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Abstract

Purpose –The purpose of this paper is to propose a systemdynamic simulated processmodel formaintenance
work management incorporating the Fourth Industrial Revolution (4IR) technologies.
Design/methodology/approach – The extant literature in physical assets maintenance depicts that poor
maintenance management is predominantly because of a lack of a clearly defined maintenance work
management process model, resulting in poor management of maintenance work. This paper solves this
complex phenomenon using a combination of conceptual process modeling and system dynamics simulation
incorporating 4IR technologies. A process for maintenance work management and its control actions on
scheduled maintenance tasks versus unscheduled maintenance tasks is modeled, replicating real-world
scenarios with a digital lens (4IR technologies) for predictive maintenance strategy.
Findings –Aprocess formaintenanceworkmanagement is thusmodeled and simulated as a dynamic system.
Post-model validation, this study reveals that the real-world maintenance work management process can be
replicated using system dynamics modeling. The impact analysis of 4IR technologies on maintenance work
management systems reveals that the implementation of 4IR technologies intensifies asset performance with
an overall gain of 27.46%, yielding the best maintenance index. This study further reveals that the benefits of
4IR technologies positively impact equipment defect predictability before failure, thereby yielding a predictive
maintenance strategy.
Research limitations/implications – The study focused on maintenance work management system
without the consideration of other subsystems such as cost of maintenance, production dynamics, and supply
chain management.
Practical implications – The maintenance real-world quantitative data is retrieved from two maintenance
departments from company A, for a period of 24 months, representing years 2017 and 2018. The maintenance
quantitative data retrieved represent six various types of equipment used at underground Mines. The
maintenance management qualitative data (Organizational documents) in maintenance management are
retrieved from companyA and company B. CompanyA is a global mining industry, and company B is a global
manufacturing industry. The reliability of the data used in the model validation have practical implications on
how maintenance work management system behaves with the benefit of 4IR technologies’ implementation.
Social implications – This research study yields an overall benefit in asset management, thereby
intensifying asset performance. The expected learnings are intended to benefit future research in the physical
asset management field of study and most important to the industry practitioners in physical asset
management.
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Originality/value – This paper provides for a model in which maintenance work and its dynamics is
systematically managed. Uncontrollable corrective maintenance work increases the complexity of the overall
maintenance work management. The use of a system dynamic model and simulation incorporating 4IR
technologies adds value on the maintenance work management effectiveness.

Keywords System dynamics, Process model, Predictive maintenance, Maintenance work management,

4IR technologies

Paper type Research paper

1. Introduction
The management of maintenance processes fosters a change from a functional orientation to
an orientation toward processes. Maintenance managers’ attitude in the early 1900s was “fix
when equipment breaks,” also known as corrective maintenance. Arguably, technology was
not in an advanced state, with no alternative for equipment defect elimination (Parida and
Kumar, 2006; Tsang, 2002). In the 1950–1980s, technology advanced, and maintenance
management was then considered a critical function for manufacturing and production.
Preventative maintenance through equipment condition monitoring changed the perception
of “fixwhen equipment breaks” to “maintenancework can be planned and controlled” (Parida
and Kumar, 2006; Tsang, 2002). In the 2000s, maintenance management is perceived as an
integral part of business strategy and processes, with the perception of “maintenance work
creates sustainable value,” and this reinforced a perception of planning and control of
maintenance work (Parida and Kumar, 2006; Tsang, 2002).

Maintenance management is an essential support function in organizations with
significant investments in physical assets and adds value to achieving organizational
goals. According to Parida and Kumar (2006), Al-Chalabi et al. (2014), and Vayenas and Peng
(2014), maintenance cost account for 12–23% of total operating costs in the manufacturing
industry, and 30 to 60% of total operating costs in the mechanized mining industry. Most
maintenance departments consist of up to 30% of total staffing in refineries (Parida and
Kumar, 2006; Tsang, 2002). The study by Parida and Kumar (2006) noted factors that are
driving demands on maintenance performance measures, namely, the value created by
maintenance, investment in maintenance justification, focus on knowledge management,
organizational structural changes, new trends in operation and maintenance strategy
adaption, and maintenance resource allocation revision. The study by O’connor and Kleyner
(2012) and Organ et al. (1997) suggests that production losses in the mining industry are
attributed to poor maintenance execution, resulting in equipment failures and excessive
mean time to repair.

The investment in maintenance discussed in the preceding paragraph is significant,
particularly in a changing environment because of advanced technologies. Nonetheless, the
challenges of manpower and equipment utilization in maintenance management remain
unresolved (Tsang, 2002). The expected value-adds from maintenance activities to company
profits are yet to be effective and efficient (Tsang, 2002). In addition to these challenges,
organizations still rely solely on the knowledge and skills of maintenance workers, and in line
with the study of Marwala (2013a, b) on rationality and decision-making, this phenomenon is
subjective, particularly in a high-production environment. As John D. Sterman states,
“Mental models in which the world is seen as a sequence of events and in which feedback,
nonlinearity, time delays, andmultiple consequences are lacking lead to poor performance when
elements of dynamic complexity are present” (Sterman, 2002). In a maintenance work
management system, a measure of planned work versus unplanned work is referred to as
maintenance mix or maintenance index, and according to several scholars, the best practice
maintenance index aims at 85%plannedwork versus 15%unplanned (PlannedMaintenance
Percentage; Ventana Systems, 2022). Nonetheless, most maintenance departments do not
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achieve this maintenance index, more so because of the complexity commonly encountered in
the context of maintenance work management.

The purpose of this research study is to investigate the impact of the dynamic behavior
maintenance management system’s variables, and the impact of advanced technologies on
the maintenance management system. This research study aims to predict the maintenance
work management system’s future behavior to answer or resolve challenges of maintenance
manpower subjectivity and utilization thereof. This research study further aims at yielding
overall value-add to business performance through an effective maintenance work
management system. This research study intends to serve as a novel extension (amongst
other objectives) to the body of knowledge in maintenance management.

The main objective of this research study is to answer the following research question:
How can an optimized maintenance work management system be modeled, simulated, and
validated to replicate a real-world optimized maintenance management system to foster
optimum internal business performance?

2. Literature review
This research study reviews literature in the field of maintenance, the applicability of 4IR
technologies, process modeling, and system dynamics modeling. Literature gaps are
highlighted for novel extension purposes.

2.1 Maintenance management
Maintenance management may simply be defined as a consolidation of technical,
administrative, activities and management measures during the operational phase of the
equipment life cycle to sustain that equipment’s intended function (Algabroun et al., 2022).
Maintenance management is a framework for maintenance work execution. Maintenance
management in most organizations has proven to be one of the most important aspects of
asset management due to its complexity, requirements, and widespread use in all equipment
employed for productivity (Naji et al., 2019).

Maintenance management remains a challenge as companies are presented with cost
reduction pressure (such as maintenance labor cost) and/or constraints to realize good profit
margins. Maintenance management system is a pivotal tool to ensure system’s availability
and reliability. Planning and scheduling processes are part of improving maintenance work
management performance (Palmer, 2013; Ismail, 2022). Maintenance managers require
decision-making tools and models to plan resources effectively and efficiently to support
physical assets. Effective planning and scheduling are viewed as part of the maintenance
work management process (Sedghi et al., 2021; Naji et al., 2019; Palmer, 2013).

Several scholars modelled different elements of maintenance management aiming at cost
reduction gains. Babaeimorad et al. used joint optimization approach to model the integrated
maintenance scheduling inventory policy adjustment (Babaeimorad et al., 2022).
Furthermore, the mathematical model of Babaeimorad et al. determined the inventory level
and preventive maintenance planning for a single equipment production system with
increasing random failures. The scholars highlight that decision-makers can minimize the
total operating cost using decision variables such as production capacity quantities,
maintenance costs, and machine failure distribution (Babaeimorad et al., 2022). Zul-Altfi
Ismail conducted a case study on the requirements of maintenance management systems to
improve ineffective maintenance management systems. Zul-Altfi Ismail’s study suggests
that conventional maintenance management methods lack defect diagnosis tools and
strategic decision-making for information analysis in maintenance-related project outcomes.
The proposed maintenance management system aimed at reducing the number of overhauls
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and repairs, thereby reducing cost (Ismail, 2022). Pant and Singhmodeled a system subjected
to random inspections with hidden failures (Pant and Singh, 2022). The study highlights the
determination of the system availability and long-run average cost rate. The optimal
inspection period is obtained thereby reducing costs (Pant and Singh, 2022).

