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Abstract

Purpose – This paper aims to establish an efficient maintenance management system tailored for healthcare
facilities, recognizing the crucial role of medical equipment in providing timely and precise patient care.
Design/methodology/approach – The system is designed to function both as an information portal and a
decision-support system. A knowledge-based approach is adopted centered on Semantic Web Technologies
(SWTs), leveraging a customized ontologymodel for healthcare facilities’ knowledge capitalization. SemanticWeb
Rule Language (SWRL) is integrated to address decision-support aspects, including equipment criticality
assessment, maintenance strategies selection and contracting policies assignment. Additionally, Semantic Query-
enhanced Web Rule Language (SQWRL) is incorporated to streamline the retrieval of decision-support outcomes
and other useful information from the system’s knowledge base. A real-life case study conducted at the University
Hospital Center of Oran (Algeria) illustrates the applicability and effectiveness of the proposed approach.
Findings – Case study results reveal that 40% of processed equipment is highly critical, 40% is of medium
criticality, and 20% is of negligible criticality. The system demonstrates significant efficacy in determining
optimal maintenance strategies and contracting policies for the equipment, leveraging combined knowledge
and data-driven inference. Overall, SWTs showcases substantial potential in addressing maintenance
management challenges within healthcare facilities.
Originality/value – An innovative model for healthcare equipment maintenance management is introduced,
incorporating ontology, SWRL and SQWRL, and providing efficient data integration, coordinated workflows
and data-driven context-aware decisions, while maintaining optimal flexibility and cross-departmental
interoperability, which gives it substantial potential for further development.

Keywords Decision-support, Healthcare, Knowledge-based system, Maintenance, Rule-based reasoning,

Semantic web technologies, Domain knowledge, Knowledge inference

Paper type Research paper

1. Introduction
Maintenance plays a vital role in any field of activity. It allows to minimize interruptions and
ensure an optimal equipment performance. The medical field is no exception. Indeed, its role
might be evenmore crucial there, given that the health and safety of patients depend greatly on
the equipment readiness. The last coronavirus disease 2019 (Covid-19) pandemic (2020)might be
the best demonstration of this fact, as hundreds of lives were lost and thousands more became
critically ill as a direct result of the unavailability of the equipment required for diagnosis and
treatment (mainly testing, respiratory aid and resuscitation devices), whether due to lack or
failures. In developing countries, the situation is far worse, as the inoperative devices rate
reaches 50% and sometimes up to 75% of the supplied equipment in normal conditions (Khalaf,
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2004), regardless of the heavyworkload associatedwith such pandemics and crises. This can get
even more critical if the device ceases working while in use. In Egypt, for example, around 30%
of medical incidents are directly related to the equipment including failures (ELMeneza and
AbuShady, 2020). So, it is not amatter of equipment shortage but rather of techno-vigilance and
poormaintenancemanagement in the first place. Thiswas also implicitly pointed out by Ribeiro
et al. (2018), in an exploratory study conducted in Brazil, where the authors perceived a
significant lack of medical device evaluation and an absence of preventive measures to avoid
failures. Even in the USA, several hundred thousandmedical device reports of suspected device-
associated malfunctions, serious injuries and even deaths are yearly received, according to the
FDA (Food and Drug Administration). These reports didn’t get the deserved attention among
researchers at first until Lalani et al. (2021) revealed in a recent study that the deadly incidents
reported may be significantly higher than rated due to the perceived miscategorization and
improper reporting. In fact, the underreporting of such events was pointed out earlier by Lenzer
(2017) on the grounds that medical equipment is so technologically sophisticated that the more
complex the device, the less likely anomalies will get detected and eventually reported. The
author has gone even further by estimating the actual deaths attributable to medical devices to
nearly 1.6 million, which places them among the top death causes in the USA. Regardless of the
accuracy of these estimates, it should be noted that if developed countries like the USA have at
least established advanced reporting systems to capture equipment-related incidents and put in
place specialized agencies like theFDA to trace and inspect the associated risks and events, then
most other countries including developed ones have no equivalent reliable mechanisms or
organisms yet. So, on the global scale, what is hidden is likely to be worse. Even though the
reported equipment-related incidents may have several root causes other than failures and
malfunctions (such as misuse, manufacturing flaws, stress, assembly fault, human error, etc.),
there is no doubt that regardless of the actual cause, the resulting unfortunate consequences
could have been prevented or at least significantly reduced in the presence of an efficient
maintenance management system that detects and addresses the anomalies beforehand
through inspections, tests, replacements, recalibrations, periodic repairs, outsourcing and any
other necessary action that would allow to ensure the proper functioning ofmedical devices and
maintain optimal reliability and readiness. In this context, several studies have emerged
targetingvarious aspects ofmaintenancemanagement, such as Shamayleh et al. (2020), inwhich
the authors proposed an Internet of Things (IoT)-supported predictive maintenance approach
for diagnosingmedical equipment failures, considering various and frequent failuremodes. The
same problem was addressed by Niyonambaza et al. (2020) through an early failure prediction
long short-term memory (LSTM) neural network model for mechanical hospital equipment. On
the other hand, Cardona Orteg�on and Guerrero (2021) and Gonz�alez-Dom�ınguez et al. (2021)
proposed models for optimizing the frequency and policy of tomography equipment
maintenance, using Markov chains, while Kamal et al. (2022) proposed a framework for
optimizing repair and maintenance schedules in hospitals, integrating building information
modeling (BIM), discrete event simulation (DES) and genetic algorithm (GA), supported with
augmented reality for on-site navigation and information retrieval. However, as it can be seen
through the aforementioned studies, most of the proposed work in this area focus only on the
prediction and scheduling aspects, which are usually put at the center of attention in industrial
maintenance, while medical equipment maintenance has some peculiarities that require
considering additional aspects in their maintenance management. For a start, healthcare
facilities aremeant to dealwith humans rather thanmachines; therefore, their staff has generally
a very modest technical knowledge, which requires often calling-up the maintenance
department even for the simplest calibration and configuration tasks that an average
industrial worker can carry out by himself. Besides, most devices are within the reach of many
hands (including doctors, nurses, interns, patients, visitors and cleaning staff), while only a few
are qualified to handle them correctly, which increases the chances of their failure by improper
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use. In fact, over 50% of all technical medical equipment problems are due to operator errors
(Dhillon, 2007). Fromanother point of view, if industrial production losses caused by failures and
malfunctions can be recouped after working hours or by simply having the delivery dates
extended, then this is not an option in the medical field, as saving lives requires urgent and
timely interventions that cannot bedelayed or postponed,whichmakes the equipment readiness
an imperative necessity at all times, particularly because there are many medical departments
where the medical staff can’t do much without the required equipment, such as radiology,
surgery and emergency. Therefore, maintenance outsourcing is more commonly resorted to in
this field compared to the industrial sector, especially since internal maintenance labor is very
limited in terms of bothworkforce and available gear, and cannot handle themassive number of
installed systems. Moreover, most of these systems are modern and implement sophisticated
technologies that may require specific maintenance trainings in order to deal with them
properly. These interrelated challenges constitute themain complexity in biomedical equipment
management, as they imply numerous inner decisions that require the collaboration of experts
from various scopes of knowledge. First, there are doctors and health professionals who assess
the medical dimension of the problem as a consequence of maintenance actions. Then, there are
the administrative and economical officials who deal with the logistical and financial aspects.
Finally, there are, of course, the maintenance and biomedical engineers who are primarily
concerned, since they handle the technical side of the problem and its reflections on the other
aspects. In order to efficiently coordinate between these different parties and ensure a fruitful
exchange of information and expertise, thiswork proposes a knowledge-based system (KBS) for
healthcare equipment maintenance management.

