames.

The data augmentation approach has two advantages. The first is the reduced reliance on
training data — many recent methods only are genuine real photos or videos and apply
generation simulations to create negative examples. The second is the flexibility to inject
information about the generation process. As the training data are made in the model training
cycles, the algorithm developer can choose simulation operations close to those used in the
generation process. The difficulty, however, is how to design appropriate augmentation
methods that can lead to more effective detection methods. The other trend that combines
with the data augmentation approach is self-supervised learning, where new training data are
created by occluding or degrading the input. The algorithm then tries to recreate the original
information and the classification task. The data augmentation and self-supervised learning
approach have significantly improved the reliance on large-scale datasets for the DNN-based
DeepFake detection methods.

Data-driven detection methods have achieved considerable progress recently, but their
performance in the wild may still have much room for improvement [9]. Data-driven detection
can often be hindered by post-processing, such as compression, performed by social
platforms to reduce file size and save bandwidth. In addition, deliberate anti-forensic attacks
can mislead the detection method to make classification errors by hiding traces of DeepFakes.
It has been shown that DNN classifiers are vulnerable to deliberate adversarial attacks, which
aim to mislead the classifier to make classification errors on a perturbed input.

Cue-based evidence detection methods: Although potent, the DeepFake synthesis models
also have limitations in representing the more semantic aspects of the physical world. Indeed,
these have been the primary cues that human viewers use to detect DeepFakes, such as the
different colors of the eyes, halo effects near the hair, and blurry backgrounds in GAN-
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generated faces. Such semantic cues are human-understandable and can only be fixed by
improving the generation model. If we can build detection methods based on such signals, the
procedures will be more robust to adversarial attacks and afford intuitive interpretations.
Along these lines, there are several existing works to detect GAN-generated faces. For
instance, in Yang ef al. (2019a), it was noticed that the early generation of GAN-synthesized
faces tends to be asymmetric. This is because the earlier GAN models were more capable of
generating facial parts but might not constrain the forged face to have a natural
configuration. A simple classification method based on facial landmarks highlighting such
asymmetry in faces is then developed to detect such artifacts. The work of Matern et al. (2019)
focused on the relics of the synthesized facial parts. One of their method’s exciting cues is the
difference in color and resolution of the two synthesized eyes. In two more recent works (Hu
etal., 2021; Guo et al., 2022), the authors noticed that GAN-synthesized faces exhibit particular
irises artifacts. In Hu et al (2021), it was seen that there are inconsistent corneal specular
highlights between the two synthesized eyes (Figure 2). That is to say, for a natural face, the
two corneal specular highlights are usually similar, while for the GAN synthesized face, they
are different, as if the two eyes are looking at the other scenes. In Guo et al. (2022), the authors
further noticed that the pupil shapes are often irregular, as the pupils of healthy adults have a
circular shape (Figure 2). Such inconsistencies can be captured using automatic computer
vision algorithms and used as tell-tale signs of GAN-synthesized faces.

One of our earlier works detecting face-swap videos (Li ef al., 2018) is also based on the
simple physiological observation that faces do not blink naturally in those videos.
The authors further explained the lack of flashing in generated face-swap videos. The
training data used to create these early face-swap videos were portrait images obtained from
the Internet using the image search provided by Google or other search engines. These
portrait images carry an implicit bias due to the choice of the photographer, i.e. they mostly
correspond to the subject with open eyes. The model inherited a bias in training data and
reproduced the synthesized faces in these videos as an artifact or imperfection. This lack of
realistic blinking can be exposed with an algorithm dedicated to detecting the opening/close
of the eyes. When the blinking frequency is below the physiological data, about once in
between 6-12 s, it is reasonable to doubt if the faces in the video are real live humans.