2.1.1Maintenance strategies.A need for effective maintenance strategy that encompasses
planning and scheduling activities, and digital technologies (4IR technologies) in a volatile
environment is unavoidable. Cyber-Physical Systems (CPS) present the opportunity of
monitoring physical assets in real-time in support of a quick and effective decision-making
process (Sedghi et al., 2021; Tortorella et al., 2021; Zhe et al., 2016). Equipment data collection
and analytics opportunities have sparked an intelligent and objective way of maintenance
decision-making (Sedghi et al., 2021). A need for effective assetmanagement andmaintenance
best practices to foster critical success factors in safety, product quality, speed of innovation,
price, profitability, and reliable delivery (Naji et al., 2019; von Thun andMaier, 2004). The 4th
industrial revolution (4IR or Industry 4.0) is perceived as the answer to enhance and intensify
asset performance (von Thun and Maier, 2004).

One of the common challenges in the manufacturing industry is the optimization of
maintenance strategy that takes cost-effective initiatives into account as revealed by study
referenced in Spendla et al. (2017) and Naji et al. (2019). Maintenance strategies differ based on
the type of engineering equipment intended to be maintained (Kumral, 2009; Anderson and
Neri, 1990; Alabdulkarim et al., 2015). The following maintenance strategies are briefly
discussed as per the illustration in Figure 1:

(1) Corrective maintenance: This strategy is based on equipment failure and the
approach is “Fix when equipment breaks.” Figure 1 illustrates that repairs are either
executed immediately or deferred, resulting in a high cost of operation (Kumral, 2009;
Anderson and Neri, 1990; Alabdulkarim et al., 2015).

(2) Preventivemaintenance:This strategy is based on regular intervals of work execution
and the approach is “Work can be planned and controlled.” Figure 1 depicts
maintenance work based on equipment condition, proactive change-out of failing
components, design-out for reliability improvement, and reliability-centered
maintenance. Figure 1 further illustrates that the approach supports work
execution at regular intervals or time-based (Kumral, 2009; Anderson and Neri,
1990; Alabdulkarim et al., 2015).

(3) Predictive maintenance: The basis of this strategy is equipment condition,
effectiveness, and efficiency, and the approach is “planned and controlled
maintenance work creates sustainable value.” Figure 1 depicts that work is carried

Figure 1.
Maintenance strategy
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out based on equipment deteriorating condition, detected through online condition
monitoring. For equipment effectiveness and efficiency, the data analytics approach
is used to initiate maintenance work planning, control, and execution (Kumral, 2009;
Garc�ıa and Garc�ıa, 2019).

Basic interventions in the maintenance of any engineering equipment are corrective and
preventive. According to Anderson and Neri (1990), Alabdulkarim et al. (2015), and Zhe et al.
(2016), reliability-centered maintenance (RCM) is the optimum combination of corrective
maintenance, time or interval-based maintenance, and condition-based maintenance. The
study of Anderson and Neri (1990), Alabdulkarim et al. (2015), and Zhe et al. (2016) further
suggested that RCM is centered around equipment reliability through equipment failure
analysis or defect elimination, the consequence for safety and production, and the benefits of
preventative maintenance. Nonetheless, Garc�ıa and Garc�ıa (2019) suggested that the
maintenance strategy in the digital lens is predictive, as illustrated in Figure 1. Scholars
suggested that predictive maintenance reduces labor inefficiencies mainly because of
reduced work requirements from a labor force perspective. This includes performing online
inspections, where critical equipment condition is monitored online by 4IR technologies such
as the use of predictive algorithms, sensors, and equipment data analytics to yield best
practices in maintenance index (Planned Maintenance Percentage).

2.2 System time model for physical assets
The system’s time model assists in the maintenance work management process, particularly
when equipment is frequently taken down for both planned and unplanned maintenance
(scheduled and unscheduled maintenance or maintenance index) (Manenzhe, 2018). The
system time model is a systematic way of measuring the reliability of assets. In the digital
transformation lens, enabling industry 4.0 technologies such as cloud computing combined
with data analytics enables accurate measurements of asset reliability (Garc�ıa and Garc�ıa,
2019; Tortorella et al., 2021; Zhe et al., 2016).

Figure 2 represents some of the reasons why artisans’ actual time to perform a task
(wrench time) is low, suggested to be 3.5 h on a 10-h shift without the benefit of a planner
(Palmer, 2013). Figure 2 illustrates that there is time allocated for the preparation and/or delay
after the equipment is switched off before active maintenance time (wrench time or tool time)
and a further waiting and/or delay towards the end of the downtime (Ghani et al., 2012). The
time of failure in Figure 2 may also be viewed as the time to run down equipment for
scheduled maintenance.

Figure 2.
State of a system
time model
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2.3 4th industrial revolution
The past three industrial revolutions are characterized by the mechanization of
manufacturing and the use of a steam engine, mass production and the use of electrical
power, the use of electronics, information technology, and automation (Garc�ıa and Garc�ıa,
2019; Richardson et al., 2022). The Fourth Industrial Revolution (4IR) is characterized by a
combination of digital or cyber systems with physical systems. This combination produces
intelligent systems or “agents” that can autonomously perform activities that in the past were
primarily performed by humans (Balamurugan et al., 2019; Garc�ıa and Garc�ıa, 2019;
Tortorella et al., 2021).

In maintenance management, cyber-physical systems can be used to monitor equipment
conditions in real-time and eliminate equipment health status subjectivity, where for instance,
an artisan would have been required to perform regular inspections (Garc�ıa and Garc�ıa, 2019;
Tortorella et al., 2021; Vaidya et al., 2018).

Based on the abilities of industry 4.0 technologies and the study referenced in (Garc�ıa and
Garc�ıa, 2019), the operative level of maintenance management can mostly be supported by
these technologies as compared to tactical and strategic levels. Industry 4.0 technologies
support manufacturing processes, processing, and/or condition monitoring. Garc�ıa S.G. and
Garc�ıa M.G. (Garc�ıa and Garc�ıa, 2019) further argue that maintenance costs and system
availability, seen as maintenance targets, are impacted by industry 4.0 technologies.

2.3.1 4IR technologies applicability in maintenance. Industry 4.0 technologies are the basis
for the implementation of innovative maintenance strategies and foster the optimization of
existing maintenance practices. This yields an overall predictive maintenance strategy as
illustrated in Figure 1. Table 1 discusses the applicability of industry 4.0 technologies to
maintenance management.