The rest of this paper is organized as follows. The subsequent section provides a
comprehensive review of relevant literature. Section 3 details the adopted research methodology
alongside theproposedKBSand its components,while Section 4 is dedicated to its implementation
through the Oran university hospital center (UHC) case study and the validation of its outcomes.
Finally, concluding remarks are presented along with some research perspectives.

2. Literature review
Knowledge sharing is argued to be a key solution for improving organizational
performance and human capital, provided that it is induced successfully (Hsu, 2008).
Bimba et al. (2016) listed four knowledge-based modeling techniques that may help to
fulfill this condition: expert systems, linguistic, ontology and cognitive, while Breuker
(2013) defined three levels to represent knowledge in the model, i.e., perceptual,
conceptual and semantic. Among these, the literature highlights a particular emphasis on
the semantic level, particularly through Semantic Web Technologies (SWTs). The latter
provide efficient instruments for formal knowledge modeling, fostering collaboration,
data integration, automation, digitization and interoperability (Dunbar et al., 2023). By
encoding human expertise and defining shared data schemes, these not only offer
instrumental modeling support but also enable improved decision-making while ensuring
semantic consistency (Prasad et al., 2021). SWTs are centered on ontology, which is
defined by Gruber (1993) as “a specification of a representational vocabulary for a shared
domain of discourse-definitions of classes, relations, functions and other objects” that
allows to outline the involved action centers and decision categories along with their
inter-relations, while it uses a specific language, usually OWL (Ontology Web Language)
to check knowledge consistency or make implicit knowledge explicit (Bechhofer et al.,
2004), thus, creating a detailed and well-structured knowledge based on the problem. The
gathered knowledge can then be exploited using specific rule languages, often, SWRL
(Semantic Web Rule Language) and SQWRL (Semantic Query-Enhanced Web Rule
Language). SWRL (Horrocks et al., 2004) combines OWL-DL and OWL-Lite sub-
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languages of OWL with Unary/Binary Datalog RuleML (a sub-language of RuleML) to
integrate rules into an OWL knowledge base, while SQWRL (O’Connor and Das, 2009) is a
query language that consists of taking a standard SWRL rule antecedent and effectively
treats it as a model specification.

SWTs, particularly ontologies, have proven highly effective in modeling diverse
environments and providing robust decision support across diverse domains. Gupta and
Gandhi (2013) outlined a systematic ontology-based approach for capturing and managing
spatial shaft-position knowledge, crucial for the efficient and safe operation of steam turbines.
Extending the application of ontology, Zheng et al. (2023) employed a knowledge-based
engineering approach to customize robotic manufacturing system architectures. Ram�ırez-
Dur�an et al. (2020) proposed an ontology supporting Industry 4.0 systems, offering a
standardized vocabulary for describing extrusion machine capabilities. In the realm of Zero-
Defect Manufacturing (ZDM), Alexopoulos et al. (2023) advocated an ontology-based
approach, integrating insights from industrial IoT and Industrial Social Networking data,
while Psarommatis et al. (2023) initiated the development and dissemination of a set of
coherent reference ontologies to advance software and data interoperability, focusing on the
potential of ZDM to transform manufacturing systems and their socio-technological
interactions. Montero Jim�enez et al. (2023) introduced an ontology model for Maintenance
Strategy Selection and Assessment (OMSSA) in the industrial domain, facilitating reuse and
integration with other ontologies. Similarly, Cho et al. (2020) addressed the challenge of
federating various data formats effectively using semantic technologies in the context of
maintenance. The authors provided a formal terminology framework for maintenance
strategies, enabling the development of computational agents to assist in the decision-making
process for selecting and assessing maintenance strategies.

In themedical field, SWTshavealsobeen instrumental. Sondes et al. (2019) developed an IoT-
based healthcaremonitoring systemutilizing ontology for semantic interoperability. Tiwari and
Abraham (2020) introduced the Smart Healthcare Ontology (SHCO), extracting healthcare
knowledge for improved healthcare monitoring systems. Shishehchi and Banihashem (2021)
and Banihashem and Shishehchi (2022) exploited SWTs for knowledge acquisition in the
diagnosis of immune thrombocytopenia and fatty liver diseases. Moreover, researchers like
Kumar (2015), Shahzad et al. (2021) and Alahmar et al. (2020) harnessed SWTs’s capabilities for
smart health services integration, ontological framework development and clinical pathways
computerization, respectively. Yousefli et al. (2020) utilized SWTs to develop an automated
multi-agent facility management system, enhancing maintenance workflows in hospitals
through Unified Modeling Language (UML) and simulation.

While existing research has highlighted the advantages of SWTs, their applications in
biomedical maintenance management have been notably scarce. Previous studies have
primarily concentrated on the examination and optimization of individual healthcare
systems, such as incubators and IRM devices, rather than emphasizing their maintenance.
However, efficient maintenance management and resource allocation across all equipment
are crucial for ensuring quality care. To bridge this gap, this paper seeks to develop a
strategic medical equipment maintenance management system, aligning with the
recommendations of Zamzam et al. (2021). The latter emphasized the significance of
efficient management through the prioritization of medical equipment, enabling the
assignment of appropriate maintenance strategies and allocation of sufficient resources.
This work responds to this perspective by harnessing the advantages offered by SWTs.

3. Development of the proposed system
The acquisition of the required knowledge to build the system was orchestrated through the
collaboration of field experts, comprising maintenance engineers, healthcare professionals and
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hospital management staff, with over 15 years of experience. Structured interview sessions
were conducted to extract insights, supplementing available inventory reports and equipment
sheets. The acquired knowledge is subsequently formalized and modeled using a customized
ontology, derived from the widely recognized MASSON ontology (Lemaignan et al., 2006),
originally designed for manufacturing environments. The adopted ontology has undergone
several adaptations to align with the distinctive specifications of healthcare facilities,
encompassing various aspects, not only those pertinent to equipment maintenance. This
imparts to the system the capability to function as a unified information portal across various
hospital functions, rather thanbeing limited exclusively tomaintenance purposes. This broader
functionality has the potential to enhance logistical support and overall facility management.
Nonetheless, themaintenance function is distinguished than other functionsby three integrated
decision-support modules that serve the main purpose of the system by first assessing the
criticality of medical equipment and subsequently determining appropriate maintenance
strategies and contracting policies for each piece of equipment. Consequently, the system
aspires to evolve into aKBSproficient in both information sharing and decision support. This is
achieved through the utilization of both SWRL and SQWRL; SWRL integrates expert
knowledge as a reference for assessment and appraisal, while SQWRL is employed for content
inspection, inquiry and data retrieval. Consequently, the modeling method employed can be
described as a domain knowledge-driven inference approach, as depicted in Figure 1.

