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Abstract

Purpose – This study examines the relationship between demand forecasting error and retail inventory
management in an uncertain supplier yield context. Replenishment is segmented into off-season and peak-
season, with the former characterized by longer lead times and higher supply uncertainty. In contrast, the latter
incurs higher acquisition costs but ensures certain supply, with the retailer’s purchase volume aligningwith the
acquired volume. Retailers can replenish in both phases, receiving goods before the sales season. This paper
focuses on the impact of the retailer’s demand forecasting bias on their sales period profits for both phases.
Design/methodology/approach – This study adopts a data-driven research approach by drawing
inspiration from real data provided by a cooperating enterprise to address research problems. Mathematical
modeling is employed to solve the problems, and the resulting optimal strategies are tested and validated in
real-world scenarios. Furthermore, the applicability of the optimal strategies is enhanced by incorporating
numerical simulations under other general distributions.
Findings – The study’s findings reveal that a greater disparity between predicted and actual demand
distributions can significantly reduce the profits that a retailer-supplier system can earn, with the optimal
purchase volume also being affected. Moreover, the paper shows that the mean of the forecasting error has a
more substantial impact on system revenue than the variance of the forecasting error. Specifically, the larger
the absolute difference between the predicted and actual means, the lower the system revenue. As a result,
managers should focus on improving the quality of demand forecasting, especially the accuracy of mean
forecasting, when making replenishment decisions.
Practical implications –This study established a two-stage inventory optimizationmodel that simultaneously
considers randomyield and demand forecast quality, andprovides explicit expressions for optimal strategies under
two specific demand distributions. Furthermore, the authors focused on how forecast error affects the optimal
inventory strategy and obtained interesting properties of the optimal solution. In particular, the property that the
optimal procurement quantity no longer changes with increasing forecast error under certain conditions is
noteworthy, and has not been previously noted by scholars. Therefore, the study fills a gap in the literature.
Originality/value – This study established a two-stage inventory optimization model that simultaneously
considers random yield and demand forecast quality, and provides explicit expressions for optimal strategies
under two specific demand distributions. Furthermore, the authors focused on how forecast error affects the
optimal inventory strategy and obtained interesting properties of the optimal solution. In particular, the property
that the optimal procurement quantity no longer changes with increasing forecast error under certain conditions
is noteworthy, and has not been previously noted by scholars. Therefore, the study fills a gap in the literature.
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1. Introduction
The growth of e-commerce has led to a more diverse set of consumer demands for products.
Accurate forecastingmarket demand andmanaging inventory is now crucial for ensuring the
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smooth operation and improved profits of businesses. While scholars have proposed various
methods utilizing machine learning and deep learning to enhance prediction accuracy
(Spiliotis et al., 2022), uncertainty in demand predictions and errors remain prevalent, causing
substantial losses in profits. Studies have demonstrated the negative impact of inaccurate
predictions on transportation facilities (Cruz and Sarmento, 2020) and airlines’ revenue (Fiig
et al., 2019). To improve competitiveness and sales, manufacturing enterprises may increase
the number of product categories, but this increase in stock-keeping units (SKUs) can also
lead to prediction errors and diminished decision quality (Wan and Sanders, 2017), further
reducing profits. Consequently, reducing prediction error has become an important issue that
must not be overlooked.

Furthermore, suppliers can be unreliable (Dada et al., 2007). The manufacturing process
can be prolonged due to unexpected failures of production infrastructure, unscheduled
maintenance, shortages of raw materials and disorganized schedules. Delays in
transportation logistics can also occur due to road congestion or restrictions. In addition,
low-skilled workers with high turnover rates can result in quality and output problems
(Ivanov et al., 2017). The adverse impact of supply uncertainty on business performance has
garnered significant attention from scholars in the field of supply chain management
(Tomlin, 2006; Hu and Feng, 2017; Salem and Haouari, 2017). This study therefore focuses on
the effect of demand forecast error on inventory decisions under the backdrop of supply
uncertainty, with the aim of enhancing the profits of enterprises and providing valuable
insights for future research in this field.

This research aims to tackle the issue of inventory optimization in the presence of
uncertainty in both supply and demand. The study draws inspiration from a cooperative
enterprise that sells primarily down jackets through online channels and utilizes real-world
operational data of the enterprise. The primary feature of down jackets is their strong
seasonality, with high sales during winter and low sales in summer. Additionally, the
production cycle for down jackets is quite long, taking at least one month from the
procurement of rawmaterials to the product being put up for sale. Therefore, enterprises need
to adopt a stock-up approach to cope with this situation. Before the peak-season, enterprises
need to purchase sufficient quantities of raw materials, purchase and store enough down
jackets to ensure there is enough inventory to meet consumer demand when the peak-season
arrives. Moreover, due to the long production cycle for down jackets, if the enterprise misses
the production cycle, they may not be able to put enough products on the shelves before the
peak-season. Therefore, stockpiling in advance is a necessary measure to ensure normal
operation. In fact, the enterprise can use observed market signals to improve its demand
forecasting accuracy. When purchasing during the off-season, the enterprise has less market
information; when purchasing during the peak-season, the enterprise has more market
information as it is closer to the sales season, allowing for more accurate demand forecasting
and adjustments to order quantities.

Therefore, the study takes into account the existence of demand forecast errors, with the
enterprise using observed market signals to improve its demand forecasting accuracy.
Furthermore, the supply uncertainty faced by the enterprise also varies between peak and
off- seasons, with lower procurement costs and lower supplier-service level during the off-
season and higher procurement costs and higher supplier-service level during the peak-
season. Utilizing actual sales, inventory and purchasing data from the cooperating enterprise,
this study examines and tests the aforementioned observations. The results of independent
sampleT-tests demonstrate that purchasing costs in the low-season ðmean ¼ 62; SD ¼ 14:4Þ
are significantly lower than those in the peak-season ðmean ¼ 75; SD ¼ 15:8Þ
ðtð97Þ ¼ −2:28; p < 0:05Þ. Additionally, a covariance analysis indicates that the mean
differences persist even when controlling for the number of purchased items. Furthermore,
the results of the independent sample T-tests show that the supplier-service level in the
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low-season ðmean ¼ 0:683; SD ¼ 0:07Þ is significantly lower than that in the peak-season
ðmean ¼ 0:854; SD ¼ 0:04Þ ðtð97Þ ¼ −3:863; p < 0:01Þ. The covariance analysis also
confirms that the mean differences persist when controlling for the number of purchased
items. Hence, the study reveals, with a high level of certainty that the purchasing costs are
significantly higher and supplier-service level is significantly lower in the peak-season than
that in the low-season, as indicated in the following Figure 1.

The supplier-service level in this study refers to the ratio of the number of qualified
products received by retailers within the contract period to the total procurement quantity.
This result is consistent with intuition: during the off-season, there are fewer production lines
and workers in the factory, resulting in lower production efficiency and quality. The
procurement lead time in the purchasing contract between retailers and suppliers is also
longer, leading to lower procurement costs. Apart from lower production efficiency in the
factory, due to the longer lead time, there is more time for repairing defective products, which
results in retailers having higher requirements for product quality during acceptance
inspection. This also leads to lower supplier service levels during the off-season, while the
opposite is true during the peak-season.
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Figure 1.
Supply uncertainty
under different stages
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Therefore, our research is built on such a practical background and seeks to investigate the
following three questions:

RQ1. How does the demand forecasting error during the off-season impact the two-stage
inventory decision and the optimal system profit?

RQ2. Are there any differences in the impact of different types of forecasting error on the
optimal solution?

RQ3. How does the proposed inventory strategy perform in the real data of a cooperative
enterprise?