Ref no. Industry 4.0 technologies Applicability in maintenance

Garc�ıa andGarc�ıa (2019), Tortorella
et al. (2021), Vaidya et al. (2018), Zhe
et al. (2016), Nordal and El-Thalji
(2021)

Cyber-Physical Systems (CPS)
(Embedded systems)

Links different coexisting equipment
and systems and the cyber
computational space

Garc�ıa andGarc�ıa (2019), Tortorella
et al. (2021), Vaidya et al. (2018)

Virtualization technologies
(Virtual Realities (VR) and
Augmented Realities (AR))

Offers better guidance for equipment
diagnostics and inspection

Garc�ıa andGarc�ıa (2019), Tortorella
et al. (2021), Vaidya et al. (2018)

Adaptive robotics Provides autonomy to equipment,
which in return fosters equipment
reliability

Garc�ıa andGarc�ıa (2019), Tortorella
et al. (2021), Vaidya et al. (2018), Zhe
et al. (2016), Nordal and El-Thalji
(2021)

Data analytics Schedule planning and prediction of
typical equipment life cycle stage

Garc�ıa andGarc�ıa (2019), Tortorella
et al. (2021), Vaidya et al. (2018)

Cloud computing Efficient monitoring of equipment
operating conditions

Garc�ıa andGarc�ıa (2019), Tortorella
et al. (2021), Vaidya et al. (2018)

Additive manufacturing Supports quick turnaround time for
customized spares that are required
for maintenance

Garc�ıa andGarc�ıa (2019), Tortorella
et al. (2021), Vaidya et al. (2018),
Nordal and El-Thalji (2021)

Internet of things (IoT) Mitigates waste resources in line with
maintenance, repairable, and
overhauls (MRO), leading to optimized
decision-making. Supports
maintenance scheduling and planning

Source(s): Created by authors

Table 1.
4IR technologies
applicability in
maintenance
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A combination of traditional maintenance management concepts with industry 4.0
technologies changes current maintenance practices. This complex phenomenon is in line
with digital transformation, in that these technologies reduce inefficiencies in maintenance
management (Garc�ıa and Garc�ıa, 2019; Tortorella et al., 2021). For this reason, maintenance
management requires an effective conceptualization of the process model. Industry 4.0
technologies enable machines to be elf-aware and self-learning. 4IR technologies improve
overall performance and maintenance management with the surrounding interaction (Garc�ıa
and Garc�ıa, 2019; Tortorella et al., 2021). Maintenance driven by Industry 4.0 technologies is
gaining popularity as Maintenance 4.0 (Tortorella et al., 2021).

Wesley Richardson et al. modeled a business process management for predictive
maintenance and remote monitoring with 4IR technologies implementation. The study
suggests how IoT sensors, IoT cloud, and business process management notation can benefit
remote and rural areas (Richardson et al., 2022). Hatem Algabroun et al. developed a concept
for digital maintenance through 4IR technologies (Algabroun et al., 2022). Acernese et al.
describe a model for developing a condition-based maintenance strategy through the
adaption of empirical and machine learning-based models for comparison purposes
(Acernese et al., 2021). The study reveals that the proposed predictive models support the
maintenance team in equipment shutdowns through a reliable decision system (Acernese
et al., 2021).

2.4 Business process modeling in maintenance
A business process may simply be perceived as a logical and systematic way of working
activities to achieve sustainable results, through a logical organization of people, equipment,
energy, materials, and procedures (Zakarian and Kusiak, 2000; Entringer et al., 2019; De
Nicola et al., 2007). A business process can be divided into three categories, namely, managing
process focusing on strategy and direction setting to enhance business planning and control,
operating process focusing on work execution, and supporting process mainly for support of
bothmanaging and operating processes. Themaintenance workmanagement process can be
pinned from a point of the operating process. A flow chart is defined as a graphic presentation
of the manufacturing process, program logic sequence, and/or organization chart (Cheng and
Chiu, 2004; Zakarian and Kusiak, 2000).

Flow charts are characterized by flexibility and communication ability (De Nicola et al.,
2007; Cheng and Chiu, 2004). Although there are various modeling techniques such as data
flow diagrams, action diagrams, role interaction diagrams, and colored Petri-net, this study
aims at using flow charts to develop a maintenance work Management process model based
on its simplicity and fit for purpose for the intended process model.

The work of Ghani et al. (2012) outlines the maintenance management process in two parts:
strategy with objectives as input from a business plan. The maintenance management process
can beused to determine the effectiveness of its department. The secondpart of themaintenance
management process is the implementation of the maintenance strategy. The study of Ghani
et al. (2012) further highlighted that processmodeling ofmaintenancemanagement is critical for
determining both efficiency and effectiveness within a maintenance department.

There is a need to develop a process that is dynamically tested (system behavior testing) using
empirically supported evidence and/or real-world data (organizational documents) and from
literature findings particularly in maintenance management (Sterman et al., 2015; Ghani
et al., 2012).

2.5 System dynamics: system thinking tool
Systems thinking is used for identifying interrelationships to determine patterns of change.
In system thinking literature, systems thinking is explained as the understanding of a system
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and is the ability to determine how subsystems work together as one system (Mella and
Gazzola, 2019). Most of the decision-makers in operations systems are boundedly rational,
and at times irrational, influenced by stress levels and emotions, omitting interactions for
system behavior and most feedback (Sterman, 2002; Marwala, 2013a, b; Sterman et al., 2015).

Systems thinking is an effective tool for problem investigation, modeling, and
simulating the dynamics of systems such as maintenance work management (Sterman,
2002). System dynamics (SD) modeling and simulation process consist of five stages,
namely, problem identification and definition, system conceptualization, model
formulation, model testing and evaluation, and policy analysis and design (Mella and
Gazzola, 2019). SD represent the behavior of a system based on its structure. SD model
encompasses feedback loops, stocks and flows, and nonlinearities because of the
interaction between the physical and institutional structure of the model with the decision-
making processes of the agents acting within a system (Sterman, 2002; Forrester, 2009;
Sterman et al., 2015). System dynamics, therefore, have commonalities with models in
traditional operation behavior (Sterman et al., 2015).

According to Sterman et al. (2015), SD have been used in project management, supply
chain management, and human resources, process management, and the dynamics of
improvement. This research study is in line with process management and the dynamics of
improvement. The study of Sterman et al. (2015) suggests that scholars and practitioners
are challenged in operations management because of challenges of continuous
improvement. The role of workloads motivation is examined by several scholars using
system dynamics according to Sterman et al. (2015). Scholars empirically identified (using
system dynamics) nonlinear relationships between workload and performance over
extended time in the context of quality improvement (Sterman et al., 2015). In line with this
research study, (Sterman et al., 2015) further outlines that SD is used to determine a major
line of work on capability traps in oil and chemical industries with an observation to
reinforcing dynamics on short-run pressure to drive work output and found to lead to
longer hours, taking short cuts, less maintenance, and bad safety record. The study
referenced in Ghani et al. (2012) used SD modeling to evaluate maintenance work
outsourcing and analyzed outsourcing profitability.

2.5.1 Maintenance-related system dynamics modeling and identified gaps. Maintenance-
related SD modeling is limited in the literature, yet maintenance system dynamics are
complex to solve with just a subjective model alone. Various scholars referenced in Table 2
predominantly covered maintenance-related SD conceptualization with little on model
simulation and real-world scenario replication. The study of Ensafi and Thabet (2021)
unpacks challenges that are faced by maintenance staff at large. According to Ensafi and
Thabet, the following areas are gaps in the maintenance SD modeling (Ensafi and
Thabet, 2021):

(1) Prioritization of work and schedule creation are two key areas of concern; and

(2) There is no effective approach for performing works orders processing through a
dynamic behavioral simulation model.

Most scholars modeled maintenance systems using SD with little work on model validation
using a calibration approach, wherein system optimization payoff is defined to replicate real-
world scenarios. One such study used SD modeling to analyze the productivity of
maintenance systems (Esmaeili et al., 2019). Fang and Zhaodong used system dynamics
simulation on corrective maintenance costs of aviation equipment with little model validation
(Fang and Zhaodong, 2015). Khorshidi and Ibrahim observed RCMusing SDwith little model
validation (Khorshidi et al., 2015). The study of Jokinen and Yl�en focused on modeling
maintenance strategies of a generic plant with different performance measures, and
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sensitivity analysis; nonetheless, little is done on the payoff optimization for model validation
(Jokinen and Yl�en, 2007). Hosseinzadeh et al. focused on sustainable maintenance planning in
the petroleum industry using SD modeling with the aim to reduce equipment downtime. The
study categorized individual policies into three groups, namely, economic, social, and
environmental (Hosseinzadeh et al., 2023). Asim Tokgoz et al. modeled airline maintenance,
repairable and overhauls (MRO) operations using system dynamics approach to analyze
decision scenarios (Tokg€oz et al., 2018). The study suggests that MRO operations have a
direct impact on the availability of aircraft fleet (Tokg€oz et al., 2018).