The domain knowledge and the knowledge inference, illustrated in Figure 1, are
coordinated through a structured framework for knowledge sharing and reusing, constituted
of numerous components (Figure 2).

As depicted in Figure 2, the framework allows the entire ontology elements to work
seamlessly and efficiently using four key integrated components thatmanage the knowledge-
sharing process:

Figure 1.
Concept of the

proposed approach
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(1) The knowledge base: This is the most important component; it encompasses the
whole knowledge associated with maintenance in healthcare facilities. It consists of
the knowledge domain represented by the readapted MASSON ontology, which is
expressed in OWL language, in addition to the knowledge inference expressed
using SWRL rules, defined with the help of field experts, allowing to assess the
equipment criticality, assign maintenance strategies and select the appropriate
contract type.

(2) The ontology management system: In the case of the present study, this part
was handled by Prot�eg�e (Noy et al., 2003), which is a widely used software to establish
and modify the ontology whenever needed.

(3) The inference engine: It divides into the reasoning engine and the rules engine,
which respectively reads the existing facts and rules created by knowledge engineers
and infers new facts in the system. In this case, the Hermit reasoning engine is used to
check the consistency of the developed ontology in order to eliminate any potential
errors, while the inference rules are handled by the Drools engine.

(4) Thequery interface: It is used to interact with the knowledgemanagement system
by means of the SQWRL rules, which allow to retrieve and display specific
information at request.

From the above, the operating scenario of the proposed system can be described as follows.
First, the related knowledge is capitalized and incorporated into the ontology. Then, the
SWRL rules are defined (using SWRL tab in Prot�eg�e) and stored in the knowledge base. Next,
the rules engine executes the SWRL rules and generates new facts in the ontology
management system. Finally, the decision maker can exploit the outcome of these rules and
get other useful information on demand by defining the associated constraints through the
SQWRL query interface. The research tools and instruments employed for modeling, along
with their specifications, are synthesized in Table 1. Further details regarding the model and
the overall research methodology are subsequently expounded upon in the sub-
sections below.

Figure 2.
Structure of the
proposed model
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3.1 Formalization of domain knowledge
As aforementioned, the adopted formalization of the knowledge domain is inspired by the
ontological representation MASSON (Lemaignan et al., 2006), which is based on three
fundamental concepts “Operation,” “Resources” and “Entity,” each of which is divided into
several classes and subclasses.

To begin with, the “Material resources” class issued fromMASSON’s “Resources” concept
is redefined as the “Equipment” class, encompassing all the instruments and the devices
within the hospital, organized into subclasses based on the respective medical departments
they serve, such as radiotherapy, radiology, biochemistry, etc., as illustrated in Figure 3.

On the other hand, the “Human-Resource” class was maintained, while readapting its
inner subclasses according to the different personnel categories of healthcare facilities such
as managers, doctors, nurses, patients, interns, etc., as demonstrated in Figure 4.

Similarly, the “Operation-Maintenance” class is created by inspiration from the
“Manufacturing-Operation” concept of Lin et al. (2011) and the “Operation class” of Lemaignan
et al. (2006). It is divided into two inner subclasses “Internalization” and “Externalization”
(Figure 5), representing the maintenance outsourcing decision for each equipment.

The “Method” and “Contract” concepts (Figure 6) are based on the “Technological entity”
concept defined by Lemaignan et al. (2006). While the same maintenance methods applied to
industrial maintenance are applied to biomedical maintenance, it is more often resorted to
outsourcing in the latter to cover associated tasks due to the limited technical staff in terms of
both number and gear. Therefore, the “Maintenance-Method” class contains two subclasses
“CorrectiveMaintenance” and “PreventiveMaintenance,” representing the two well-known
types of maintenance strategies. On the other hand, the “Contract-Maintenance” class
contains four subclasses representing the differentmaintenance outsourcing policies adopted
in this field: “TypeA*,” “TypeA,” “TypeB” and “TypeC” (refer to section 3.2.3 below for their
detailed description). Figure 6 illustrates these classes and their hierarchies.

Figure 7 below illustrates the main classes of the whole model and their class hierarchies
along with their inter-relations.

The inter-relations among the different classes/subclasses are defined through the “Object
properties” tab of the ontology editor, while their respective data are stored in the “Data
properties” tab in the form of a set of quantitative parameters and indicators. For example,
Figure 8 demonstrates the instances related to the “Radiology-equipment” subclass (Part a)
along with the relevant data properties (Part b) and object properties (Part c).

3.2 Formalization of knowledge inference
The knowledge inference of the model is divided into three integrated rule-based reasoning
decision-support modules that handle the equipment criticality assessment, the assignment

Ontology editor Prot�eg�e 5.5.0: is a free open-source ontology editor supported by the National Institute of
General Medical Sciences (https://protege.stanford.edu/)

Language used OWL: an ontology web language for knowledge domain modeling
SWRL: a semantic web rule language for knowledge inference modeling
SQWRL: a semantic queries web rules language for knowledge domain selecting

Rules engine The Drools rule engine is an essential tool for developing rules that can be applied
repeatedly to a set of facts or run to create new facts

Reasoning
engine

Hermit: is a vital reasoner in ontology. It can provide important standards and advanced
reasoning services

Plug-ins SWRL Tab: helps to write SWRL rules and runs Drools for rules execution
SQWRLTab: helps to write SQWRL queries for user interface and uses Drools for query
execution

Source(s): Table created by authors
Table 1.

Model specifications
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Figure 3.
The “Equipment” class
and its network of
subclasses
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of their maintenance strategies and the selection of their respective maintenance contracting
policies. The three modules rely on SWRL rules and the Drools inference engine for
information processing. Their workflow is described per module in the sub-sections below.

3.2.1 Criticality assessment. The initial module evaluates the criticality of healthcare
equipment using a multicriteria perspective to precisely identify top-priority items for
maintenance actions. These actions include scheduling preventive repairs, outsourcing,
ordering spare parts and considering other potentially required investments. The criteria for
this assessment are established through a review of pertinent literature and further enriched
and validated through discussions with field specialists from the maintenance department at
the UHC of Oran. Notably, these specialists are also actively engaged in the development of
the evaluation metrics, in addition to the required scales for assessing qualitative aspects
within the entire process of formalizing inference rules. In total, five criteria are considered for
the assessment of equipment criticality:

Figure 4.
The “Human

resources” class and its
network of subclasses

Figure 5.
The “Operation” class

and its network of
subclasses
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(1) Degree of mission importance: It represents the extent to which the device is
needed by medical professionals, in order to be able to perform their duty. It is
quantified based on the equipment utilization rate (UR) (average weekly usage hours
divided by themaximum), following three levels: high, medium and low, as expressed
in the rules below (Table 2).