Another physical cue detects face-swap videos (Yang et al., 2019b). For a real video, it is
easy to understand that when the head moves in 3D space, the face, as part of the head, will
move together. The synthesized faces are spliced onto the original video frames for face-swap
videos. In particular, the synthesized face does not follow the 3D constraint; it is transformed
in 2D to simulate the 3D motion of the head as in the original real video. Such differences
between 2D and 3D can create artifacts in the face-swap videos, especially when the subject is
not looking directly at the camera. The subject’s face looks strange and does not seem to move
with the head. This inconsistency can be used to expose fake videos. In particular, we can use
3D face alignment algorithms to estimate the 3D direction of the face orientation. In this case,
all we need to do is compare the face orientations estimated using the central part of the case
and estimate using the whole face. If this is a video of a natural person, we should see the two
orientations to be very close. On the other hand, if the video is a DeepFake, the two
orientations can have significant differences. Indeed this is what we see in actual data when
we measure the differences in the orientations using their cosine distance, and we can observe
more significant differences in the fake videos.

For synthesized audios, the work of AlBadawy et al (2019) provides an approach based on
inconsistencies in local phases. When we speak in a conversation, we make sound waves, and
the sounds created by the speaker will reach the ear of the listener or a receiving device such
as a microphone. However, the sound waves usually reach the destination via multiple paths.
For instance, consider the indoor case; the listener’s ears or the microphone can directly
receive the sound waves, all bounced back from the surrounding walls and ceilings.



This means that the sound waves for the same voice will typically reach their destinations at
slightly different times because of the lengths of the paths they use. They are also attenuated
more for longer routes. The result is that the sound heard in our ears is a mixture of the same
sound wave with slightly different amplitudes and phases. The difference in grades is caused
by the other arrival times of the same sound wave signal. However, our auditory system
usually does not perceive this difference in local phases. Physiological studies have shown
that our ears are not particularly sensitive to differences in local phases.

The reason is simple if we want to pick up the message in the voice, the auditory system
needs to focus on the local amplitudes of the sound wave, not the phases. Amplitudes can be
captured by second-order signal representations such as spectrograms, but they are
insensitive to local phases. We can use higher-order signal statistics to capture the local
phases in sound audio. One such higher-order statistic is known as the bi-spectra. In bi-
spectral analysis, we first transform the time-windowed audio signals into the frequency
domain using Fourier transform. Conventional spectrogram looks at the correlation between
a pair of frequency components, while in bi-spectral analysis, we look for mutual
dependencies among triplets of frequency components. The resulting bi-spectrum, or its
normalized version known as bi-coherence, is a complex quantity. The differences in the
generation process may be exposed when we look at them through the bi-spectral analysis.
Indeed this is the case. Here are the bi-spectral analysis results of actual human voice samples
(right) and several different types of synthetic voice samples. Because bispectra are complex-
valued, we offer both the amplitude and the phases. These bi-spectral analyses show the
significant differences between these samples with authentic human voices. We collect the
top four order cumulants (mean, variance, skewness, and kurtosis) considering symmetry in
bi-coherence from the amplitudes and phases. This leads to an 8-dimensional feature vector.
Then we feed statistical features extracted from this bi-spectra and train a simple ensemble
classifier based on SVM. We visualize the parts in this two-dimensional graph. We see that
human voices, highlighted with the region with the ellipse, can be easily separated from the
Al-synthesized voices.

The explainability of the cue-based evidence detection method could be a double-edged
sword, as the makes can be easily understood by DeepFake makes and incorporated in the
generative Al model, for instance, by augmenting training data or designing dedicated
modules to reproduce the cues. Another limitation of cue-based detection methods is that they
are often only applicable under certain conditions (e.g. detecting GAN-generated faces using
iris reflection requires a high-resolution area of the eye region). This makes the cue-based
methods more narrowly scoped when compared with the data-driven detection methods.