The extant literature is limited on the impact of themaintenance workmanagementmodel
incorporating 4IR technologies using system dynamics modeling particularly when its model
validation considers more than just one equipment type to set the optimization payoff.

This research study is a novel extension to the body of knowledge in the field of asset
management (maintenance work management) and system dynamics model validation of
maintenance management. The expected learnings are intended to benefit future research in
the physical asset management field of study and most important to the industry using
physical and maintainable assets.

Table 2 illustrates recommended and/or used system dynamics modeling in the field of
maintenance found in the reviewed extant literature.

The extant literature highlighted in Table 2 predominantly covers system dynamics
causal loop diagram and to an extent stock and flows diagram. This study extends on the
work previously done by the scholars referenced in Table 2, thereby covering both process
flow and system dynamic modeling and simulation of the maintenance work management
model, particularly in the context of 4IR.

3. Research method
To guide this research study in the direction of fulfilling the research team’s objectives, the
researchmethod used is mixed (both qualitative and quantitative modeling), incorporating both
process and SDmodeling (Malina et al., 2011). Chitongo andPretorius (2018), Tokg€oz et al. (2018),
and Hosseinzadeh et al. (2023) successfully usedmixed method incorporating system dynamics
modeling to model projects execution dynamic behavior, airline MRO operations, and

Maintenance variable Used and/or recommended by

Maintenance cost Liu Fang, Huang Zhaodong (2014)
Reliability of maintenance Pegah Basirat, Hamed Fazlollahtabar (2010)
Green Maintenance Index Sajad Kazemi (2013)
Improving maintenance
operations

Jacqueline Ming-Shaih Ye (2007)

Reliability based decision-
making

AkhsaniMF, Yuniato MN (2021) and J. Krogstie, Rudolph Brynn, Ahmed
Abdeltawab Abdelgawad (2013)

Maintenance strategies Tero Jokinen, Jean-Peter Ylen (2007)
Maintenance delay Leandro Rosales, Jian-Bo Yang, Yu-Wang Chen (2014)
Added value of
maintenance

Tero Jokinen, Peter Ylen, Jouni Pyotsia (2011)

Condition-based
maintenance

Bjarne Brgquist, Peter Soderholm

Maintenance downtime Thanapun Prasertrungruang, B.H.W. Hadikusumo (2008)
OEE Ali zauashkan, Hazhir Rahmandad, Andrew K.S. Jardine (2011)
Preventive Maintenance Jorn Henrick Thun (2009)

Source(s): Created by authors

Table 2.
System dynamics
modeling in
maintenance subject
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sustainability maintenance planning respectively. Qualitative modeling encompasses non-
numerical data from literature findings and empirical information retrieved from companies,
required for considerations in the provisional model formulation (Borrego et al., 2009). On the
other hand, quantitative modeling and simulation encompass numerical data from literature
findings and retrieved data from companies required for considerations in the provisionalmodel
formulation and validation (Borrego et al., 2009).

Different approaches other than SD modeling could be used to model system dynamic
behavior such as Agent-BasedModeling (ABM). Several scholars have used ABM for modeling
maintenance management-related systems. The study of Assaad et al. used ABM in optimizing
maintenance strategies for a network of green infrastructure. The study of Lee et al. used ABM
in analyzing emerging challenges for aircraft predictive maintenance. These studies represent
ABM as a computational simulation approach where agents interact with one another and the
environment with specified rules (Assaad et al., 2023; Lee et al., 2023).

SDmodeling andABMare themost prominent approaches inmodeling nonlinear systems
(Macal, 2010). Light-sights systems that produce similar results on SD modeling and ABM
(Macal, 2010). This research study adapts SD modeling because of its emphasis on the
importance of feedback effects on net stock levels as determinants of system behavior (Macal,
2010; Sterman, 2002).

3.1 Research technique: process modeling and simulation
Research methods are reinforced by techniques and/or step-by-step procedures on how each
research question is answered (Borrego et al., 2009). In this research study, the mixed method is
reinforced by process modeling and simulation. Data is collected from current best practices in
maintenance work management systems, captured from a combination of literature findings
and two companies’ documents inmaintenanceworkmanagement, andusing systems thinking.
In conceptual modeling terminology (qualitative modeling), this research study captures
relevant data from literature findings and empirical observation (reviewed from organizational
documents in maintenance work management), where for instance a subjective model could
have been used particularly in maintenance work management (Martinez-Moyano and
Richardson, 2013; Sterman, 2002; Chitongo and Pretorius, 2018). For this research study, two
steps reinforcing the research method are discussed below.

Step 1: formulates a process model for maintenance work management (qualitative
modeling) using Microsoft Visio as part of a subjective model caption to an extent
recommended by Sterman (2002) and Martinez-Moyano and Richardson (2013). This
model formulation captures key findings from literature and information from company
documents to systematically address a way to effectively manage maintenance work to
support overall gain in asset management and performance. According to Sterman (2002),
Martinez-Moyano and Richardson (2013), Forrester (2009), unless the process model is
simulated and validated, that model is considered subjective.

Step 2: formulates a Stock and flow diagram (quantitative modeling) using Vensim DSS to
examine the dynamics of a system (maintenance work management) and analyze the
effects of state variables together with flows, also recommended by Sterman (2002) and
Martinez-Moyano and Richardson (2013).

This technique corroborates with five stages of system dynamics modeling suggested by
Sterman (2002), Martinez-Moyano and Richardson (2013), Chitongo and Pretorius (2018),
Forrester (2009):

(1) Problem identification and definition;

(2) System conceptualization;
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(3) Model formulation;

(4) Model testing and validation; and

(5) Policy analysis and design.

This research study technique follows the first four stages (mentioned above) of system
dynamics modeling incorporated in the system modeling of the maintenance work
management process. The four stages considered for this research study are discussed below:

Stage 1: reviews (using critical thinking) existing literature and company documents to
identify key elements affecting variables in maintenance work management;

Stage 2: captures concepts of maintenance work management from a combination of
literature review and empirical observation (on company documents) and using system
thinking, and conceptually models a maintenance work management process (system
conceptualization);

Stage 3:makes use of Vensim DSS software to develop stock and flow diagram for model
formulation with a lens to 4IR technologies identified as part of literature findings to
formulate the provisional model; and

Stage 4: uses real-world data for model validation using calibration techniques and
analysis on the impact made by 4IR technologies in the maintenance work management
model on Vensim DSS software.

Figure 3 presents both qualitative data/information collection and quantitative data
collection methods. Figure 3 illustrates a systematic research method process flow (summary
of preceding paragraphs) depicting data collection for mixed method (both qualitative and
quantitative) modeling.

3.2 Research data collection overview: triangulation
The term triangulation is first used by Denzin in 1978; Denzin outlined using complementary
methods or data sources to offset weaknesses amongst data sources (Borrego et al., 2009).

Figure 4 outlines data sources for this research study, aiming at triangulating between the
literature reviewed, retrieved organizational documents addressing business processes, and
real-world maintenance data both in maintenance work management to offset weaknesses,
particularly in model validation (Forrester, 2009; Borrego et al., 2009). The data sources
referred to in Figure 4 are used either as a combination and/or individually for process model
and simulation formulation and system behavior analysis. The maintenance real-world
quantitative data is retrieved from twomaintenance departments from companyA, both for a
period of 24 months, representing years 2017 and 2018. The maintenance quantitative data
retrieved represent six various types of equipment used at underground Mines. The
maintenance management qualitative data (organizational documents) in maintenance
management are retrieved from company A and company B. Company A is a global mining
industry, and company B is a global manufacturing industry.

4. Research study findings and formulation of provisional maintenance work
management process
Research study findings for the maintenance work management process and dynamic
behavior amongst its key elements/variables and relationship analysis to effects of decisions
within the maintenance work management process are modeled (Sterman, 2002; Martinez-
Moyano and Richardson, 2013). Findings from the literature reviewed and empirically
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supporting organizational documents in maintenance management using systems thinking
are discussed. Relationships between key variables within the maintenance work
management process are outlined.