(2) Function: It represents the purpose for which a medical device is mainly used, for
example, diagnosis, life support, monitoring, etc. (refer to Table 3 for explicit listing of
equipment categories). Different devices may have different impacts on the health
and safety of patients. Obviously, some functions are more critical than others.
Following this logic, each function is given a respective score reflecting its
importance, using the SWRL rules below (Table 3).

(3) Degree of maintenance complexity: Medical devices implement various
technologies that obviously differ in terms of complexity and thus also
maintenance difficulty. This criterion is aimed at quantifying this complexity
according to the equipment type (advanced mechanical, pneumatic or hydraulic) and
its maintenance perquisites, such as the need to conduct advanced performance and
safety tests or just assessing the physical state of the asset visually, which is
translated into the rules below (Table 4).

(4) Risk: It represents the potential impact of a medical device failure on the patients’ health
and safety. This criterion is evaluated taking into account the criticality of the function of
eachdevice (theFS scores calculatedusing the rules ofTable 3),with thehighest risk score
directly assigned to the devices covering the top critical functions (life support, surgical-
intensive care, physical therapy treatment, intensive care monitoring and physiological
diagnosis), while the risk associatedwith the devices serving in the remaining functions is
assessed using the risk priority number (RPN) method, issuing from the well-known
Failure Modes Effects and Criticality Analysis (FMECA) in maintenance. The RPN is
defined as the product of three failure characteristics, which are the frequency of
occurrence (O), the severity (S) and the detectability (D), where the device failure rate, its
availability and its maintenance complexity degree are, respectively, selected as the
reflective parameters for these characteristics, with the adoption of a three-level (high,

Figure 6.
The “Method” class
and its network of
subclasses
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Figure 7.
Main classes adapted

from MASSON
ontology and its

hierarchies subclasses
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medium and low) rating scale to evaluate and standardize these parameters. Table 5
below lists the rules used for assessing the risk criterion,whileTables 6 and 7 list the rules
used for the evaluation of the first two parameters (O and S). As for the third parameter
(D), the outputs of the rules previously defined in Table 4 are directly exploited, since they
are consistent with the adopted evaluation process.

(5) Age: It represents the time elapsed in years since the commissioning of the
equipment, which is considered as a relative indicator of the actual condition of the
equipment and its reliability. Considering that most medical devices are subject to
significant degradation due to heavy usage and frequent user errors, each device
older than 10 years of service is given an age score of 2, while the opposite case gets a
score of 1, as expressed by the rules in Table 8.

After evaluating the equipment according to all the criteria, it is possible to quantify and
assess its overall criticality, which is defined as a sum function of the scores obtained under
each criterion. The rules used for this purpose are listed in Table 9 below.

The quantified criticality values (C) can be used as a key indicator to prioritize the
equipment and manage maintenance tasks accordingly, with the aim of maximizing the
effectiveness of its actions and improving the hospital service quality, while the assigned
criticality levels (high, medium and low) are meant to help in categorizing the equipment and
grouping maintenance activities.

3.2.2 Maintenance strategies assignment. The second module exploits the resulting
criticality assessment outputs to assign the proper maintenance strategy for each piece of
equipment. In this context, three main strategies are considered:

(1) Corrective maintenance (CM): It involves repairing or fixing a piece of
equipment or a system after it has failed or malfunctioned, with the aim of restoring it
to its standard operational state. This approach does not require additional labor or a

Figure 8.
Instances of the
“Radiology-
equipment” subclass
(a) with the associated
data properties (b) and
object properties (c)
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special budget to be implemented. However, the random downtime caused by
equipment failures and the overuse of labor to carry out repairs can result in
significant costs and considerable inconvenience or even serious consequences in
some cases.

(2) Condition-based maintenance (CBM): It involves evaluating the operational
condition of a system, regularly or on real-time, with the aim of detecting potential
failures before they occur and applying timely effective fixes. To implement CBM,

Rule 1 Rating of the equipment mission importance degree score (di) based on the equipment UR
Rule
1.1

If UR ≥ 70%, then the importance degree score is 3
Equipment(?E) ^ Utilization(?E, ?ur) ^ DegImportance(?E, ?di) ^ swrlb:greaterThanOrEqual(?ur,
70) → DegImportance(?E, 3)

Rule
1.2

If the device degree score is 3, then its degree of mission importance is high
Equipment(?E) ^ DegImportance(?E, 3) → hasStatut(?di, “high”)

Rule
1.3

If 40% < UR < 70%, then the importance degree score is 2
Equipment(?E) ^ Utilization(?E, ?ur) ^ DegImportance(?E, ?di) ^ swrlb:greaterThan(?ur, 40)^
swrlb:lessThan(?y,70) → DegImportance(?E, 2)

Rule
1.4

If the device degree score is 2, then its degree of the mission importance is medium
Equipment(?E) ^ DegImportance(?E, 2) → hasStatut(?di, “medium”)

Rule
1.5

If UR ≤ 40%, then the importance degree score is 1
Equipment(?E) ^ Utilization(?E, ?ur) ^ DegImportance(?E, ?di) ^ swrlb:lessThanOrEqual(?
ur,40) → DegImportance(?E, 1)

Rule
1.6

If the device degree score is 1, then its degree of mission importance is low
Equipment(?E) ^ DegImportance(?E, 1) → hasStatut(?di, “low”)

Source(s): Table created by authors

Rule 2 Assignment of a FS to the equipment reflecting its function importance
Rule
2.1

If the equipment belongs to “Life Support” category, its FS is 9
Equipment(?E) ^ Function(?E, “LifeSupport”) ^ FunctionScore(?E, ?FS) → FunctionScore(?E, 9)

Rule
2.2

If the equipment belongs to “Surgical-intensive Care” category, its FS is 8
Equipment(?E) ^ Function(?E, “Surgical-intensiveCare”) ^ FunctionScore(?E, ?
FS) → FunctionScore(?E, 8)

Rule
2.3

If the equipment belongs to “Physical Therapy Treatment” category, its FS is 7
Equipment(?E) ^ Function(?E, “PhysicalTherapyTreatment”) ^ FunctionScore(?E, ?
FS) → FunctionScore(?E, 7)

Rule
2.4

If the equipment belongs to “Surgical-intensive Care Monitoring” category, its FS is 6
Equipment(?E) ^ Function(?E, “Surgical-intensiveCareMonitoring”) ^ FunctionScore(?E, ?
FS) → FunctionScore(?E, 6)

Rule
2.5

If the equipment belongs to “Physiological Diagnosis” category, its FS is 5
Equipment(?E) ^ Function(?E, “PhysiologicalDiagnosis”) ^ FunctionScore(?E, ?
FS) → FunctionScore(?E, 5)

Rule
2.6

If the equipment belongs to “Analytical Laboratory” category, its FS is 4
Equipment(?E) ^ Function(?E, “AnalyticalLaboratory”) ^ FunctionScore(?E, ?FS)→ FunctionScore(?
E, 4)

Rule
2.7

If the equipment belongs to “Laboratory Accessories” category, its FS is 3
Equipment(?E) ^ Function(?E, “LaboratoryAccessories”) ^ FunctionScore(?E, ?
FS) → FunctionScore(?E, 3)