DeepFake datasets: Developing DNN-based detection methods require large-scale datasets
for model training and performance evaluation. The availability of large-scale datasets of
various types of DeepFakes is an enabling factor and a reflector of the rapid development of
DeepFake Forensics. To date, several such large-scale datasets exist for face-swap videos.
The first dedicated DeepFake dataset, UADFV (Yang ef al., 2019a, b), only had 49 DeepFake
face-swap videos with visible artifacts when released in June 2018. Subsequently, more
DeepFake datasets are proposed with increasing quantities and qualities (Li ef al, 2020;
Rossler et al., 2019). For instance, the Celeb-DF dataset (Li et al., 2020) is a State-of-the-art,
high-quality, large-scale face-swapping DeepFake video dataset. There are 5500+ face-
swapping DeepFake videos with more than two million frames. More than 2000 downloads
since November 2019. It is one of the most used datasets for DeepFake forensics research, its
size, and quality. The DeepFake detection is usually evaluated on large benchmark datasets.
Most current datasets are for DeepFake images and videos, but DeepFake audio datasets
have also received more attention (Todisco ef al., 2019).

DeepFake detection platforms: Although we now have many effective detection methods,
there is a gap for users to benefit from these state-of-the-art methods. As code for these
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detection methods scatters on online code-sharing platforms like GitHub, a user wishing to
analyze one image or video must find the code, download it to her computer, set up the
environment, and compile it, before using it for analysis. There is a need to close this last-mile
gap between the users and the detection algorithms.

DeepFake-o-meter (Li ef al, 2021) is an open-source, online, and user-friendly online
platform for third-party DeepFake detection algorithms. For users, it provides a convenient
service to analyze DeepFake media with multiple state-of-the-art detection algorithms, with
secure and private delivery of the analysis result. For developers of DeepFake detection
algorithms, it provides an API architecture to wrap individual algorithms and run them on a
remote machine. For researchers of digital media forensics, it is an evaluation/benchmarking
platform to compare the performance of multiple algorithms on the same input.
The DeepFake-o-meter can be accessed at https://zinc.cse.buffalo.edu/ubmdfl/deep-o-meter/.

Counter technologies: beyond detection

More than merely detecting DeepFakes is required to combat the negative impacts of
DeepFakes. Exposing a DeepFake is only the first step in the investigation, and we need more
information about the origin, means, and intent behind the observed DeepFakes. These are
information not provided by a classifier. Furthermore, DeepFake detectors primarily operate
postmortem, applicable after DeepFakes emerge. This gap in time between the emergence
and circulation of DeepFakes and their eventual exposure may lead to damage. Due to these
reasons, recent years have also seen active developments of DeepFake Forensic methods
beyond detection.

(1) Model attribution: The specific means by which the DeepFakes are created are helpful
in the forensic investigation of a DeepFake attack. For instance, knowing that the
synthesis model is a copy of a publicly available tool can narrow down the list of
downloaded users. If the synthesis model is a slightly modified version of a known
model, it may indicate that the DeepFake maker has enough skill to modify an existing
tool. If the synthesis model is novel and unrelated to the existing tools, it may indicate
that the DeepFake maker has significant resources and skills. The problem of
DeepFake generation model attribution is to infer the type and details of the
generation model using DeepFakes created from it. Many model attribution methods
use multi-class classification to differentiate DeepFakes made with different
generative Al models. More recent approaches, e.g. Jia et al. (2022), look for features
that can differentiate different generative models for detection.

(2) Active Forensics of DeepFakes: Recent tools (e.g. Avatarify and DeepFaceLive) create
real-time face-swap or face reenactment DeepFakes. The real-time DeepFakes pose
new challenges to existing detection methods that often struggle to achieve the levels
of accuracy needed to be incorporated into a practical video-conferencing application
and run in real-time. As such, new approaches of active DeepFake forensics, which
combines liveliness detection in biometrics to identify if the digital synthesis is a live
presentation of an individual. For instance, the work (Gerstner and Farid, 2022)
exploits the unique constrained environment afforded by a video-conferencing call to
detect real-time DeepFakes by varying the lighting pattern on the screen and
extracting the same lighting variation from the attendant’s face. A similar idea is
proposed to expose real-time face-swap DeepFakes using corneal reflection from real-
time captured iris images (Guo et al,, 2023). Injecting “traces” to the would-be training
data is a different approach. The traces are unnoticeable to humans and can be
extracted later from the DeepFakes created using models trained on the tainted data
and used as reliable and definite evidence of DeepFakes (Sun et al., 2021).