4.1 Maintenance work management process model overview
Figure 5 represents formulated maintenance work management conceptual process flow
using Microsoft Visio from a combination of literature findings and organization documents.
Figure 5 outlines that for anymaintenancework to be executed, identification and approval of
that work is the initial step, this is conducted to prioritize work that is critical over work that

Figure 3.
Research method

process flow

Figure 4.
Data sources for
modeling of this
research study
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may be executed in the next maintenance window, thereafter, step by step on how a task
should be executed, a good way to benchmark on this is through maintenance manuals
supplied by the original equipment manufacturer, in digital technologies context, cloud
computing can accelerate this step. Thirdly, detailed planning commences with a lens on the
specification of tools, special skills required, and any additional time or cost that would be
required. Once the work is effectively planned, a schedule can be drafted covering at least
5–7 weeks of the forecast.

Nowork can be completed without the required resources as specified in the panning step,
work resourcing aims at the effective acquisition of these resources to eliminate time wastage
on the day of execution, this research study suggests that tool time or wrench time for
artisans is mainly affected by upfront preparations and/or delays just before task execution
(Ghani et al., 2012), such delays include but not limited to the acquisition of tools or parts on
the day of work execution. Work may effectively be executed with a minimal safety risk, and
in this study, it is also found that detailed plannedwork yields safe and quality execution. The
findings of this research study suggest that breakdown work may not be executed through
WIA toWSR. These tasks move fromWIA toWE and hence a maintenance index of 85/15 is
critical. In simpler terms, minimization of unscheduled downtime supports unnecessary time
wastage reduction. In the 4IR, the maintenance strategy is predictive. 4IR technologies yield
an overall best practice maintenance mix, and more tasks are performed as planned work
than unplanned work.

Figure 5.
Overall maintenance
work management
process flow
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The next subsections discuss each step of the maintenance work management process as
per Figure 5. Sections 4.2 and 4.3 discuss work identification and approval and task planning
execution with respective formulated process model flow diagrams, as an example of how
each step as per Figure 5 is modeled. Sections 4.4 to 4.7 discussions are without respective
formulated process models and hence Figure 5 is used as a reference point.

4.2 Work identification and approval (WIA)
Figure 5 represented an overall formulated maintenance work management process model,
illustrating both steps fromWIA toWEoverview, and is based on findings from data sources
presented in Figure 4. Figure 6 illustrates details of the first step (Work Identification and
Approval). In line with Figure 6, any maintenance task to be performed, and in line with
equipment inspection, task identification and approval as an initial step are crucial for
validation of that task allocation. In Figure 6, work identification is seen as an activity
predominantly captured by online condition monitoring using online sensors such as
vibration, temperature, etc. (4IR support). Furthermore, Virtualization technologies are seen
as another 4IR technology that can be employed for the effective handling of equipment
parameters as presented in Table 1 of this journal.

Figure 6.
Work identification
and approval (WIA)

process flow
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Visualization technologies can inform the prediction of the exact time for ad hoc maintenance
activity before equipment failure at the most opportune time for that equipment restoration.
The findings of this research study suggest that should work be triggered by these 4IR
technologies, an interface between these technologies and Computerized Maintenance
Management System (CMMS) be implemented to support the automatic creation of work/task
notification (Raouf et al., 1993; Garc�ıa and Garc�ıa, 2019; Tortorella et al., 2021). Based on the
criteria set (i.e., Priority 1 tasks for illustrate stopper equipment and safety-related equipment,
and Priority 2 for the second type of equipment), the system can be equipped with a tool for
task/notification validation with a lens on labor compliment for that equipment.

In maintenance work management literature, there is evidence of some ineffective
maintenance work management because of failure to categorize tasks thereby misusing
human resources (also suggested by (Ensafi and Thabet, 2021)). Thus, themaintenance index
(85/15 best practice) is somewhat to be desired in the industry. For tasks accepted through
notification validation, the system can use data analytics technique to classify whether that
notification constitute emergency work or not. Emergency work is seen as either breakdown
work or health, safety, or environment threat avoidance or mitigation. This approach
discussed herein is centered around cyber-physical systems (4IR enabling technology)
(Garc�ıa and Garc�ıa, 2019). Figure 6 is a graphical representation of Work Identification and
Approval.

4.3 Task planning execution (TPE)
Figure 7 unpacks the process developed for task planning execution. It starts with a need for
defect elimination, which could be achieved through failure mode and effects analysis
(FMEA) or failure mode, effects, and criticality analysis (FMECA). These processes assist in
identifying potential problems that can occur and the effects thereof on the system. Secondly,
for tasks required but no functional location is registered on the CMMS, the execution of
maintenance tactics can only be done after such functional location is registered. Thereafter,
system identifies tasks steps required for the task initiated; in the 4IR context, this is known
as data mining through cloud computing. To put this into context, a similar task can be
executed in one of the sister operations. Architecturally, there is a need for the information
hub/data hub to reduce time wastage on developing tactics that already exist.

A high-level determination of labor requirements, time estimation, and potential delays
can be specified. If functional location is registered in the CMMS, assets can be registered and
confirmation of maintenance strategy, task tactics, and the approval thereof can then be
executed, this includes additional changes to maintenance tactics (Palmer, 2013).

4.4 Work planning (WP)
The work planning step begins with scoping the work, addressing the maintenance task list,
and required resources, and matching that against cost. Planned work can only be approved
as such if the following criterion is met; the works order needs to be compiled and well
understood by the executor, the upper-cost limit needs to be known and approved by the cost
center owner, the specification of resources such as special tools, required tradesman and the
specification of cranage.

As an example, consider three artisans working without the benefit of work planning, in a
high-production environment. According to Palmer (2013), (a maintenance management
handbook), combined productivity is equivalent to one artisan working without any time
wastage.

i.e. 3 3 35% 5 105% total productivity (Without planning).
One planner, two artisans: 1 3 0% þ 2 3 55% 5 110%
Ratio planner to artisans (1:20–30 artisans).
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Figure 7.
Task planning

execution (TPE)
process flow
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Therefore, 55%/35% 5 1.57 (This is a 57% improvement).
Thus, 30 artisans X1.57 5 47 artisans.
The example above represents the importance of work planning, reinforcing that at least

85% of work should be executed under scheduled work conditions.

4.5 Work scheduling (WS)
Work can only be scheduled once the plan is confirmed by both the maintenance and
production departments. The findings of this research study suggest that a schedule
should cover at least four weeks to allow the effective use of human resources, in this case,
prioritization takes precedence. In the context of 4IR, data analytics and the Internet of
things can assist in adequately predicting critical tasks that should be executed first.

4.6 Work resourcing (WR)
This research study found in the literature that an artisan’s tool time in a 10-h shift is only
3.5 h, this is due to ineffective planning leading to failure to specify resources required for the
task, this section looks at mitigating some of the time that can be wasted during execution
stage (known as time optimization) (Palmer, 2013).

Artisans spend more time looking for spares, and special tools and figuring out how to
execute the task adequately. This study proposes a need for work resourcing so that all
required resources are acquired beforehand thereby eliminating time wastage, particularly
when executing tasks.

4.7 Work execution (WE)
There is great emphasis in the literature in line with maintenance activities that, the right
work should be done at the right time, by the right skilled person the right way. This can only
be achieved should WIA to WR discussed in preceding subsections are executed effectively.
Nonetheless, this study considers emergency work as any work emanating from a
breakdown or deterioration of any health and safety equipment. Such work need not be taken
throughWIA toWR due to the requirement of restoring that equipment timely. In this study
and according to the literature (Planned Maintenance Percentage), such work should not
exceed 15% of the total work.

The next section discusses the dynamic behavior of the maintenance system
incorporating the formulated maintenance work management process using system
dynamics modeling and simulation. Forrester suggested that the system dynamics model’s
source of information must consider available databases from any institution, including
modeled business processes just like the process model in this research study by
Forrester (2009).