To address these questions, the study establishes a two-stage inventory system composed of a
single supplier and a single retailer, with the objective of maximizing system profit. The
replenishment process is comprised of two stages, and the study considers the variation in
supplier determinacy and the retailer’s knowledge of demand information in themarket. Firstly,
the optimal inventory decision is obtained through optimization under two common demand
distribution assumptions and the properties of the optimal solution are analyzed. Secondly, the
demand forecasting error is divided into two types, and through sensitivity analysis, the study
examines the impact of each error on the optimal inventory decision and profit, as well as the
effect of other model parameters. The study finds that the mean error in demand forecasting
results in a faster decline in the optimal profit compared to the variance error, thereby suggesting
that enterprises may choose demand forecasting with a smaller mean deviation to secure
benefits. Finally, the study applies the proposed optimal inventory control decision to the
historical sales and procurement data of a cooperative enterprise, and finds that it can bring
about a more than 7% increase in profit compared to the enterprise’s current strategy.

Through theoretical analysis and empirical investigation,we arrive at the following conclusions:
(1) The optimal replenishment strategy, under the assumption of either a two-point

demand distribution or a uniform distribution, is an order-up-to strategy with an order-up-to
level that is contingent upon the demand distribution. (2) Both the mean and variance of
demand forecasting error have a detrimental impact on system profits, with mean error
having a more pronounced effect than variance error. As a result, companies should focus on
enhancing the accuracy of their mean demand forecasts. (3) In most scenarios, the optimal
quantities for the two stages are inversely related to changes in forecasting error. However,
when the forecast mean is lower than the true mean and the difference is substantial, the
purchase quantity becomes independent of forecasting error.

Theoretically, this study reveals the optimal strategies for a two-stage inventory model
that takes into account stochastic yields and demand forecast quality. The study also
provides an interesting finding that under certain conditions, the optimal purchase quantity
does not depend on the forecast error. This means that the retailer does not adjust their order
quantity as demand forecast accuracy further deteriorates. From a practical perspective, the
results of this study can help managers choose better demand forecasting methods and
optimize inventory levels to increase business efficiency.

The remainder of the paper is structured as follows: In Section 2, a comprehensive review of
the relevant literature is provided. In Section 3, theproblemof interest is outlined and a two-stage
inventory model that accounts for demand forecasting updates is developed. Under the
assumption of two-point and uniform demand distributions, the model is solved to obtain the
optimal purchasing decision. Section 4 presents an analysis of the sensitivity of the two types of
forecasting errors and other relevant parameters. The results of a numerical study are presented
in Section 5. In Section 6, the model’s performance is evaluated based on real-life data from a
cooperative enterprise. Finally, the conclusion summarizes the key findings of the research and
provides insights into potential avenues for future work.
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2. Literature review
The following literature review is conducted from the perspectives of prediction error and
supply uncertainty.

Accurate demand prediction is crucial for effective inventory control. In recent years,
researchers have explored various demand prediction methods, with the aim of improving
the performance of prediction models (Bunning et al., 2020; Lakshmanan et al., 2019;
Petropoulos et al., 2019). Effective methods for improving prediction accuracy have been
identified, such as prediction combination (Barrow andKourentzes, 2016) and demand source
decomposition (Bruggen et al., 2021). Despite these efforts, fitting real demand remains a
challenging task (Spiliotis et al., 2022; Prak et al., 2021; Petropoulos et al., 2019) and the
prediction ofmean and variance also significantly affects the predictionmodel’s performance.

In response, some researchers have investigated the impact of prediction error on demand
prediction. For example, Yuan et al. (2020) studied the impact of different predictionmodels in
two parallel supply chains with a competitive relationship on the bullwhip effect and
identified the conditions under which a retailer should choose a particular model. However,
the prediction methods in this study were limited to moving average (MA), exponential
smoothing (ES) and minimum mean square error (MMSE). Sanders and Graman (2016)
studied the impact of amplified prediction error on supply chain costs and found that the
amplification of prediction bias had a greater impact on supply chain costs than the
amplification of prediction standard deviation, and that sharing demand prediction
information could mitigate this impact.

Our research focuses on the impact of demand forecasting error on inventory control
strategies in the field of management, an area that has received limited attention despite a
wealth of research on optimizing prediction models. The calculation of replenishment
decisions depends on the deviation between predicted and actual demand, making this an
important gap in the field of research. Building on the findings of Sanders andGraman (2016),
our study considers both forecasting bias and variance and directly examines their impact on
inventory and firm profits.We compare the relativemagnitude of these effects to aid decision-
making.

In the realm of inventory control strategies, several factors contribute to supply
uncertainty, including lead time, yield, cost and the risk of supply interruption (Svoboda et al.,
2021). A significant body of literature has explored optimal strategies in various scenarios.
For example, Song (1994) and Kaplan (1970) proposed methods for setting safety stock in the
presence of random lead time, while Rosling (2002) proposed an extension of the (s, S)
structure for variable costs. Review articles by Paul et al. (2016) and Ivanov et al. (2017)
examine the impact of supply chain interruption on inventory control.

This study focuses on the random yield of suppliers and the interplay between random
yield and variable capacity. Previous works, such as Wang and Gerchak (1996), have shown
that the order-up-to policy is optimal when only considering variable capacity; while the
reorder point policy is optimal when both variable capacity and random yield are taken into
account. Berling and Sonntag (2022) analyzed inventory systems with random yields and
introduced the concept of rework, where products that do not meet standards are delivered at
a later time. The authors used decomposition algorithms to determine the optimal base
inventory level; however, their study is limited to a single stage and does not consider updates
from the production stage.

Wu et al. (2022) studied the production and inventory planning problem for multiple
products and stages, where the output of each stage is random, and proposed a heuristic
algorithm. Xu et al. (2020) determined the optimal order quantity for each supply source under
a multisource selection model with random yields and examined the impact on the retailer’s
service level. While the study extends to information updates, it focuses on the arrival
information of previous orders rather than demand information. Liu et al. (2020) and Deng
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and Zheng (2020) considered the retailer’s loss aversion and risk aversion in inventory control
problems with random yields and random demands, respectively. Liu et al. (2020) employed a
newsvendor model, while Deng and Zheng (2020) added chance constraints.

This study extends the previous studies of the retailer’s replenishment problem with
random yields in two stages by considering the updating of the retailer’s demand knowledge.
Our study simultaneously investigates the relationship between the optimal purchase
quantity and different prediction errors, offering a novel perspective on the study of
inventory models with random demand and yield.

Overall, in light of prior research that has considered the random yield and demand in
inventory control, this study aims to expand upon these studies by incorporating the
retailer’s updating of market demand knowledge. Our work provides a novel perspective on
the relationship between optimal purchase quantity and prediction error, making a
significant contribution to the literature in this area and offering a fertile ground for future
research to build upon.

3. Two-stage inventory model considering predictive update
3.1 Problem description and model establishment
In this study, we model a supply chain system comprising a supplier and a main retailer. The
supplier produces and supplies the product to the retailer, who sells the product in the selling
season. The system is characterized by three time periods, with the first two being production
periods and the third being the selling period. The first production period is considered as the
off-season, which is farther from the selling season, and the second production period is
referred to as the peak-season, which is closer to the selling season. The supplier produces the
products based on the retailer’s orders during both production periods, and delivers them to
the retailer’swarehouse via a centralized shipment. Hence, the retailer has the ability to decide
on its order quantity by forecasting market demand in both production periods. The demand
forecast in the first period, represented by f0ðx0Þ, is uncertain and has a wider range of
possible demand. However, in the second period, the retailer can gather more updated market
and external information through research and presales, which improves the demand
forecast, represented by fðxjx0Þ.

The retailer in the model engages in purchases in both the first and second stages of
production. Prior to making these purchases, the retailer has a certain level of understanding
regarding the supplier, namely, the modes of production in the two stages differ. Specifically, the
production mode during the first stage is characterized by uncertainty, with the supplier-service
level being a random variable (ε) that ranges between 0 and 1. In contrast, the production mode
during the second stage is defined,with the supplier-service level guaranteed at 100%andhigher
purchasing costs incurred by the retailer if they opt to purchase during this stage.