Rule
2.8

If the equipment belongs to “Computer Related” category, its FS is 2
Equipment(?E) ^ Function(?E, “ComputerRelated”) ^ FunctionScore(?E, ?FS)→ FunctionScore(?E, 2)

Rule
2.9

If the equipment belongs to “Patient Related and Other” category, its FS is 1
Equipment(?E) ^ Function(?E, “PatientRelated”) ^ FunctionScore(?E, ?FS) → FunctionScore(?E, 1)

Source(s): Table created by authors

Table 2.
SWRL rules used for
assessing the mission

importance degree
criterion

Table 3.
SWRL rules used for

assessing the function
criterion
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Rule 3 Rating the equipment degree of maintenance complexity (dc)
Rule
3.1

If the equipment type is advancedmechanical, pneumatic or hydraulic, the degree of complexity is 3
Equipment(?E) ^ EquipmentType(?E, “advancedMechanicalEquip”) ^ DegComplexMaint(?E, ?
dc) → DegComplexMaint(?E, 3)
Equipment(?E) ^ EquipmentType(?E, “pneumaticEquip”) ^ DegComplexMaint(?E, ?
dc) → DegComplexMaint(?E, 3)
Equipment(?E) ^ EquipmentType(?E, “hydraulicEquip”) ^ DegComplexMaint(?E, ?
dc) → DegComplexMaint(?E, 3)

Rule
3.2

If the maintenance complexity degree is rated 3, then it is considered high
Equipment(?E) ^ DegComplexMaint(?E, 3) → hasStatut(?dc, “high”)

Rule
3.3

If the equipment type requires performance verification or safety tests, the degree of complexity is 2
Equipment(?E) ^ EquipmentType(?E, “PerformanceTests”) ^ DegComplexMaint(?E, ?
dc) → DegComplexMaint(?E, 2)
Equipment(?E) ^ EquipmentType(?E, “SafetyTests”) ^ DegComplexMaint(?E, ?
dc) → DegComplexMaint(?E, 2)

Rule
3.4

If the maintenance complexity degree is rated 2, then it is considered medium
Equipment(?E) ^ DegComplexMaint(?E, 2) → hasStatut(?dc, “medium”)

Rule
3.5

If the equipment type requires only visual inspections, the degree of complexity is 1
Equipment(?E) ^ EquipmentType(?E, “VisualTests” ^ DegComplexMaint(?E, ?
dc) → DegComplexMaint(?E, 1)

Rule
3.6

If the maintenance complexity degree is rated 1, then it is considered low
Equipment(?E) ^ DegComplexMaint(?E, 1) → hasStatut(?dc, “low”)

Source(s): Table created by authors

Rule 4 Quantification of the risk (R) associated with equipment malfunction and assessment of its degree
Rule
4.1

R 5 Occurrence 3 Severity 3 DegComplexMaint j (where the latter reflects the detectability)
Equipment(?E) ^ Occurrence (?E, ?O) ^ Severity (?E, ?S)^ DegComplexMaint (?E, ?dc)
^ Risk(?E, ?R) ^ swrlb:multiply (?R, ?O, ?S, ?dc) → Risk (?E, ?R)

Rule
4.2

If 1 ≤ FS < 6, and R < 20, then the device risk degree is 1
Equipment(?E) ^ RiskDegree (?E, ?r) ^ Risk (?E,?R) ^ FunctionScore(?E,?FS) ^
swrlb:greaterThanOrEqual(?FS, 1) ^ swrlb:lessThan(?FS,6) ^ swrlb:lessThanOrEqual(?
R,20) → RiskDegree (?E, 1)

Rule
4.3

If the risk degree is 1, then the associated riskiness is low
Equipment(?E) ^ RiskDegree (?E, 1) → hasStatut(?R, “low”)

Rule
4.4

If 1 ≤ FS < 6, and 20 < R ≤ 36, then the device risk degree is 2
Equipment(?E) ^ RiskDegree (?E, ?r) ^ Risk (?E,?R) ^ FunctionScore(?E,?FS) ^
swrlb:greaterThanOrEqual(?FS, 1) ^ swrlb:lessThan(?FS,6) ^ swrlb:greaterThan(?R, 20) ^
swrlb:lessThanOrEqual (?R,36) → RiskDegree (?E, 2)

Rule
4.5

If the risk degree is 2, then the associated riskiness is medium
Equipment(?E) ^ RiskDegree (?E, 2) → hasStatut(?R, “medium”)

Rule
4.6

If 1 ≤ FS < 6, and R > 36, then the device risk degree is 3
Equipment(?E) ^ RiskDegree (?E, ?r) ^ Risk(?E,?R) ^ FunctionScore(?E,?FS) ^
swrlb:greaterThanOrEqual(?FS, 1) ^ swrlb:lessThan(?FS,6) ^ swrlb:greaterThan(?R,
36) → RiskDegree (?E, 3)

Rule
4.7

If the risk degree is 3, then the associated riskiness is high
Equipment(?E) ^ RiskDegree (?E, 1) → hasStatut(?R, “high”)

Rule
4.8

If 5 < FS ≤ 9, then the device receives directly the highest risk degree score which is 4
Equipment(?E) ^ RiskDegree (?E, ?r) ^ Risk (?E,?R) ^ FunctionScore(?E,?FS) ^ swrlb:greaterThan(?FS,
5) ^ swrlb:lessThanOrEqual(?FS,9) → RiskDegree (?E, 4)

Rule
4.9

If the risk degree is 4, then the associated riskiness is very high
Equipment(?E) ^ RiskDegree (?E, 4) → hasStatut(?R, “very high”)

Source(s): Table created by authors

Table 4.
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specialized sensors are needed to assess deterioration, measure prediction variables
or analyze data on the system’s performance, such as vibration, temperature and
other key indicators. Additionally, a statistical model may be required to establish a
correlation between the measured variables and the health of the equipment, such as
its remaining useful life. By catching issues early, this strategy can help in reducing
downtime and extend the lifespan of the equipment or system. However, it requires
acquiring the necessarymeasuring tools and instruments, aswell as having sufficient
knowledge of measurement techniques and/or degradation models.