5. System dynamics quantitative modeling and simulation
5.1 Model formulation and simulation overview
This section converts the formulated qualitative maintenance work management formulated
model in the preceding section to a quantitative system dynamics model. The conceptual
model developed and represented in Figure 5 consists of six steps, namely, work
identification and approval, task planning execution, work planning, work scheduling,
work resourcing, andwork execution. These steps are converted to a quantitative model with
unintended effects and incorporating 4IR technologies.

5.1.1 System dynamics modeling and simulation motivation for this research study. The
dynamic behavior of the maintenance work management system incorporating the
formulated maintenance work management process discussed in the preceding section
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requires simulations. SD simulation is helpful to test the dynamic behavior of any system
model. According to Sterman (2002), Martinez-Moyano and Richardson (2013), and
Forrester (2009), a system model without any dynamics behavioral testing remains
rationally bounded. This means that most decision-makers in operations systems are
boundedly rational, influenced by stress levels and emotions, omitting interactions for
system behavior and most feedback (Sterman, 2002; Marwala, 2013a, b; Sterman et al.,
2015). To mitigate bounded rationality, system dynamics can play a huge role in modeling
system behavioral dynamics within the formulated business process model in
maintenance management. SD present to an extent a flexibly bounded rational decision-
making in that an element of future behavioral prediction can be simulated (Sterman, 2002;
Martinez-Moyano and Richardson, 2013; Marwala, 2013a, b).

Figure 6 illustrates the formulated SD simulation model of the maintenance work
management process (maintenance work management controls) and associated unintended
effects, using Vensim DSS software incorporating WIA to WE as discussed in the preceding
sections. The simulation uses stock and flow diagrams with feedback loops and is equipped
with specified mathematical equations. These equations assist in ensuring dimensional
consistency and depicts relationships amongst all variables, and initial conditions are
specified as recommended by Sterman (2002), Martinez-Moyano and Richardson (2013), and
Forrester (2009). This simulation intends to first understand the dynamics within a
maintenance work management system. The graphical visualization of the quantitative
model used is like the recommendation of Sterman (2002), Martinez-Moyano and Richardson
(2013), and Forrester (2009).

5.1.2Model simulation subscripts.The use of subscripts in VensimDSS software assists in
model validation using multiple types of equipment rather than having multiple models for
each equipment type. This research study uses subscripts for model validation
encompassing six types of equipment. Subscripts also cater to a single variable to
represent multiple and different equipment types (Ventana Systems, 2022).

This research study uses subscripts on model equations named “Maintenance,” each
equipment type is assigned a code, M1 toM6 for six equipment types in themodel simulation.
Once the “Maintenance” subscript is set for the equipment type variable, Vensim DSS
software automatically appends the subscript in the square bracket to each variable used in
model equations. Equation (1) is an illustration of subscripted model variables and/or
parameters:

PM Tasks Planning½Maintenance� ¼ INTEG ðplanning½Maintenance�
� scheduling½Maintenance�; 50 (1)

where:

INTEG is an integral function; and
[Maintenance] represents that the variable or parameter is subscripted.

5.1.3 Microsoft Excel for imported data illustration. The data acquired for both equipment for
this research study is captured, cleansed, and repackaged in a Microsoft Excel file named
“data.xlsx”. This research study uses Vensim DSS software functions to read data parameters
from the “data.xlsx” Microsoft Excel file presented in Table 3 for model simulation (Ventana
Systems, 2022). The Microsoft Excel data file in Table 3 serves as an example of data
arrangement for readability in Vensim DSS software and covers the first 9 months out of
24 months of the time series used.
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5.2 System dynamics model formulation
Figure 8 is a graphical illustration of a stock and flow diagram (SFD), representing discrete
events for maintenance tasks processed through the formulated maintenance work
management process. For preventative tasks, programmed works orders, condition
monitoring, and inspections are viewed as the drivers for work identification. This follows
through to a point where tasks are executedwith a definedmaintenance department capacity.
In SD terms, identified and approved tasks are seen as stock accumulation reinforced by
inspections, condition monitoring, and programmed works orders (reinforcing loop).
Activities in the planning phase, resourcing, scheduling, and task execution balance or
deplete identified and approved tasks (balancing loop) (Sterman, 2002). The model conforms
with extant literature in that it allocates one planner per 20 artisans with a wrenching time of

Time (Month) 1 2 3 4 5 6 7 8 9

Maintenance Index [M1] 86 79 83 97 85 99 99 82 72
Maintenance Index [M2] 80 86 93 91 95 88 91 87 92
Maintenance Index [M3] 71 18 93 83 92 75 98 65 84
Maintenance Index [M4] 94 99 96 84 98 95 100 92 96
Maintenance Index [M5] 98 99 95 100 64 78 75 96 98
Maintenance Index [M6] 93 93 92 91 91 93 94 97 96
CM Tasks in Execution [M1] 10 12 20 3 16 11 12 6 13
CM Tasks in Execution [M2] 11 17 7 4 3 3 5 3 4
CM Tasks in Execution [M3] 1 7 2 2 2 6 1 9 4
CM Tasks in Execution [M4] 1 2 1 2 2 2 1 2 2
CM Tasks in Execution [M5] 3 1 4 1 9 10 5 2 2
CM Tasks in Execution [M6] 49 41 38 40 64 43 54 15 25
Maintenance availability [M1] 600 507 403 306 394 372 423 398 383
Maintenance availability [M2] 556 527 643 481 590 608 647 625 590
Maintenance availability [M3] 598 532 430 323 388 407 413 412 399
Maintenance availability [M4] 550 510 413 316 395 381 432 404 388
Maintenance availability [M5] 610 502 412 317 390 374 431 399 384
Maintenance availability [M6] 608 499 391 301 361 372 398 349 385

Source(s): Created by authors

Figure 8.
Formulated system
dynamics simulation

Table 3.
Imported Microsoft
excel data file
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3.5 h per 9-h shift (Palmer, 2013), allowing tasks identified to undergo planning and
scheduling processes.

In Figure 8, although tasks identified in any givenmonthmay exceed the work capacity in
the maintenance department in that month, the only tasks that can be planned by the
maintenance department capacity at a level of planning and scheduling. Furthermore,
prioritization for tasks to be planned is given to critical equipment and that on its present
subjectivitywithout the benefit of 4IR technologies. Unintendedly, some of these critical tasks
are omitted and end up resulting in a breakdown, and dynamically reinforcing corrective
maintenance tasks in execution (reinforcing loop). Subsequently, tasks that are left out in the
planning phase due to capacity constraints and that have resulted in breakdowns
unintendedly impact the intended maintenance mix negatively. Another unintended effect
resulting from tasks that are omitted in the planning phase due to constraints increases the
maintenance backlog as per the illustration in Figure 8. Table 4 encompasses key
mathematical model equations for the formulated system dynamics simulation with
subscripts “[Maintenance]”.

Figure 8 is a partial representation of the system dynamics model structure, with
mathematical formulas presented in Table 4. In Figure 8, no 4IR technologies have been
implemented, and simulations and system behavior are executed as the first step for analysis.