These assumptions are reasonable. Firstly, the off-season is longer than the peak-season,
as is the case for down jacket retailers who only operate during the winter season, which only
accounts for a quarter of the year. During the off-season, retailers have longer lead times on
purchase contracts with suppliers, meaning they have more time to send defective products
back to the supplier’s factory for repairs. Furthermore, the off-season purchase orders come
with lower prices, which means retailers can tolerate lower supplier service levels. During the
peak-season, retailers can obtain more external market-related information through research
and presales to improve demand forecasting. They can adjust their purchasing plans
accordingly, such as adding orders to suppliers. Because the sales season is about to begin,
the lead time on purchase contracts will be shortened to meet consumer demand in a timely
manner. In addition, to meet the delivery schedule, suppliers will open more production lines
and recruit more workers to increase production, which leads to an increase in procurement
costs in the second stage.
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Many products with long production cycles face similar situations, such as traditional
book publishing, which, like the down jacket industry, also has two production modes
(Donohue, 2000). The fixed costs of installing printers and related software are high, but
the demand for a particular book is often uncertain during printing, especially when the
book’s topic is trendy. When updated demand forecasts exceed initial expectations over
time, a second production run is needed to print another batch of books to meet consumer
demand.

Thus, in the context of retail operations, decision-makers are faced with a trade-off
between achieving higher levels of accuracy and stability in their forecasts and supplier
service levels, versus incurring higher unit purchase costs. In the first stage of the purchasing
process, if the retailer orders too many products, they risk incurring holding costs due to
stockpiling. Conversely, if the retailer orders too few products, they may face higher unit
purchase costs in the second stage in order to make up for any shortages.

The retailer’s purchase quantities in both stages are dependent on the results of their
market forecast, which can be generated through a variety of methods, including regression
analysis and random forests (Spiliotis et al., 2022; Petropoulos et al., 2019). However, nomatter
what forecasting method is used, it is impossible to accurately predict future demand. If the
retailer’s forecasted demand exceeds actual demand, this can lead to excessive stockpiling
and increased costs, while the opposite scenario results in stockouts and decreased profits.
Given the significance of forecast error to the retailer’s optimal decision and resulting profit,
this study aims to investigate the impact of market demand forecast error on purchasing
decisions and total profits in the presence of supply uncertainties.

In this study, a two-stage optimization problem is formulated with the aim of maximizing
the expected profit generated by the system. The model is structured as follows:

max
q1≥0

πðq1Þ ¼
Z 1

0

�c1q1εþ
Z∞

x0¼0

Hðx0; q1Þf0ðx0Þdx0

8><
>:

9>=
>;f ðεÞdε: (3.1)

Where, Hðx0; q1Þ ¼ max
q2≥0

hðxe; q1; q2Þ;

hðxe; q1; q2Þ ¼ −c2q2 þ
Z ∞

x¼0

Z 1

0

�
rmin½q1εþ q2; x� þ vðq1εþ q2 � xÞþ

−sðx� q1ε� q2Þþ
�
fðxjx0Þdεdx:

Where q1 and q2 represent the respective quantities of purchases made by the retailer in the
first and second production stages, which serve as the decision variables. The first stage is
characterized by an uncertain supplier-service level, as the retailer’s order of q1 may be
returned in a size of q1 * ε (with 0≤ ε≤ 1). On the other hand, the second stage is equippedwith
a definite production mode. The unit production costs, including holding and delivery costs,
are c1 and c2 for the first and second stages, respectively. Moreover, the retailer’s prediction of
the future market demand distributions in both stages are respectively denoted byf0ðx0Þand
fðxjx0Þ, withfðxjx0Þbeing closer to the true demand distribution. To emphasize the impact of
prediction error on the optimal decision-making process, this paper assumes that the random
demand distributions in both stages are known, and the retailer is aware of both f0ðx0Þ and
fðxjx0Þwhen making the decision of q1. A benchmark scenario is also considered, where the
retailer’s prediction of future demand in both stages is the same and equal to f0ðx0Þ. This
setup serves as a means to more effectively illustrate the influence of prediction bias on the
retailer’s decisions.
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The theoretical framework presented in Equation (3.1) draws inspiration from the
work(Donohue, 2000) on supply contracts designed to coordinate the actions of
manufacturers and distributors operating under two different production modes. In
contrast to the previous study, our research incorporates the randomness of supplier
service levels in the first stage of the model and emphasizes the analysis of the effects of
forecast errors on the optimization of purchasing strategies and profit maximization.

The symbols used for other parameters in the model are as follows:

r: the retail price per unit of product.

s: the price that the retailer has to pay to the consumer for each unit of unmet demand.

v: the value of each unit of residual product at the end of the sales period.

As assumed in this paper, they satisfy the relationship: r > c2 > c1 > v.

3.2 Simplifying and solving the model
In order to facilitate a clearer comprehension of the results, this study simplifies the model
from Section 3.1 and employs two prevalent assumptions regarding the demand distribution
to derive an analytical representation for the optimal purchase quantity for the retailer in both
production stages.

(1) Demand follows the two-point distribution

In this section, we consider a scenario where the demand for a product in themarket follows a
two-point distribution. During the first stage, the supplier, leveraging the available market
information, predicts the demand distribution and obtains the parameters (l, h, and p) that
characterize the two-point distribution, where the future market demand size will take the
value of l with probability p and hwith probability 1− p, given that 0 < l < h. At this point,
the retailer places an order for q1 units of the product to the supplier, and the product is
delivered to the retailer at the conclusion of the production phase. In the second stage, the
retailer gains additional information, through market research, etc., which enables them to
determine the actual demand distribution. The retailer now understands that the size of the
future market demand will be determined to be m with probability p, and nwith probability
1− p, given that 0 < m < n.

Solving the model, the optimal purchase quantities for the first and second stages are
obtained as follows:

q*1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q0 � Aκ2

B

r
;

q*2 ¼ ðκ � q1ε0Þþ:

Where,

A ¼ r þ s� c2

r þ s� v
;B ¼ c1 � v

r þ s� v
;

κ ¼ maxfmIðp� A≥ 0Þ; nIðp� A < 0Þg;

q0 ¼
8<
:

pl
2 þ ð1� pÞh2; κ∈ ð0; l�

pκ2 þ ð1� pÞh2; κ∈ ðl; h�
κ2; κ∈ ðh;∞Þ:

:
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In the first stage, the retailer replenishes its inventory level from 0 to the optimal level,
denoted by q*1. In the second stage, the retailer further replenishes its inventory level to κ,
based on the order placed in the first stage. The value of ε0 reflects the supplier-service level
observed by the retailer after the end of the first stage. The value of κ is influenced by the
retailer’s forecast of the future demand distribution in the second stage, while the value of q0 is
a function of the relative positioning of the demand distributions predicted in both stages. As
such, the optimal ordering level is contingent upon both these factors; when the parameter p is
relatively small, the optimal ordering quantity tends toward n, whereas when p is relatively
large, the optimal ordering quantity tends toward m.”

(2) Demand follows the uniform distribution

In this section, we assume that the demand in the market follows a uniform distribution. The
retailer in the first stage assumes that the future market demand will take on values in the
interval ½l; h�with equal likelihood ð0 < l < hÞ, whereas the retailer in the second stage is
aware that the future market demand will be uniformly distributed over the interval
½m; n�ð0 < m < nÞ. The assumption of a uniform distribution is considered to be more
representative of real-world scenarios compared to a discrete two-point distribution.