(3) Time-based maintenance (TBM): It involves conducting regular checks,
calibrations, lubrification, replacements or other maintenance activities on

Assessment of the occurrence parameter based on the equipment failure rate (F)
Rule
4.1.1

If 1 ≤ FS < 6, and F ≤ 0.001, then the occurrence degree is 1
Equipment(?E) ^ FailureRate(?E, ?F) ^ FunctionScore(?E,?FS) ^ Occurrence(?E, ?O) ^
swrlb:greaterThanOrEqual(?FS, 1) ^ swrlb:lessThan(?FS,6) ^ swrlb:lessThanOrEqual(?F,
0.001) → Occurrence(?E, 1)

Rule
4.1.2

If the occurrence degree is 1, then the frequency of failure is low
Equipment(?E) ^ Occurrence(?E, 1) → hasStatut(?O, “low”)

Rule
4.1.3

If 1 ≤ FS < 6, and 0.001 < F < 0.004, then the occurrence degree is 2
Equipment(?E) ^ FailureRate(?E, ?F) ^ FunctionScore(?E,?FS) ^ Occurrence(?E, ?O) ^
swrlb:greaterThanOrEqual(?FS, 1) ^ swrlb:lessThan(?FS,6) ^ swrlb:greaterThan(?F, 0.001) ^
swrlb:lessThan(?F,0.004) → Occurrence(?E, 2)

Rule
4.1.4

If the occurrence degree is 2, then the frequency of failure is medium
Equipment(?E) ^ Occurrence(?E, 2) → hasStatut(?O, “medium”)

Rule
4.1.5

If 1 ≤ FS < 6, and F ≥ 0.004, then the occurrence degree is 3
Equipment(?E) ^ FailureRate(?E, ?F) ^ FunctionScore(?E,?FS) ^ Occurrence(?E, ?O) ^
swrlb:greaterThanOrEqual(?FS, 1) ^ swrlb:lessThan(?FS,6) ^ swrlb:greaterThanOrEqual(?F,
0.004) → Occurrence(?E, 3)

Rule
4.1.6

If the occurrence degree score is 1, then the frequency of failure is high
Equipement(?E) ^ Occurrence(?E,3) → hasStatut(?O, “high”)

Source(s): Table created by authors

Assessment of the severity parameter based on the equipment availability (A)
Rule 4.1.7 If 1 ≤ FS < 6, and A < 85%, then the severity score is 1

Equipment(?E) ^ Availability (?E,?A) ^ FunctionScore(?E,?FS) ^ Severity(?E, ?S) ^
swrlb:greaterThanOrEqual(?FS, 1) ^ swrlb:lessThan(?FS,6) ^ swrlb:lessThan(?
A,0.85) → Severity(?E, 1)

Rule 4.1.8 If the severity score is 1, then then the severity level is low
Equipment(?E) ^ Severity(?E, 1) → hasStatut(?S, “low”)

Rule 4.1.9 If 1 ≤ FS < 6, and 85% ≤ A < 95%, then the severity score is 2
Equipment(?E) ^ Availability (?E,?A) ^ FunctionScore(?E,?FS) ^ Severity(?E, ?S) ^
swrlb:greaterThanOrEqual(?FS, 1) ^ swrlb:lessThan(?FS,6) ^ swrlb:greaterThanOrEqual(?A, 85)
^ swrlb:lessThan(?A,0.95) → Severity(?E, 2)

Rule
4.1.10

If the severity score is 2, then the severity level is medium
Equipment(?E) ^ Severity(?E, 2) → hasStatut(?S, “midium”)

Rule
4.1.11

If 1 ≤ FS < 6, and A ≥ 95%, then the severity score is 3
Equipment(?E) ^ Availability (?E,?A) ^ FunctionScore(?E,?FS) ^ Severity(?E, ?S) ^
swrlb:greaterThanOrEqual(?FS, 1) ^ swrlb:lessThan(?FS,6) ^ swrlb:greaterThanOrEqual(?A,
0.95) → Severity(?E, 3)

Rule
4.1.12

If the severity score is 3, then the severity level is high
Equipment(?E) ^ Severity(?E, 1) → hasStatut(?S, “high”)

Source(s): Table created by authors
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equipment on a routine basis (fixed intervals of elapsed operating time, usage times
counter or other specific criteria). TBM can help ensure the equipment or system
continues to operate reliably and efficiently by preventing failures and malfunctions.
Nonetheless, this approach may result in unnecessary maintenance if the equipment
or system is still in good condition. Furthermore, it necessitates dedicated resources,
such as funding and workforce, for proper implementation.

The rules used for assigning these strategies to the equipment, based on the predefined
criticality degree scores, are listed in Table 10 below.

Rule 5 Evaluation of the equipment age according to the number of years elapsed since commissioning
Rule 5.1 If the age of the equipment is less than or equal to 10 years, it receives a score of 1

Equipment(?E) ^ Age(?E, ?ag) ^ swrlb:lessThanOrEqual(?ag,10) → AgeScore(?E, 1)
Rule 5.2 If the age of the equipment is more than 10 years, it receives a score of 2

Equipment(?E) ^ Age(?E, ?ag) ^ swrlb:greaterThan(?ag,10 → AgeScore(?E, 2)

Source(s): Table created by authors

Rule 6 Multicriteria quantification of the overall equipment criticality (C) and assessment of its level
Rule
6.1

C 5 DegComplexMaint þ FunctionScore þ RiskDegree þ DegImportance þ AgeScore
Equipment(?E) ^ DegComplexMaint(?E, ?dc) ^ FunctionScore(?E, ?fc) ^ RiskDegree(?E, ?r) ^
DegImportance(?E, ?di) ^ AgeScore(?E, ?as) ^ swrl:add(?C, ?dc, ?fc, ?r, ?di, ?as → Criticality (?E, ?C)

Rule
6.2

If C ≥ 18, then the device gets a criticality degree score (Cr) of 3
Equipment(?E) ^ Criticality (?E, ?C) ^ CrScore (?E, ?Cr) ^ swrlb:greaterThanOrEqual(?C,
18)) → CrScore(?E, 3)

Rule
6.3

If the criticality score is 3, then the criticality level is high
Equipment(?E) ^ CrScore(?Cr, 3) → hasStatut(?Cr, “high”)

Rule
6.4

If 12 ≤ C < 18, then the device gets a criticality degree score (Cr) of 2
Equipment(?E) ^ Criticality (?E, ?C) ^ CrScore (?E, ?Cr) ^ swrlb:greaterThanOrEqual(?C, 12) ^
swrlb:lessThan(?C,18) → CrScore(?E, 2)

Rule
6.5

If the criticality score is 2, then the criticality level is high
Equipment(?E) ^ CrScore(?Cr, 2) → hasStatut(?Cr, “medium”)

Rule
6.6

If C < 12, then the device gets a criticality degree score (Cr) of 1
Equipment(?E) ^ Criticality (?E, ?C) ^ CrScore (?E, ?Cr) ^ swrlb:lessThan(?C,12) → CrScore(?E, 1)

Rule
6.7

If the criticality score is 1, then the criticality level is low
Equipment(?E) ^ CrScore(?Cr, 1) → hasStatut(?Cr, “low”)

Source(s): Table created by authors

Rule 7 Assigning appropriate maintenance strategies for hospital equipment according to the criticality
degree

Rule
7.1

If the device criticality level is high, then the suitable maintenance strategy is “Time-based
maintenance”
Equipment(?E) ^ hasStatut(?Cr, “high”) ^ Method-Maintenance(?MM) ^ hasMethod(?E, ?
MM)→ Maintenance-Method(TBM)

Rule
7.2

If the device criticality level is medium, then the suitable maintenance strategy is “Condition-based
maintenance”
Equipment(?E) ^ hasStatut(?Cr, “medium”) ^ Method-Maintenance(?MM) ^ hasMethod(?E, ?
MM)→ Maintenance-Method(Condition-based maintenance)

Rule
7.3

If the device criticality level is low, then the suitable maintenance strategy is “CM”
Equipment(?E) ^ hasStatut(?Cr, “low”) ^ Method-Maintenance(?MM) ^ hasMethod(?E, ?
MM)→ Maintenance-Method(Corrective Maintenance)

Source(s): Table created by authors

Table 8.
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3.2.3 Maintenance-contract type selection. The third and last module deals with the
maintenance externalization decision, including the selection of an appropriate contracting
policy for each externally maintained device. In developing countries, including the country
in which the current study is conducted, there are generally four types of contracts to choose
from (Masmoudi et al., 2016):

(1) Type A*: Full package contract with all risks covered and all maintenance tasks,
both corrective and preventive, performed by the subcontractor.