To control the complex phenomenon discussed in the preceding paragraph, the second part
of the formulatedmodel in Figure 9 incorporates 4IR technologies as a balancing loop for critical
assets. The study referenced in Garc�ıa andGarc�ıa (2019) suggested that virtual reality (VR) and
augmented reality (AR) offer a unique opportunity in critical asset inspections to detect defects
and adapted as such in this research study. This alleviates time spent by artisans on the
inspection with overall gain to hands-on tasks rather than on inspections. Another subjectivity
is observed particularly when artisans are to judge whether a defect requires work to be
executed timeously. Using cyber-physical systems (CPS), equipment deterioration or
degradation is detected, analyzed (using data analytics), planned, and scheduled digitally and
in real-time without human intervention as per Figures 5 and 7 (recommended by (Tortorella
et al., 2021)). Digital planning and scheduling add to tasks that are planned and scheduled

Variable/parameter Formulations/Equations Units

Planning[Maintenance] Planning 5 MIN(PM Tasks Identified and Approved
[Maintenance]/Planning time[Maintenance],
“Plannersandresourcer capacity[Maintenance]”)

Task/Month

scheduling[Maintenance] Schedule confirmation 5 MIN(confirmation capacity
[Maintenance], PM Tasks Scheduling[Maintenance]/minimum
confirmation time[Maintenance])

Task/Month

PM Tasks Scheduling
[Maintenance]

Schedule confirmation 5 MIN(confirmation capacity
[Maintenance], PM Tasks Scheduling[Maintenance]/minimum
confirmation time[Maintenance])

Task/Month

PM in execution
[Maintenance]

PM in execution 5 MIN(PM artisan capacity[Maintenance],
PM Tasks Ready for Execution[Maintenance]/plan
[Maintenance])

Task/Month

Completed BD
[Maintenance]

Completed BD 5 MIN(CM artisan capacity[Maintenance],
(CM Tasks in Execution[Maintenance]/MTTR[Maintenance])

Task/Month

PM Tasks Completed
[Maintenance]

PM Tasks Completed5 INTEG (PM in execution[Maintenance],
PM Tasks Ready for Execution[Maintenance])

Task

DA tasks out (data
analytics tasks-auto
planning) [Maintenance]

DA tasks Out 5 Tasks Data Analytics in scheduling and
planning[Maintenance]*digital system planning and scheduling
rate[Maintenance]

Task/Month

Source(s): Created by authors

Table 4.
Key mathematical
model equations
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manually for assets not deemed critical. Table 4 details mathematical equations used for key
stocks and flows represented in Figures 8 and 9.

Figure 10 is a graphical representation of the overall model for maintenance work
management (a combination of Figures 8 and 9).

6. Systemdynamicsmodel validation ofmaintenanceworkmanagement process
SDmodel Validation compares model behavior to time series data collected in the real world. The
system dynamics simulation model incorporated key subsystems: maintenance work
management process (WIA to WE) following the discrete event from task identification to

Figure 9.
Formulated system
dynamics simulation

Figure 10.
Formulated overall
system dynamics
simulation
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execution, with its unintended effect, looked at as maintenance backlog, maintenance availability
controls, and maintenance index controls with close view on corrective maintenance tasks in
execution.

6.1 Model validation and testing overview
Figure 11 is an overview of this research study model validation and testing. Step 1 involves
importing real-world data from a Microsoft Excel data file named “data.xlsx” to Vensim DSS
software (Sterman, 2002; Ventana Systems, 2022; Martinez-Moyano and Richardson, 2013), and
(Chitongo and Pretorius, 2018). The baseline model for this study captured subscripts named
[Maintenance] to ease simulation iterations rather than having each model simulation for each
equipment type (Ventana Systems, 2022; Chitongo and Pretorius, 2018). Vensim DSS software
automatically appends subscripts to model variables and/or parameters (Ventana Systems, 2022).
Step 2 captures the optimization setting using themodel error function “payoff” and definesmodel
parameter weighting. Step 3 captures behavior reproduction test measuring “Mean Absolute
Percentage Error (MAPE)” for calibration error descriptive statistic (Ventana Systems, 2022). Step
4 determines the model’s real-world scenario best fit, or replication based on equipment type
captured on the model subscripts (Ventana Systems, 2022; Sterman, 2002; Martinez-Moyano and
Richardson, 2013; Chitongo and Pretorius, 2018). Lastly, step 5 uses experiments to analyze the
impact of 4IR technologies on the model structure in line with sensitivity analysis (Christopher
Frey and Patil, 2002; Hekimo�glu and Barlas, 2010; Kleijnen, 1995).

6.2 Model validation and testing
Model calibration forms part of system dynamics model testing and validation. According to
Sterman (2002), Martinez-Moyano and Richardson (2013), and Forrester (2009), model
constants may be altered manually to achieve the best fit between real-world data and
simulation output. Using optimization, Vensim DSS automatically varies chosen constants
for the best fit between simulation output and real-world data. This study adapts this concept
of model validation using calibration techniques as part of model validation as suggested by
Sterman (2002) and Martinez-Moyano and Richardson (2013). This research study uses six

Step 1.Imports subscripts data from Microsoft Excel to Vensim
DSS software 

Step 2. Setting error function “payoff” and defines key 
parameters weighting

Step 3. Tests and measures behaviour reproduction “Mean 
Absolute Percentage Error (MAPE)”

Step 4. Determines model real world scenario best -fit

Step 5. Sensitivity analysis on simulated model to exam the 
impact of 4IR technologies

Source(s): Created by authors

Figure 11.
Model validation

overview
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different types of production equipment (M1 to M6 discussed below) for analysis of the
impact of the maintenance work management process (WIA to WE) from experiments
simulation.

The intent for six different types of equipment is to enhance model validity and conclusions
derived therefrom. Real-world data is retrieved from two unique maintenance departments
managing production machines that comprise Continuous Miners (M1), Shuttle Cars (M2),
Feeder Breakers (M3), Roof Bolters (M4), Section Conveyor Belts (M5), and Trunk Conveyor
Belts (M6). Data is imported to VensimDSS asM1 toM6 and is defined as such in the subscripts
of themodel simulation.Thisway of calibration conducted for this studymodel provides a novel
extension to the extant system dynamics simulation model testing and validation body of
knowledge, more so because the extant literature reviewed is limited to either a generic
maintenancemodelwith just one type or class of equipment ormachine. Furthermore, the extant
literature in maintenance system dynamics modeling is limited in modeling a process for work
management (WIA to WE) viewed as discrete events (Karnon et al., 2012). Lastly, the
experimental simulation of this study enhances future system dynamics modeling and physical
asset management research studies. Most importantly, it can be used as a provisional answer to
challenges encountered in complex maintenance work management systems.

The problem for this research study model calibration is expressed by a single
optimization problem having an error function known as the objective function or payoff.
This model calibration starts by setting the initial payoff; secondly, real-world data is
imported to the model for comparison purposes, thereafter, model calibration is executed.

Key maintenance management system parameters used for payoff settings are
Maintenance Index (MI) and Maintenance Availability (MA) both weighted at 0.4985 and
CM tasks in execution (CM) weighted at 0.003 (weight setting recommended by Ventana
Systems (2022)). These three parameters a chosen because they represent a discrete event of
the model (from task identification to execution). Equations (2) and (3) are mathematical
expressions of payoff calculation used for this study (adapted from Ventana Systems (2022)).
According to Vensim Ventana systems, the payoff is defined as a comparison of model
variables with actual data, or as a combination of model variables. Two types of payoffs are
calibration payoff and policy payoff. This research study used calibration payoffs for model
validation (Ventana Systems, 2022).

Equipment type Payoffm ¼ wMI

 
MIsim;m �MIact;m

jMIsim;mj þ jMIact;mj

!2

þ wMA

 
MAsim;m �MAact;m

jMAsim;mj þ jMAact;mj

!2

þ wCM

1

tsim;m

Z tsim;m

0

 
CMsim;mðtÞ � CMact;mðtÞ

jCMsim;mðtÞj þ jCMact;mðtÞj

!2

dt

(2)

where:

wMI ¼weight for the maintenance index component;

MIsim;m ¼ simulated maintenance index for equipment type m;

MIact;m ¼ actual maintenance index for equipment type m;

wMA ¼weight for the maintenance availability component;

MAsim;m ¼ simulated maintenance availability for equipment type m;

MAact;m ¼ actual maintenance availability for equipment type m;
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wCM ¼weight for the correct maintenance component;

tsim;m ¼ simulation final time for equipment type m;

CMsim;mðtÞ ¼ simulated corrective maintenance for equipment type m; and

CMact;mðtÞ ¼ actual corrective maintenance for equipment type m.