Solving the model, the optimal purchase quantities for the first and second stages are
obtained as follows:

q*1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q
00 � Aτ2

B

r
;

q*2 ¼ ðτ � q1ε0Þþ:

Where,

τ ¼ Anþ ð1� AÞm;

q
00 ¼

8>>>>>><
>>>>>>:

1

3

�
h
2 þ l

2 þ hl
�
; τ∈ ð0; l�

h
3 þ τ2ð2τ � 3lÞ

3ðh� lÞ ; τ∈ ðl; h�

τ2; τ∈ ðh;∞Þ:

:

The structure of the optimal solution mirrors that obtained through a two-point distribution.
The replenishment level in the second stage, denoted by τ, takes on values in the interval
between nandm. The value of q

00
is also influenced by the relative positioning of the predicted

demand distributions in both stages. When τ is relatively low, the optimal order quantity
aligns more closely with the first-stage retailer’s forecast of future demand, with q*1 taking
values in the interval between l and h. On the other hand, when τ is relatively high, the optimal
order quantity is more consistent with the second-stage retailer’s estimate of future demand,
resulting in q*1 being slightly greater than m.

As a conclusion, this study provides an inventory control strategy that maximizes the
system’s profit under two distinct demand distribution assumptions. The order-up-to policy
is the chosen replenishment strategy, with the order-up-to level determined as κ when
demand follows a two-point distribution and τwhen demand follows a uniform distribution.
Prior to the start of the sales season, the retailer will replenish inventory up to the order-up-to
level based on the current inventory levels, refraining from placing further purchase orders
with the supplier if the inventory exceeds this level. Due to the differences in the production
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methods in each stage and the varying accuracy of demand information available to the
retailer, the policy is not fully established until the second stage.

Moreover, the optimal profit that the system can attain can be represented as:

π
�
q*1
� ¼ ðr � vÞμ1 � ðc1 � vÞq*1:

Where, μ_1 represents the mean of the retailer’s predicted demand distribution for the first
stage. If the demand prediction follows a two-point distribution, then μ1 ¼ pl þ ð1− pÞh, and
if the demand prediction follows a uniform distribution, μ1 ¼ 1

2
ðl þ hÞ.

4. Sensitivity analysis
This study examines the sensitivity of relevant parameters in the optimal solution, with
respect to different types of estimation and observation errors in the context of inventory
control decision-making under uncertainty in supply. The focus of the analysis is on themean
error and variance error of demand forecasting, which are commonly employed measures in
the literature to assess the quality of prediction methods from different perspectives.

As an illustration, taking the normal distribution as a reference, the distinction between
mean error and variance error is depicted in Figure 2. The mean error of demand forecasting
represents the difference between the mean of the predicted demand distribution and the
actual demand distribution, assuming equal variances. This implies that the retailer is able to
accurately predict the fluctuations in future market demand, but lacks a comprehensive
understanding of the true demand range. For instance, when the mean error is substantial
and the predicted demand distribution fails to overlap with the actual demand distribution,
with the mean of the predicted demand exceeding that of the actual demand, the purchasing
decisions of the retailer will be significantly impacted, leading to over purchasing and
inventory buildup, thereby decreasing profits. On the other hand, the variance error of
demand forecasting represents a higher variance of the predicted demand distribution than
the actual demand distribution, with equal means. This implies that the retailer’s estimate of
the average value of future demand is accurate, but its assessment of the potential changes in
demand is uncertain. When the variance error is excessive, it creates the illusion of a large
range of future demand values, making it challenging for the retailer to make a sound
judgment. A risk-averse retailer will opt for a smaller order, resulting in stockouts, while a
risk-taking retailer will order excessively, leading to inventory buildup. Both the mean error
and variance error of demand forecasting can induce the retailer to make overly optimistic or
pessimistic predictions about future demand conditions, resulting in suboptimal decisions.

In this section, the notation μ1, σ
2
1 is utilized to characterize the mean and variance of the

demand distribution forecasted during the first stage, while μ0, σ
2
0 symbolize the mean and

variance in the subsequent stage. In instances where the error in prediction is expressed
through variance, it holds that μ1 ¼ μ0 and σ1 > σ0. Conversely, when the prediction error
manifests in the mean, it can be noted that σ1 ¼ σ0 and μ1 ≠ μ0.

4.1 Variance error
In this section, we consider the difference between the variances of the demand distribution
predicted in the two stages, represented by δ ¼ σ21 − σ2

0, withδ≥ 0. Our assumption that δ≥ 0
is motivated by the consideration that retailers may choose to estimate future demand within
a broader range in order to mitigate potential risks, leading to a predicted variance that is
greater than the actual variance. This assumption is deemed reasonable, as opposed to the
alternative scenario where the retailer is overly confident in their prediction and the limited
range of expected demand results in substantial losses.
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Figure 2.
Difference between
mean error and
variance error
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Through our analysis, we have derived the optimal solution and first-order partial derivative
of the optimal profit under different demand distributions.

For the case where the demand follows a two-point distribution, it is represented by

vq*1
vδ

¼
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(3.2)

In the case where the demand follows a uniform distribution, it is represented by
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vδ

¼
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(3.3)

Where,

I ¼



1; p� A < 0
�1; p� A≥ 0

Z ¼ Al þ ð2A� 1Þh:
Additionally, the first-order partial derivative of the optimal profit with respect to the
variance difference is given by

vπ
�
q*1
�

vδ
¼ −ðc1 � vÞ vq

*
1

vδ
:

Our analysis of the relationship between the symbols in equations (3.2) and (3.3) has revealed
that the impact of prediction error, as reflected in the variance, on the inventory control
decision is significant.

P1. Given that themeanof the demanddistribution forecastedby the retailer in the first stage
is equal to that in the second stage (i.e. μ1 ¼ μ0), the greater the variance discrepancy
between the forecasted and actual demand distributions, represented by δ (δ≥ 0), the
larger the optimal quantity of the first-stage procurement, q*1, the smaller the optimal
quantity of the second-stage procurement, q*2, and the lower the optimal profit, πðq*1Þ.

The coincidence ofmeans implies that the error in the predictionmanifests itself in the form of
variance error, with the variance of the demand prediction distribution in the first stage
exceeding that of the actual demand distribution in the second stage. A larger variance
discrepancy results in a more dispersed estimation of demand. In this scenario, the retailer
perceives that the market demand has a certain probability of being relatively small (above
zero) and a certain probability of being quite large. Due to the unreliability of the supplier in
the first stage, only a fraction of the qualified products in the purchase order may arrive,
prompting the retailer to place more orders in the first stage to accommodate potential high
market demand. In the second stage, the retailer adjusts the order quantity by reducing q*2
based on the actual demand distribution. Concurrently, an imprecise demand forecast

Inventory
control

strategy

85



exposes the retailer to the risks of stockouts and inventory accumulation, thus rendering a
greater variance discrepancy δ, to result in lower optimal profit.

4.2 Mean error
In this section, we examine the scenario where the variances of the demand distributions
predicted by the retailer in the two production stages are equivalent. The difference between
the means is represented as ω ¼ μ1 − μ0. In the event that ω≥ 0, it signifies that the retailer’s
prediction for future demand in the first stage is overestimated. Conversely, if ω < 0, it
implies that the retailer’s prediction for future demand is underestimated. Our analysis
encompasses the calculation of the first derivative of both the optimal solution and the
optimal profit with respect to the aforementioned parameter under varying conditions.

For the case where the demand follows a two-point distribution, it is represented by
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¼
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Where, X ¼ μ1 −ωþ I
ffiffiffiffiffiffiffi
p

1− p

q
σ0;Τ ¼ μ0 þ ωþ

ffiffiffiffiffiffiffi
p

1− p

q
σ0; u ¼ Iðp < AÞ2

ffiffiffiffiffiffiffi
p

1− p

q
σ0; ν ¼ Iðp≥AÞ2

ffiffiffiffiffiffiffi
p

1− p

q
σ0.