https://zinc.cse.buffalo.edu/ubmdfl/deep-o-meter/

(3) Proactive obstruction of DeepFakes: Unlike detection methods, the preemptive
approach directly obstructs the training or generation of deepfakes, either leading to
failures in the generation or stalled training process. One idea is to poison the would-be
training data by adding specially designed noises. Training with the poisoned data
will lead to dysfunctional models that create low-quality DeepFakes. The work of Sun
et al. (2021) obstructs the DeepFake generation by attacking a vital step of the
generation pipeline, facial landmark extraction. The method generates adversarial
perturbations to disrupt the facial landmark extraction, such that the DeepFake
models cannot locate the face to swap.

(4) Authentication of real media: The flip side of exposing DeepFake is to verify the
authenticity of untouched real media. Two major approaches for authenticating real
media are watermarking and controlled capture. The former is to embed invisible
signals known as digital watermarks to authentic media, which can be later extracted
for verification. Controlled capture does not add signals to the real media. However, it
extracts statistical features (the signatures) that can identify the real media and store
them in a secure location, e.g. using blockchain technology and on a secure cloud-
based server. The stored signatures can be compared later with those extracted from a
media to authenticate. The authentication of real media has been supported by the
Content Authenticity Initiative (CAI, https://contentauthenticity.org/) and the
Coalition for Content Provenance and Authenticity (C2PA, https://c2pa.org/), both
initiated by Adobe and adopted by many major tech companies and news outlets.

Future perspectives
Looking into the future, we will continue to see accelerated development of deepfake
technology with newer forms, a higher level of visual realism, fewer artifacts, and an
increasing level of automation to facilitate production at scale. In the not-too-distant future,
ordinary users may have access to more easy-to-use and ready-made tools to manipulate
media as they use Photoshop to edit images today. Furthermore, creating DeepFake targeting
an individual can also become a service for users who do not access the computation
resources. We will likely reach a tipping point where the production of fake content outpaces
our ability to detect it. This could have several implications. With this advancement, we
anticipate an increase in the volume and quality of fake content on social media and the
Internet. The speed of generation and distribution of this content may accelerate, potentially
flooding our information ecosystem. Furthermore, we might see more comprehensive
disinformation campaigns that combine multimedia and multi-site illusions. Deceptive
narratives could be reinforced across texts, images, videos, and audio for more compelling
storytelling. Additionally, we can expect more refined and subtle forms of manipulation
targeting individuals, businesses, and government agencies. Rather than aiming for broad-
scale influence, attackers may focus on less-known targets, choose to time strategically, and
employ more comprehensive forms of media to sway public opinion subtly. In other words,
the attacks might become more granular, specific, and potentially more effective.

The continuous improvement of synthesis models put DeepFake making and forensics in
a cat-and-mouse game. As such, we must continue developing DeepFake Forensic methods
that are more effective, efficient, robust, and explainable, focusing on identifying
inconsistencies or inaccuracies, understanding their impact, and discerning the intent
behind DeepFakes. New methods also need to resolve zero-day attacks when a new approach,
form, or model of media synthesis is not strongly related to previously known cases. In
addition, even the distinction between real and DeepFake may become less relevant when the
majority are synthetic (and harmless) in the future with the broader use of generative Al and
synthetic media, for instance, high-quality video compression and virtual and realistic
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avatars in the meta-verse. This means that the very problem of DeepFake detection may
become irrelevant. A more critical question may be to ensure the authorized usage of
generative Al models. In addition, it is also helpful to test the hypothesis presented in the
S-shaped curve about the cost and perceptual effect of DeepFakes, through careful user study
and quantification.

There are also multiple non-technical issues that we need to consider in the future
development of DeepFake counter technologies.