(2) Type A: It covers all TBM tasks, including both spare parts and labor.

(3) Type B: It involves the tasks related to either TBM, CBM or both of them combined
and covers only the spare parts.

(4) Type C: It involves on-demand interventions, with neither spare parts nor labor
costs covered under the contract. It is usually assigned to equipment known for its
complex failures.

The selection of the appropriate contract type for eachmedical device is based on the rules below
(Table 11), which rely on the predefined criticality scores in addition to the equipment’s economic

Rule 8 Handling contracting decisions based on the criticality level and the impact on maintenance cost
Rule.8.1 If the equipment criticality score is 3, the maintenance cost impact is 3, then the type of contact is

Type A*
Equipment(?E) ^ CrScore(?E, ?Cr) ^ CiScore(?E, ?Ci) ^ hasValue(?Cr, 3) ^ hasValue(?Ci,
3) → TypeOfContract(?E, ?cm) ^ hasValue(?cm, TypeA*)

Rule.8.2 If the equipment criticality score is 3 and themaintenance cost impact is 2, then the type of contact is
Type A*
Equipment(?E) ^ CrScore(?E, ?Cr) ^ CiScore(?E, ?Ci) ^ hasValue(?Cr, 3) ^ hasValue(?Ci,
2) → TypeOfContract(?E, ?cm) ^ hasValue(?cm, TypeA*)

Rule.8.3 If equipment criticality score is 3 and maintenance cost impact is 1, then type of contact is Type A
Equipment(?E) ^ CrScore(?E, ?Cr) ^ CiScore(?E, ?Ci) ^ hasValue(?Cr, 3) ^ hasValue(?Ci,
1) → TypeOfContract(?E, ?cm) ^ hasValue(?cm, TypeA)

Rule.8.4 If the equipment criticality score is 2 and themaintenance cost impact is 3, then the type of contact is
Type B
Equipment(?E) ^ CrScore(?E, ?Cr) ^ CiScore(?E, ?Ci) ^ hasValue(?Cr, 2) ^ hasValue(?Ci,
3) → TypeOfContract(?E, ?cm) ^ hasValue(?cm, TypeC)

Rule.8.5 If equipment criticality score is 2 and maintenance cost impact is 2, then type of contact is Type B
Equipment(?E) ^ CrScore(?E, ?Cr) ^ CiScore(?E, ?Ci) ^ hasValue(?Cr, 2) ^ hasValue(?Ci,
2) → TypeOfContract(?E, ?cm) ^ hasValue(?cm, TypeC)

Rule.8.6 If the equipment criticality score is 2 and themaintenance cost impact is 1, then the type of contact is
Type C
Equipment(?E) ^ CrScore(?E, ?Cr) ^ CiScore(?E, ?Ci) ^ hasValue(?Cr, 2) ^ hasValue(?
Ci, → TypeOfContract(?E, ?cm) ^ hasValue(?cm, TypeC)

Rule.8.7 If the equipment criticality score is 1 and themaintenance cost impact is 3, then the type of contact is
Type C
Equipment(?E) ^ CrScore(?E, ?Cr) ^ CiScore(?E, ?Ci) ^ hasValue(?Cr, 1) ^ hasValue(?Ci,
3) → TypeOfContract(?E, ?cm) ^ hasValue(?cm, TypeC)

Rule.8.7 If the equipment criticality score is 1 and the maintenance cost impact is 2, then there is no
contracting (maintenance internalization)
Equipment(?E) ^ CrScore(?E, ?Cr) ^ CiScore(?E, ?Ci) ^ hasValue(?Cr, 1) ^ hasValue(?Ci,
2) → TypeOfContract(?E, ?cm) ^ hasValue(?cm, NoContract)

Rule.8.8 If the equipment criticality score is 1 and the maintenance cost impact is 1, then there is no
contracting (maintenance internalization)
Equipment(?E) ^ CrScore(?E, ?Cr) ^ CiScore(?E, ?Ci) ^ hasValue(?Cr, 1) ^ hasValue(?Ci,
1) → TypeOfContract(?E, ?cm) ^ hasValue(?cm, NoContract)

Source(s): Table created by authors
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impact on maintenance (the ratio among the device’s annual maintenance cost and the total
maintenance cost), where the latter is assessed using the rules listed in Table 12 beneath.

3.3 Information retrieval and query processing
After undergoinga consistency check usingHermit reasoner, the facts inferred to theknowledge
base from the model by the three modules previously described can be retrieved using SQWRL
queries. These queries allow the definition of various constraints for selecting and filtering
outputs, which ensures the extraction of useful information upon request. Table 13 describes
some of the SQWRL queries incorporated, covering the main functions of the model.

4. Implementation of the proposed system
4.1 Preview of the implemented model
The developed KBS is implemented within the UHC of Oran with the aim of testing its
applicability and efficiency inmaintenance management. For the sake of conciseness, 20 pieces
of equipment, belonging to different hospital departments, are considered for the study. The
selection of equipment is informed by the expertise of field specialists and is guided by insights

Assessment of the equipment impact on maintenance cost (CI) and its degree
Rule 8.1.1 If CI ≥ 9%, then the device gets a cost impact score of 3

Equipment(?E) ^ CostImpact(?E, ?CI) ^ CiScore(?E, ?Ci) ^ swrlb:greaterThanOrEqual(?CI,
0.09) → CiScore(?E, 3)

Rule 8.1.2 If the cost impact score is 3, then degree of the cost Impact is high
Equipment(?E) ^ CiScore(?E, 3) → hasStatut(?Ci, “high”)

Rule 8.1.3 If 5% ≤ CI < 9%, then the device gets a cost impact score of 2
Equipment(?E) ^ CostImpact(?E, ?CI) ^ CiScore(?E, ?Ci) ^ swrlb:greaterThanOrEqual(?CI, 0.05)^
swrlb:lessThan(?CI,0.09) → CiScore(?E, 2)

Rule.8.1.4 If the cost impact is 2, then degree of the cost impact is high
Equipment(?E) ^ CiScore(?E, 2) → hasStatut(?Ci, “medium”)

Rule 8.1.5 If CI < 5%, then the device gets a cost impact score of 1
Equipment(?E) ^ CostImpact(?E, ?CI) ^ CiScore(?E, ?Ci) ^ swrlb:lessThan(?CI,0.05)→CiScore(?E, 1)

Rule 8.1.6 If the cost impact is 1, then degree of the cost impact is low
Equipment(?E) ^ CiScore(?E, 1) → hasStatut(?Ci, “low”)