For the case where the demand follows a uniform distribution, it is represented by
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Where, O ¼ μ0 þ ωþ ð2A− 1Þ ffiffiffi
3

p
σ0, u

0 ¼ 2
ffiffiffi
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p
Aσ0, v0 ¼ 2

ffiffiffi
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And the first-order partial derivative of the optimal profit with respect to the mean
difference is given by

vπðq*1Þ
vω

¼ ðr � vÞ � ðc1 � vÞ vq
*
1

vω
:

The analysis of equations (3.4) and (3.5) leads to the following conclusions:
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P2.1. when ω≥ 0, as jωj increases, the optimal value of q*1 increases, the optimal value of
q*2 decreases and the resulting optimal profit decreases.

P2.2. When demand satisfies conditionM, as jωj increases, q*1 decreases and q*2
decreases, the optimal profit decreases.

P2.3. When demand satisfies conditionN , as jωj increases, the optimal profit decreases.
However, jωj has no effect on the values of optimal purchase quantity, q*1 and q*2.
Instead, they are only dependent on the parameters m, n, and p of the demand
distribution in the second stage.

Condition M: When the demand follows a two-point distribution, the condition is p−A≥ 0

and −2
ffiffiffiffiffiffiffi
p

1− p

q
σ0 ≤ω < 0. When the demand follows a uniform distribution, the condition

is −2
ffiffiffi
3

p ð1−AÞσ0 ≤ω < 0.
ConditionN : When the demand follows a two-point distribution, the condition isp−A≥ 0

and ω < − 2
ffiffiffiffiffiffiffi
p

1− p

q
σ0, or p−A < 0 and ω < 0. When the demand follows a uniform

distribution, the condition is ω < − 2
ffiffiffi
3

p ð1−AÞσ0.
The occurrence of prediction errors as mean errors in the estimation of future demand by

retailers implies a bias in the mean value, despite the accurate dispersion of the predicted
distribution (σ1 ¼ σ0). A positive mean difference ω > 0 indicates that the predicted mean of
the distribution is higher than the true mean, and the larger the mean difference, the higher
the predictedmean. Consequently, the retailer in the first stage believes that the overall future
market demand is high and will place more orders in the current stage with lower
procurement costs. In contrast, the retailer in the second stage will adjust their approach
based on the actual situation. Conversely, when the mean difference ω < 0, the predicted
mean is lower than the true mean, and the larger the mean difference, the lower the predicted
mean. In this case, the retailer in the first stage believes that the future market is weak, with
low demand, and will therefore order fewer products to avoid inventory buildup. The retailer
in the second stage will replenish based on the new demand distribution. The conclusions for
the two-point distribution and the uniform distribution are comparable, with the distinction
that when p−A≥ 0, the retailer believes that demand is more likely to be l, whereas when
p−A < 0, the retailer believes that demand is more likely to be h. Furthermore, much like
variance error, an imprecise mean prediction, regardless of whether it overestimates or
underestimates, will lead to a decline in optimal profit.

It is noteworthy that Proposition 2.3 is an intriguing result, given the prevailing belief that
order quantity is dependent on bias. However, this study reveals that order quantitymay also
be independent of bias. In the case of conditionN , where the predicted mean is less than the
true mean (ω < 0) and the mean difference jωj is substantial, the parameters l and h of the
predicted distribution are significantly smaller than the parameters m and n of the true
distribution. For retailers who only consider the first stage, choosing not to order may be a
superior decision. However, given the higher demand estimates in the second stage and the
lower procurement costs in the first stage, prestocking can save costs and better meet future
demand. Thus, the optimal procurement quantity q*1 in the first stage is not contingent upon
the increase of the mean difference jωj, but rather on the retailer’s demand estimation in the
second stage.

Overall, both mean and variance prediction errors result in reduced total profits that the
system can obtain, with greater errors leading to lower profits. This is consistent with
expectations, as inaccurate demand forecasts diminish business performance. The impact of
prediction errors on the optimal solution is situation-specific. In most cases (variance error or
mean-high bias error), the optimal procurement quantity in the first stage is directly
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proportional to the prediction error, while the optimal procurement quantity in the second
stage is inversely proportional to the prediction error. In a few cases (small mean bias errors),
the opposite holds true. In special cases (low mean bias errors), the optimal procurement
quantity is independent of the prediction error and solely dependent on the retailer’s
predicted demand distribution.

4.3 Sensitivity analysis of other parameters
In the model presented in this paper, changes in parameters other than the prediction error
can also impact the optimal solution. This section categorizes the remaining parameters in the
model into two groups and conducts sensitivity analysis under two demand distribution
assumptions. One group of parameters pertains to costs, including selling price r, stockout
cost s, salvage value v, purchasing cost c1, and c2. The other group of parameters relates to
demand distribution, encompassing predicted distribution parameters l and h, as well as true
distribution parameters m and n. The process of sensitivity analysis is delineated in
Appendix 1, and the principal conclusions obtained are highlighted below.

P3.1. As the selling price r, stockout cost s, and salvage value v increase, the optimal order
quantity in the first stage q*1 increases. Under the assumption of demand following a
uniform distribution, the optimal order quantity in the second stage q*2 first
increases and then decreases, while under the assumption of demand following a
two-point distribution, q*2 first monotonically decreases, when r, s and v increase to
p≥A, the value of q*2 jumps from m− q1ε0 to n− q1ε0 and continues to
monotonically decrease (q*2 ≠ 0).

P3.2. When the purchasing cost in the first stage c1 increases, q*1 decreases and q*2
increases (q*2 ≠ 0).When the cost in the second stage c2 increases, q

*
1 increases and q

*
2

decreases (q*2 ≠ 0).

Increasing the selling price, stockout cost and salvage value prompts the retailer to stockpile
more goods as a buffer against potential stockouts. This is because the profit margin for each
sold product increases, the penalty of unsatisfied demand rises and the holding cost of excess
inventory decreases. Since the first-stage purchasing cost is relatively lower, the retailer
would prefer to increase the order quantity in this stage. However, when the first-stage
purchasing cost (c1) increases, the retailer may switch to the second stage to minimize costs.

P4. An increase in the parameters l and h of the retailer’s forecast distribution of future
demand in the first stage leads to an increase in the optimal order quantity q*1 in the
first stage and a decrease in the optimal order quantity q*2 in the second stage (q

*
2 ≠ 0).

When the retailer is in the first stage, her decision-making process is prone to being
influenced by current expectations. A higher l and h indicate that the retailer’s estimation of
future demand is more optimistic, based on past sales data and market research.
Consequently, the retailer chooses to place more orders in the current stage, where the
purchasing cost is relatively lower. However, when the retailer enters the second stage, the
actual market demand remains unchanged, and she adjusts her response to reality by
reducing the order quantity.

P5. When p−A≥ 0 and m∈ ð0; l�, q*1 decreases with an increase in m, while when
m∈ ðl;∞Þ, q*1 increases with an increase in m. Conversely, when p−A < 0 and
n∈ ðh;∞Þ, q*1 decreases with an increase in n, while when n∈ ð0; h�, q*1 increases with
an increase in n. For q*2, when

ffiffiffiffiffiffiffi
B

1−A

q
≤ ε0 ≤ 1, the monotonicity of q*2 is opposite to that

of q*1; when 0≤ ε0 <
ffiffiffiffiffiffiffi
B

1−A

q
, q*2 monotonically increases with an increase inm (q*2 ≠ 0).
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Assuming a two-point distribution for demand, we find that the optimal order quantities, q*1
and q*2, are influenced by the value ofmwhen p−A≥ 0, but not by n. On the other hand, when
p−A < 0, the changes in q*1 and q

*
2 depend on the value of n but not onm. The optimal order

quantities are contingent upon the actual demand distribution predicted by the retailer in the
second stage. Due to the unique properties of the two-point distribution, the actual demand is
closer to mwhen p−A≥ 0 and closer to nwhen p−A < 0. When the actual demand is less
than the demand forecasted by the retailer in the first stage, the retailer may realize that the
first-stage forecast is too high and reduce the order quantity q*1. On the other hand, if the
actual demand exceeds the first-stage forecast, an increase inmor nwill lead to an increase in
q*1 to meet future market demands. When ε0 is large, indicating that the orders placed in the
first stage can be fulfilled at a high level, the change in the optimal order quantity q*2 in the
second stage is opposite to that of q*1, and the rate of change is slower. However, when ε0 is
small, implying that only a few of the orders placed in the first stage can be fulfilled, the
retailer can only increase the order quantity in the second stage to replenish inventory asmor
n increases. These results have significant implications for supply chain management and
inventory control.