©)

@)

©)

10)

1

Notes
1. Its origin was the Reddit account name that shared Al-generated pornographic videos with

The current policies and regulations need to be more precise in delineating innocent
and malicious use of synthetic media as the generative Al technology and synthetic
media are dual-used, unless in extreme cases of misuse (e.g. generating targeted
pornography videos to defame an individual), banning or restricting the technology
may lead to unwanted side effects.

The open-source nature of many DeepFake forensic tools can be exploited to improve
synthesis and anti-forensics, a phenomenon often known as the “detection dilemma.”
Thus, we need to find better ways to disseminate such forensic tools to balance the
users’ benefits and reduce abuses by malicious players.

Furthermore, we must also pay more attention to the intervention procedure after
exposure to a DeepFake. In the recent work of Shan et al. (2022), in which the authors
show that the straightforward approach of labeling an exposed Al-synthesized video
(commonly known as a DeepFake) may undermine mitigation efforts by not taking
socio-psychological considerations into account — users are drawn by curiosity to
watch a “DeepFake,” which conversely increases the attention and spread of the
labeled fake content.

Corporations should incorporate synthetic media as part of the cybersecurity training
to accommodate the increasing risks (frauds, scams, and attacks) using DeepFakes
alongside other cognitive and cyber-security threats such as social engineering.

More investment and effort should also be invested to increase the awareness and
resilience of the general public about the risks of generative Al and synthetic media.

As a socio-technical problem by nature, the research on mitigating the harmful
effects of DeepFakes calls for collaborations across traditional disciplinary
boundaries. Al researchers must be willing to work with humanists, social
scientists, psychologists, and communication and education researchers to work
out a holistic solution with technical methods supported by a deeper understanding
of the root cause and effective delivery of analysis results.

Last but not least, compared with making DeepFakes, exposing DeepFakes is not
deemed profitable, with few successful commercial endeavors. Thus, market forces
must be used to create a sustainable model for DeepFake forensic services.

transplant celebrity faces in late 2017.

2. Source: https://www.cnn.com/2023/05/22/tech/twitter-fake-image-pentagon-explosion/

3.

Notable examples include the DARPA MediFor and SemaFor programs, the NIST 2018, 2020 and
2021 Synthetic Data Detection Challenge, and the DeepFake Detection Challenge (https://
deepfakedetectionchallenge.ai) in 2020 sponsored by Facebook, Microsoft, Amazon and
Partnership in AL


https://www.cnn.com/2023/05/22/tech/twitter-fake-image-pentagon-explosion/
https://deepfakedetectionchallenge.ai
https://deepfakedetectionchallenge.ai

4. There are other less known types of media synthesis (e.g. text-prompt video generation, txt2vid) that
are currently under active development and expected to join the mainstream in the coming years.

5. https://www.forbes.com/sites/johnkoetsier/2023/02/10/chatgpt-burns-millions-every-day-can-
computer-scientists-make-ai-one-million-times-more-efficient/?sh =6550517d6944

6. We consider modifications that lead to cognitive impacts, i.e. can affect the user’s opinion or decision-
making. Therefore, cost will be the dominating factor affecting the perception. This excludes trivial
modifications (e.g. changing the value of a single pixel in an image) that cannot be detected by the user.

7. The term “uncanny valley” is originally used to describe the relationship between the human-like
appearance of a robotic object and the emotional response it evokes.

8. In the USA, Congress has passed several bills to regulate the abuse of DeepFakes, including the
Malicious Deep Fake Prohibition Act of 2019, the DEEP FAKES Accountability Act, the Deepfake
Report Act, and the [OGAN Act of 2019. More recently, President Biden has requested watermarking
synthetic contents made with tools provided by major tech-companies [source]. Similar legislative
efforts have also been made in the EU and China. Major social platforms (e.g. Twitter and TikTok)
have followed suit to specify policies to control DeepFakes.

9. The best-performing algorithm in the DeepFake Detection Challenge 2020 achieved a detection
accuracy of about 85% on the synthesized data, but such performance sharply drops to 65% on data
in the test dataset (Dolhansky et al., 2022).
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