Source(s): Table created by authors

Rule 1 Selecting equipment with consideration over all criticality and inner criticality factors
Equipment(?E) ^ Criticality(?E, ?C) ^ Utilization(?E, ?ur) ^ EquipmntType(?E, ?t) ^ Function(?E, ?f) ^
Risk(?E, ?R)) ^ Age(?E, ?ag) → sqwrl:select(?E, ?C,?ur,?t, ?f, ?R, ?ag)

Rule 2 Selecting equipment with consideration of criticality and maintenance method
Method-Maintenance(?MM) ^ Equipment(?E) ^ hasMethod(?E, ?MM) ^ Criticality(?E, ?
C) → sqwrl:select(?E, ?C, ?MM)

Rule 3 Selecting equipment concerned with internal maintenance
Equipment(?E) ^ Criticality(?E, ?C) ^ TypeOfContract(?E,?cm) ^ hasValue(?cm,
“NoContract”) → sqwrl:select(?E, ?C, ?cm)

Rule 4 Selecting equipment concerned with external maintenance
Equipment(?E) ^ Criticality(?E, ?C) ^ TypeOfContract(?E,?cm) → sqwrl:select(?E, ?Cr, ?cm)

Rule 5 Selecting equipment with consideration of contract type, criticality and impact on maintenance cost
Equipment(?E) ^ Criticality(?E, ?C) ^ TypeOfContract(?E,?cm) ^ CostImpact(?E, ?CI))→ sqwrl:select(?E,
?C,?CI, ?cm)

Source(s): Table created by authors
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from internal maintenance reports, ensuring the creation of a representative and relevant
dataset, covering various scenarios, for testing and refinement purposes.

The process of implementing the model involves enriching the domain knowledge, which
is modeled by the ontology and expressed in OWL through case-specific data entry.
Subsequently, new facts are inferred to the knowledge base from the model through the
integrated SWRL rules, while SQWRL queries are employed to retrieve decision-support
recommendations and other pertinent information for management purposes. In this context,
domain knowledge is represented by concepts (or classes), relations and attributes, as
detailed in Section 2.1. Figure 9 illustrates an example introducing the subclasses of the
“Equipment” class, with the “Radiology-equipment” subclass highlighted alongside its
relations, while Figure 10 presents the associated domain knowledge expressed in OWL
language.

Figure 11 highlights the “CT_Scanner” as an instance of the “Radiology-equipment”
subclass and displays its properties, which are divided into data properties and object
properties.

Figure 9.
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and the associated

relations
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The object property assertions in Figure 11 reveal the equipment relations of which its
maintenance strategy is part (defined by the relation “has method”), while the data property
assertions regroup the equipment specifications (age, function, cost impact, etc.) along with
its respective evaluation scores (criticality, function score [FS], importance degree score, etc.)
calculated using the SWRL rules presented in the previous section. For example, the FS is
calculated using the equipment function specification as input, as indicated by the SWRL rule
2.1 (Figure 12).

The facts inferred from the model by the SWRL rules constitute together the outcome of
the integrated decision-support modules, which imply the assessment of the equipment
criticality, in addition to the assignment of maintenance strategies and the contracting
policies, accordingly. The relevant results can be retrieved for all the equipment using
SQWRL queries. Figure 13 demonstrates an example in which the calculated equipment
criticality values are retrieved alongwith the assignedmaintenance strategies, using SQWRL
rule 4.2.

By customizing the SQWRL queries, it is possible to retrieve other useful information as
well. Figure 14 demonstrates an example allowing to retrieve the equipment listed according
to several attributes including criticality, age, maintenance method (strategy) and the type of
applicable contract along with its validity period.

Figure 11.
Preview of the
properties of the
instance “CT_Scanner”

Figure 12.
Preview of the SWRL
rules allowing to
calculate the function
score with rule 2.1
highlighted

JQME
30,2

428



4.2 Integrated decision-support outcome
As previously described in section 2.2, the integrated decision-support modules of the system
cover criticality assessment, maintenance strategies assignment and maintenance
contracting policy selection. The obtained results in this context regarding the selected set
of equipment are retrieved using the SQWRL queries described in Table 13 and are
synthesized in Figure 15.

Figure 13.
Retrieval of criticality
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Figure 14.
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Figure 15 shows that 40% of the processed equipment is highly critical and should
therefore receive a TBM strategy, while another 40% is classified as having medium
criticality and should receive a CBM strategy. The remaining 20% is considered to have low
criticality and should therefore undergo CM. In terms of maintenance contracting policy
selection, the results indicate that 90% of the equipment should be externally maintained,
with 25% of the equipment under contract type A*, 35% under contract type B and 15%
under each of contract types A and C.

4.3 Validation of the system
To validate the system, multiple steps are taken. First, a reasoner-based evaluation is
conducted to verify the consistency of the internal categories and the SWRL rules and to
ensure that there are no conflicts among them. Additionally, the SQWRL queries are checked
to confirm that the attributes are correctly defined and that relevant information can be
retrieved. The Hermit reasoning plugin integrated into Prot�eg�e is used to automate this
process and no errors are found. The next step is an expert-based validation, which involves
communicating with hospital professionals who provide the knowledge required to design
the system, including maintenance and biomedical engineers, doctors, paramedics,
executives and department managers. Their feedback confirmed that the system meets
their requirements and is satisfactory. Additionally, they suggested further avenues to
develop its potential, which could be the subject of future work.

5. Conclusion
The development of an ontology-driven maintenance management system for medical
equipment presents significant potential in enhancing the maintenance processes of
healthcare facilities. The system’s ability to assess equipment criticality and assign
maintenance strategies and contracting policies has been shown to be effective through a
real-life case study. The system’s advantages, such as improved decision support, knowledge
sharing and seamless interoperability, underscore its added value to the medical field. The
validation process ensures that the system is accurate, consistent and effective inmeeting the
needs of hospital staff.

It is essential to highlight that various elements of the presentedmodel, including ontology
concepts, subclasses, relations and attributes, have been integrated but are currently not
employed within its decision-support workflow. These components have been included in the
knowledge base to allow using the system as an information portal and have the potential to
be leveraged in the future to provide decision support at new levels, whether within the
maintenance function (e.g., maintenance staff and inventory management) or the broader
realm of overall facility management (e.g., patients management and medical dispensation
delivery). This feature provides the model with significant potential for further development.

However, as the model evolves, there might be a need to address certain limitations by
integrating advanced techniques. For example, incorporating Blockchain can enhance
security, trust and data integrity, which is particularly beneficial for maintaining
confidentiality in aspects like contracts and patient data. Simultaneously, the IoT can
provide real-timemonitoring and automation for proactive management. The synergistic use
of these technologies can streamline supply chain processes, automate procurement and
enhance resource allocation, while also fostering decentralized collaboration and overall
interoperability. Additionally, integrating multicriteria decision-making techniques can
significantly improve decision support through a more rigorous data-processing approach.

Ultimately, this study demonstrates the potential of ontology-driven maintenance
management systems to optimize maintenance processes and enhance the quality of patient
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care in healthcare facilities. Further improvements can make it even more effective and
valuable in the healthcare industry.
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