P6. When τ∈ ð0;Ahþ ð1−AÞl�, an increase in m/n results in a decrease in q*1; when
τ∈ ðAhþ ð1−AÞl;∞Þ, an increase in m/n leads to an increase in q*1. For q

*
2, whenffiffiffiffiffiffiffi

B
1−A

q
≤ ε0 ≤ 1, the monotonicity of q*2 is not completely opposite to that of q*1.

Specifically, when τ∈ ð0; τ0�, q*2 monotonically increaseswith an increase inm/n;when
τ∈ ðτ0;∞Þ, q*2 monotonically decreases, where τ0 is the value that satisfies equation

1− ε0:
vq*

1

vτ ¼ 0andwhen 0≤ ε0 <
ffiffiffiffiffiffiffi
B

1−A

q
, q*2 monotonically increases with an increase in

m and n(q*2 ≠ 0).

The result under the assumption of demand following a uniform distribution is similar to that
under the assumption of a two-point distribution, the impact of the parametersmand non the
optimal order quantities q*1 and q*2 in the second stage depends on the value of τ, where τ
represents a value between m and n. Notably, the impact of m and n on the optimal order
quantity q*2 in the second stage does not completely oppose that of q*1 , and has a lag effect.
Specifically, q*2 only begins to decrease after q

*
1 has increased to a certain extent, which ismore

representative of the general scenario and results in an increase in the total order quantity of
the retailer with an increase in the parameters m and n of the true demand distribution.

In this section, a sensitivity analysis is conducted on the parameters relevant to the
optimal solution to address research question (1), regarding the impact of demand forecasting
errors during the off-season on inventory decisions and the system’s optimal profit in a
two-stage procurement model. The findings reveal that both types of forecasting errors can
result in a decline in the system’s optimal profit and corresponding changes in the optimal
order quantities. Additionally, the sensitivity analysis on other parameters contributes to the
understanding of how cost and demand distribution parameters affect the optimal solution.
Moving forward, the next section combines numerical experiments to provide a more
in-depth analysis of the differences in the effect of the two types of forecasting errors on the
optimal solution.

5. Numerical analysis of two types of prediction errors
Based on the discussion in Section 4, this paper has shown that both types of forecasting
errors can cause a decline in the total profit of the system consisting of the retailer and the
supplier under different scenarios, with corresponding changes in the optimal order
quantities. However, in practice, businesses often face challenges in accurately matching the
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true demand distribution during demand forecasting. In such cases, the choice of a
forecasting methodwith better reliability (lower mean error) or validity (lower variance error)
becomes crucial. This section aims to investigate the differences in the rate of decline in the
optimal profit under different mean and variance errors.

To achieve this, we define f ðδÞ ¼ vπðq*
1
Þ

vδ and gðωÞ ¼ vπðq*
1
Þ

vjωj , where πðq*1Þ represents the profit
of the retailer. We fix the parameter sets ðr; s; v; c1; c2Þ and ðm; nÞ separately, and set various
parameter combinations to observe how f ðδÞ and gðωÞ change with forecast error under two
different demand distributions. Specifically, we conduct experiments using multiple
parameter combinations, following the parameter settings of Ban (2020): with ðr; s; v; c1; c2Þ
fixed, we vary n from 60 to 180; while with ðm; nÞ fixed, we vary v from 0 to 10. The other
parameters vary simultaneously under conditionr > c2 > c1 > v.

Since the function graphs exhibit the same changing trend under different parameter
combinations, we only present the graphs of one parameter combinationððr; s; v; c1; c2Þ ¼
ð10; 5; 1; 5; 6Þ; ðm; nÞ ¼ ð30; 100ÞÞ to illustrate our key conclusion. The graphs obtained
under other parameter combinations are included in Appendix 2 as supplementary material
to demonstrate the robustness of the conclusion. Figure 3 shows the change of f ðδÞ and gðωÞ
with forecast error under four different levels of probability p, when the demand follows a
two-point distribution. Figure 4 illustrates the change of f ðδÞ and gðωÞwith forecast errors,
when the demand follows a uniform distribution.

Figure 4.
Variation of f ðδÞ and
gðωÞwith prediction
error under uniform
distribution

Figure 3.
Variation of f ðδÞ and
gðωÞwith prediction
error under a two-point
distribution,
p ¼ 0:1;0:4;0:7;0:9
levels
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In the experiments, we observe that when ω≤ 0,
vπðq*

1
Þ

vω ≥ 0. To aid comparison, we adopt an
absolute value transformation of the horizontal axis, showing the corresponding graph in the
fourth quadrant (indicated by the red curve in Figures 3 and 4).

From the figures, we can observe that we can observe that regardless of the demand
distribution and parameter settings, the function values of f ðδÞand gðωÞare always negative.
Furthermore, the blue curve of f ðδÞ is always higher than the red and yellow curves of gðωÞ,
which is a noteworthy conclusion.

This finding implies that both types of forecasting errors can lead to a decrease in the
optimal profit that the system can achieve. However, mean errors have a greater
impact on optimal profit than variance errors. Additionally, when δ andω→∞,
f ðδÞ and gðωÞ→ 0, indicating that as the forecasting error approaches infinity, it no longer
affects the optimal profit. This conclusion holds across multiple parameter combinations.
Thus, managers should prioritize improving the demand forecasting quality, particularly the
accuracy of mean forecasts, ahead of the sales season.

Drawing on the analysis presented above, this study provides a response to research
question (2), which concerns the impact of different types of forecasting errors on the optimal
solution. The findings indicate that, in comparison to variance errors, a greater absolute
difference between predicted and truemeans results in diminished system performance. This
outcome offers recommendations and support for practical enterprise management. For
instance, when selecting a demand forecasting model, businesses can opt to trade reliability
(variance) for validity (bias) and choose an unbiased estimator. Additionally, in keeping with
the law of large numbers, enterprises can enhance the precision of mean forecasts by
accumulating sufficient historical data to secure higher profits.

6. Case study of optimal inventory strategy
To validate the practicality of the inventory control strategy proposed in this study, we
collected sales and inventory data for four representative products from our partner companies
between June 2020 and June 2021, and estimated the model parameters based on the collected
data. Using the “Medium-length Down Jacket without Collar” product as an example, we
calculated the daily sales volume during the peak-season and the daily sales volume and mean
of previous sales,whichweredistributedbetween 300 and 330units, as shown inFigure 5. Since
winter is typically considered to start in November and consumers tend to purchase down
jackets during this period, suppliers receive numerous production orders at this time.
Therefore, we assume that the peak-season is from November to January, while the remaining
months constitute the off-season. The sales curve does not exhibit a unimodal distribution and
cannot be accurately modeled using a normal distribution. Therefore, we conducted a case
analysis using the analytical expression of the optimal procurement strategy obtained in
Section 3.2.2.Although this assumptionmaynot fully correspond to the actual data distribution
of our partner companies, it is easy to understand and provides a simple expression that is
conducive to practical application by business operators.

Secondly, this study employed a weighted average method with sales volume and
procurement volume as weights to estimate the selling price r, production costs c1 and c2. The
supplier-service level ε0 during the off-season and the demand distribution parametersm and
nduring the peak-seasonwas estimated using amaximum likelihoodmethod. The estimation
method for the parameters l and h, which predict the demand during the off-season for the
peak-season, was consistent with the current forecasting strategy implemented by
the enterprise. It was based on a sliding weighted average of historical demand data from
the previous day and the demand from the previous 15 days, with weights of 2 for historical
demand and the demand from the previous 1–5 days, 1.5 for demand from the previous
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6–10 days and 1 for demand from the previous 11–15 days. The out-of-stock cost s and the
residual value vwere determined through interviews with managers. The model parameters
estimated based on real data from our partner companies are presented in the Table 1 below.

The results of parameter estimation indicate that l < m < n < h, which is a consequence of
excluding outliers with excessively large or small values caused by brushing orders or returns
during the computation of actual demand.Whenpredictingdemand, the lower sales volumeduring
the off-season resulted in a smaller predicted value for l, while the higher sales volume during the
previous peak-season led to a larger predicted value for h. The estimates for l and h represent the
upper and lower limits of demand for the sales season as estimated by the managers.

Drawing on a real-world context, this study computed the optimal profit attainable by a
company based on the expression for the optimal procurement strategy obtained in Section
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Peak-season sales of
the product
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3.2.2, and contrasted it with the company’s current replenishment policy. The findings
revealed an average profit increase of 7.02% across the four products. Furthermore, given
that the out-of-stock cost s and residual value v were based on managerial expertise, this
study depicted the average profit enhancement across different parameter combinations by
varying s and v. The range for s was set from 0:9 * s to 1:1 * s, with v adjusted similarly, as
illustrated by the green curve (company data) in Figure 6.

In order to test the effectiveness of the proposed optimal procurement strategy undermore
general conditions, this study not only utilized actual demand data from a cooperative
company, but also solved the problem using random demand data from gamma and normal
distributions. Average profit improvement was calculated while varying values of s and v, as
shown by the yellow and blue curves in Figure 6, respectively. Results indicate that the
optimal strategy performed better undermore general demand distributions, with an average
profit improvement of 13%.

The analysis in this section addressed research question (3), which was focused on the
performance of the inventory strategy using the actual demand data from the cooperative
company. Despite being developed under certain assumptions, the excellent experimental
results suggest that the proposed inventory control strategy is feasible in practice and can
provide valuable guidance for retailers in making inventory decisions, thus improving their
business operations.

Product A Product B Product C Product D

r 345 522 732 143
s 60 75 90 15
v 10 20 30 5
c1 68 83 165 22
c2 75 132 179 27
m 357,019 178,776 8,966 510,388
n 546,087 406,917 117,660 649,824
l 29,070 37,669 50,094 456,597
h 580,136 530,878 153,049 810,774
ε0 0.65 0.71 0.69 0.82

Source(s): Author’s own work
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Parameter estimation
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These findings have important practical implications, highlighting the potential for the
proposed model to enhance inventory control and decision-making in retail operations.
Moreover, this research can be generalized to broader contexts beyond the specific case of the
cooperative company.

7. Conclusion
When making business decisions, enterprise managers often face uncertainty in both
demand and supply. While some demand forecasting methods have improved accuracy and
bias performance thanks to technologies such as machine learning (Spiliotis et al., 2022),
demand forecast errors persist. Sanders and Graman (2016) have shown that amplifying
forecasting bias and standard deviation can have a clear adverse impact on supply chain
costs, with the effect of the forecasting standard deviation being greater. To address this, this
paper develops an inventorymodel with stochastic production rates of suppliers and demand
knowledge updates. The replenishment process undergoes two different production modes,
with the aim of maximizing the total profit of the system. This paper studies the optimal
inventory decision of retailers under supply uncertainty and the influence of two different
types of forecasting errors on inventory decisions and optimal profits. Based on actual data
from a cooperative company, the effectiveness of the proposed inventory strategy in practice
is discussed. The main conclusions of this paper are as follows:

(1) The retailer’s optimal replenishment policy follows an order-up-to policy, with the
order-up-to level determined by the forecast distribution of future demand. Due to
changes in the two-stage production mode and the retailer’s market demand
knowledge, the policy is only determined in the second stage.

(2) In many cases, as the forecasting error increases, the optimal order quantity q*1 in the
first stage increases, while the optimal order quantity q*2 in the second stage
decreases, resulting in a smaller optimal profit for the system. If the forecasting error
is manifested in the mean (i.e. forecasting bias) and the retailer’s forecast of future
demand is lower than the actual demand, then in some cases, as the mean error
increases, the optimal order quantity q*1 in the first stage decreases, while the optimal
order quantity q*2 in the second stage increases, resulting in a smaller optimal profit. In
other cases, the optimal order quantity is not related to the mean error, but only the
optimal profit decreases as the mean error increases.

(3) Based on numerical simulations under various parameter combinations and demand
distribution assumptions, it is found that the effect of mean error (i.e. forecasting bias)
on optimal profit is generally greater than that of variance error (i.e. forecasting
variance). This suggests that forecasting methods with larger bias and higher
accuracy lead to faster optimal profit reduction under the same circumstances than
those with smaller bias and lower accuracy.

Thus, theoretically, our study established a two-stage inventory optimization model that
simultaneously considers random yield and demand forecast quality, and provides explicit
expressions for optimal procurement strategies under two specific demand distributions that
takes into account these features. Furthermore, we focused on how forecast error affects the
optimal inventory strategy and obtained interesting properties of the optimal solution that are
mainly reflected in conclusion (2). In particular, the property that the optimal procurement
quantity no longer changeswith increasing forecast error under certain conditions is noteworthy
and has not been previously noted by scholars. Therefore, our study fills a gap in the literature.

From a practical standpoint, our findings can assist retailers in making inventory control
decisions for products with long production cycles and significant seasonality while

MSCRA
5,2

94



considering the impact of forecast errors. When forecasting demand, decision-makers can
prioritize accuracy over confidence to improve profits, optimize inventory decisions andmeet
consumer demands. The inventory strategies outlined in this paper have been validated
using actual demand data from collaborating companies as well as demand data generated
by typical random distributions, yielding better profits than the current approach.

Future research directions: With the advancement of the big data era and the continuous
progress of information technology, there are various directions for future extensions of
inventory optimization research under demand uncertainty. These include exploring more
general demand distribution assumptions, introducing other supply uncertainties (such as
random lead times) and investigating the interactions among different forecasting errors. By
continuously enriching research in inventory management, enterprises can gain greater
profits, optimize inventory decisions, reduce inventory costs and accurately predict market
demand.
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Appendix 1
The detailed formulas for Proposition 1 and Proposition 2 have been presented in the main text and are
readily verifiable. Hence, this section is dedicated to the analysis and proof of Propositions 3 through 6.

(1) The sensitivity analysis of r

It is established as follows. Firstly, we have:

vq*1
vr

¼ q� X2

2ðr þ s� vÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B
�
q� AX2

�q ≥ 0;

vq*2
vr

¼

8>><
>>:

ðn�mÞð1� AÞ
r þ s� v

I � ε0:
vq*1
vr

; q*2 ≠ 0

0; q*2 ¼ 0

:

Additionally, when demand follows a two-point distribution X ¼ κ; q ¼ q0; I ¼ 0; and when demand
follows a uniform distribution, X ¼ κ; q ¼ q0 0; I ¼ 1.

We observe that q
00
− τ

2
∈

8>>>>><
>>>>>:

�
1

3
ðh2 − 2l2 þ hlÞ; 1

3
ðh2 þ l

2 þ hlÞ
	
; τ∈ ð0; l�

�
0;
1

3
ðh2 − 2l2 þ hlÞ

	
; τ∈ ðl; h�

0; τ∈ ðh;∞Þ

, since l ¼ μ− σ > 0, it

follows that 1
3
ðh2 − 2l2 þ hlÞ ¼ 2σð3μ− σÞ > 0, and hence q

00
− τ

2
≥ 0. Similarly, we have q0 − κ2 ≥ 0,

where q0 − κ2 ∈

8><
>:

ðpl2 þ ð1− pÞh2; ð1− pÞðh2 − l
2ÞÞ; κ∈ ð0; l�

ð0; ð1− pÞðh2 − l
2ÞÞ; κ∈ ðl; h�

0; κ∈ ðh;∞Þ
.

(2) The sensitivity analysis of s

It is analogous to that of r, and the partial derivative formula and proof method are the same as those
described in 1. Hence, we avoid repeating them here.

(3) The sensitivity analysis of c1

Taking the partial derivatives of q*1 and q*2 with respect to c1, which result in the following expressions:

vq*1
vc1

¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q� AX2

q
2ðr þ s� vÞ

ffiffiffiffiffi
B3

p ≤ 0:

vq*2
vc1

¼ �ε0:
vq*1
vc1

; q*2 ≠ 0

0; q*2 ¼ 0

:

8><
>:

(4) The sensitivity analysis of c2

Taking the partial derivatives of q*1 and q*2 with respect to c2, which yield:

vq*1
vc2

¼ X2

2ðr þ s� vÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bðq� AX2Þ

q ≥ 0:
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vq*2
vc2

¼
m� n

r þ s� v
� ε0:

vq*1
vc2

; q*2 ≠ 0

0; q*2 ¼ 0

:

8><
>:

(5) The sensitivity analysis of v

Firstly, we have:

vq*1
vv

¼ ð1� BÞq� AX2

2ðc1 � vÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bðq� AX2Þ

q > 0:

vq*2
vv

¼
Aðn�mÞ
r þ s� v

� ε0:
vq*1
vv

; q*2 ≠ 0

0; q*2 ¼ 0

:

8><
>:

Since A
1−B

¼ rþs− c2
rþs− c1

< 1, and according to the proof in 1, we have q0 −Aκ2 ≥ 0. Thus, we can conclude that

q
00
− A

1−B
τ
2
> 0 , which completes the proof of Proposition 3.

(6) The sensitivity analysis of l

When demand follows a two-point distribution, we have
vq*

1

vl
¼

plffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bðq0 −Aκ2Þ

q ; κ∈ ð0; lÞ

0; κ∈ ðl;∞Þ

8>><
>>: , which implies

that
vq*

1

vl
≥ 0. When demand follows a uniform distribution, we have

vq*
1

vl
¼ 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bðq00 −Aτ2Þ

p :vq
00

vl
, where

vq
00

vl
¼ 1

3



ð2l þ hÞ; τ∈ ð0; lÞðh− τÞ2ðhþ 2τÞ

3ðh− lÞ2 ; τ∈ ðl; hÞ0; τ∈ ðh;∞Þ. Since vq
00

vl
≥ 0, it follows that

vq*
1

vl
≥ 0.

In addition, we have
vq*

2

vl
¼ − ε0:

vq*1
vl

; q*2 ≠ 0

0; q*2 ¼ 0

8<
: .

(7) The sensitivity analysis of h

When demand follows a two-point distribution, we have
vq*

1

vh
¼

ð1− pÞhffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bðq0 −Aκ2Þ

q ; κ∈ ð0; h�

0; κ∈ ðh;∞Þ

8>><
>>: , which

implies that
vq*

1

vh
≥ 0. When demand follows a uniform distribution, we have

vq*
1

vh
¼ 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bðq00 −Aτ2Þ

p :

vq
00

vh
;where vq

00

vh
¼

1

3
ð2hþ lÞ; τ∈ ð0; l�

h
2ð2h− 3lÞ þ τ2ð3l − 2τÞ

3ðh− lÞ2 ; τ∈ ðl; h�

0; τ∈ ðh;∞Þ

8>>>>>><
>>>>>>:

. Sincevq
00

vh
≥ 0, it follows that

vq*
1

vh
≥ 0. In addition,

we have
vq*

2

vh
¼ − ε0:

vq*1
vh

; q*2 ≠ 0

0; q*2 ¼ 0

8<
: . Thus, we have completed the proof of Proposition 4.

(8) The sensitivity analysis of m
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Taking the partial derivatives of q*1 and q
*
2 with respect tom, we can conclude the following conclusions:

When the demand follows a two-point distribution,
vq*

1

vm
¼ Iðp−A≥ 0Þ vq*

1

vκ , where
vq*

1

vκ ¼
−Aκffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Bðq0 −Aκ2Þ
q < 0; κ∈ ð0; l�

ðp−AÞκffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bðq0 −Aκ2Þ

q ; κ∈ ðl; h�

ð1−AÞκffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bðq0 −Aκ2Þ

q > 0; κ∈ ðh;∞Þ

8>>>>>>>>>>>><
>>>>>>>>>>>>:

, and
vq*

2

vm
¼ 1− ε0:

vq*1
vm

; q*2 ≠ 0

0; q*2 ¼ 0

8<
: . For the sign of

vq*
1

vm
, it can be easily

proved that when p∈ ð0;A�, we have vq*
1

vm
≤ 0; and when p∈ ðA;∞Þ, we have vq*

1

vm
> 0. For the sign of

vq*
2

vm
,

when κ∈ ðh;∞Þ, we have
vq*

1

vκ ¼
ffiffiffiffiffiffiffi
1−A
B

q
. Then let 1− ε0:

vq*
1

vm
κ < 0, it follows that ε0 >

ffiffiffiffiffiffiffi
B

1−A

q
,and when

κ∈ ðl; h� and p−A≥ 0, let1− ε0:
vq*

1

vm
< 0, it follows thatm > h:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1− pÞB

ðp−AÞ½ðp−AÞε02 −B�

q
. However, this leads to a

contradiction because m≤ h and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1− pÞB
ðp−AÞ½ðp−AÞε02 −B�

q
, so the assumption is false.

When demand follows a uniform distribution, it is shown that
vq*

1

vm
¼ ð1−AÞ vq*

1

vτ , where
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1

vm
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easily proved that
vq*

1

vm
≤ 0 for τ∈ ð0;Ahþ ð1−AÞl�, and vq*

1

vm
> 0 for τ∈ ðAhþ ð1−AÞl;∞Þ. For the sign

of
vq*

2

vm
, we set 1−A− ε0:

vq*
1

vm
¼ 0 and obtain τ2ðτ− l

h− l
−AÞ2ε02 ¼ Bðq00

−Aτ2Þ ,where f ðτÞ ¼ τ2ðτ− l
h− l

−AÞ2ε02
andgðτÞ ¼ Bðq00

−Aτ2Þ. We have f
0ðτÞ > 0 and g0ðτÞ > 0, and forτ∈ ðAhþ ð1−AÞl; h�, we have

0 < f ðτÞ < ð1−AÞ2ε02h2v, and because h3 − ½Ahþð1−AÞl�3
3ðh− lÞ B < gðτÞ < ð1−AÞBh3, the intersection of f ðτÞ

and gðτÞ exists. Hence, Proposition 5 and 6 are proved.

(9) The sensitivity analysis of n

The analysis and method are the same as in 8, and therefore will not be repeated here.

Appendix 2
To verify the robustness of the conclusion in Section 5, we conducted numerical experiments with
multiple parameter settings to compare the speed difference of the optimal profit changing with mean

error and variance error. Where f ðδÞ ¼ vπðq*
1
Þ

vδ and gðωÞ ¼ vπðq*
1
Þ

vjωj . Figures A1 and A2 represent the

experimental results for demand following a two-point distribution and a uniform distribution,
respectively.
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Figure A1.
Variation of f ðδÞ and
gðωÞ under two-point
distribution,
p ¼ 0:1;0:4;0:7;0:9
levels
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Figure A2.
Variation

off ðδÞandgðωÞunder
uniform distribution-
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