All Equipment type Payoff ¼
Xn
m¼1

Equipment type Payoffm (3)

where:

n 5 number of equipment types considered.

In line with recommendations from Sterman (2002) and Martinez-Moyano and Richardson
(2013), the calibration used payoff optimization in VensimDSS using Powell conjugate search
algorithm for parameters estimation as first step of the calibration (Ventana Systems, 2022).
A total of 432 real-world data points is used for parameters estimation purposes. Thereafter
optimization for all equipment type, class, or group (M1 toM6) is conducted and the payoff for
all equipment type is calculated as the objective function for minimization similarly to the
study of Chitongo and Pretorius (2018).

The second step of calibration for this study is also in line with both (Sterman, 2002) and
(Martinez-Moyano and Richardson, 2013). Behavior reproduction test measure known as the
mean absolute percentage error (MAPE) is used for calibration error descriptive statistic for
this study (Ventana Systems, 2022). Four calibration errors are deduced for each equipment
type (MI, MA, CM as discussed in preceding section), thus determining MI MAPE
(Maintenance Index calibration error), MA MAPE (Maintenance Availability calibration
error) and CMMAPE (Corrective Maintenance in Execution calibration error) using equation
(4) for this study.

OMAPE (Overall calibration error) is calculated using equation (5) with weightedMA,MI,
and CM (depicted as WMI, WMA, and WCM in equation 5) the same as when used to calculate
equipment type payoff (equation 2). This approach is supported by Ventana Systems (2022).

MAPEm ¼ 1

n
Σn
m¼1

jDsim;m � Dact;mj
Dact;m

(4)

where:

n5 number of iterations considered (n5 24 for bothMIMAPE,MAMAPE, and CMMAPE).

OMAPE ¼ WMIðMI MAPEÞ þWMAðMAMAPEÞ þWCM ðCM MAPEÞ (5)

where:

WMI ¼weight for maintenance index component;

WMA ¼weight for maintenance availability component; and

WCM ¼weight for corrective maintenance.

The dataset used in the calibration consists of actual maintenance availability, actual
maintenance index, and actual corrective maintenance tasks in execution (all per time series
data of 24 months).
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6.3 Model validation results (maintenance work management process)
Table 5 is a representation of calibration results; four different calibration errors denoting
dimensionlessMAPEvalues for each equipment typewith anOMAPEviewpoint are discussed.
Equipment typeM4 andM6 are the best fit for real-world data bothwith least overall calibration
error (O MAPE) of 0.065, followed by equipment type M2 at O MAPE of 0.071. M3 is observed
with the largest overall calibration error of OMAPE accounting for 0.098, denoting theworst fit.

Table 5 summarizes key results of system dynamics simulation model after calibration,
illustrating the unintended effect of random equipment breakdowns on intended overall
maintenance index of a world class 85/15 ratio is unavoidable with just a subjective model
alone. Nonetheless, this study reveals great insights due to its control in mapping out a
process model for maintenance work management. This research study observed from CM
MAPE in Table 5 that due to randomness of breakdown events, modeling random
breakdowns is complex and is not easy to replicate real-world scenarios. Thus, the focus for
this research study is more on what can be done to produce industry benchmark on
maintenance work management process that accounts for a dynamic maintenance
complexity presented by random equipment breakdowns. MI MAPE and MA MAPE
denote best fit between model parameters and real-world parameters, thus representing an
overall mean percentage error supporting the validity of the model and random breakdown
events controls.

6.3.1 Model validation results: maintenance index best fit. Figure 12 is a graphical
representation of the system dynamics simulation. Real-world data is compared to calibrated
results for equipment type (M6), denoting the best fit amongst the six equipment types as

Equipment type
Mean absolute percentage error (MAPE) (dimensionless)

MI MAPE MA MAPE CM MAPE O MAPE

M3 0.124 0.068 0.553 0.098
M1 0.104 0.074 1,587 0.093
M5 0.098 0.073 0.625 0.087
M2 0.088 0.051 0.618 0.071
M4 0.047 0.080 0.625 0.065
M6 0.048 0.080 0.249 0.065

Note(s): Maintenance work management process
Source(s): Created by authors

Table 5.
Calibration errors per
equipment type

Figure 12.
Calibrated results vs
real-world data for
maintenance index:
best fit (M6)
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calibrated. In Figure 12, calibration denoted by the blue line represents calibrated results, and
data denoted by a red line represent real-world data. The key parameter represented in
Figure 12 is the Maintenance Index (between 85 and 97% for both calibrated and real-world
values, achieving best practice of 85%/15%). The green line is a representation of baseline
model before calibration.

6.3.2 Model validation results: maintenance availability best fit. Figure 13 is a graphical
representation of the system dynamics simulation like Figure 12. Real-world data is
compared to calibrated results for equipment type (M4), denoting best fit amongst the six
equipment types as calibrated. In Figure 13, calibration denoted by the blue line represent
calibrated results, and data denoted by a red line represent real-world data. Key parameter
represented in Figure 13 is maintenance availability and is found mostly around 400 h per
month for both real-world and calibrated values. Like Figure 12, the green line demotes
baseline of the model before calibration.

6.4 4IR technologies sensitivity analysis on validated system dynamics model
Sensitivity analysis is used to understand the effects and/or impact of input variables in system
dynamics models (Kleijnen, 1995). The preceding section illustrated system dynamics simulation
to solve real-world maintenance workmanagement complex phenomenon. Simulations are based
on experimentation of modeling real-world scenarios (Christopher Frey and Patil, 2002; Kleijnen,
1995). Statistical design of experiments (DOE) is adopted in this research study in the attempt to
investigate the optimization of maintenance work management using 4IR technologies
(Kleijnen, 1995).

6.4.1 Sensitivity analysis overview. The 4IR technologies sensitivity analysis for this
research study adapts descriptive statistical method to examine the impact of 4IR
technologies on the model structure (Christopher Frey and Patil, 2002; Hekimo�glu and
Barlas, 2010). Firstly, an analysis of maintenance index descriptive statistical simulation
without the benefit of 4IR technologies is performed in experiment 1. Secondly, a partial
implementation of 4IR technologies is analyzed next in experiment 2. Thirdly, all 4IR
technologies considered for this research study are implemented on just 50%of critical assets
in experiment 3. Lastly, all 4IR technologies considered for this study implemented on 100%
of critical assets and the impact thereof is analyzed in experiment 4.

In all sensitivity analysis experiments for this research study discussed in the preceding
section, standard deviation is used to examine tasks predictability, to corroborate what mean

Figure 13.
Calibrated results vs
real-world data for

maintenance
availability: best

fit (M4)
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is denoting according to the expected 4IR technologies impact. Standard deviation measures
the dispersion of dataset relative to its mean (average amount of variability relative to the
mean) according to Leys et al. (2013). High value of standard deviation imply that values are
generally far from the mean, while low value of standard deviation imply that values are
clustered close to the mean (Leys et al., 2013; Lee et al., 2015). In this research study, values
close to zero suggest that the maintenance strategy is predictive.

6.4.2 Sensitivity analysis experimental simulation results. Experiment 1: Table 6 outlines
the descriptive statistics simulation for maintenance index without the benefit of 4IR
technologies, with a viewpoint to the impact of 4IR technologies (included in experiment
2 to 4) on the developed and simulatedmaintenance workmanagement process. Maintenance
index is the ratio between scheduled vs unscheduledmaintenance work and is observed to be
the lowest without the benefit of 4IR technologies and below best practice of 85% (Planned
Maintenance Percentage), at a mean of 68.05% yielding toward scheduled maintenance. In
maintenance strategy terms discussed in the preceding section, this means that the
maintenance strategy is not predictive, based on the observed 31.95% yielding towards
unscheduled maintenance. Furthermore, the same phenomenon is corroborated by a higher
standard deviation observed at 4.51, representing a lack of tasks predictability before failure.

Experiment 2:Table 6 further represents descriptive statistics simulation formaintenance
index with partial 4IR technologies implementation (VR/AR for inspections, supported by
CPS sensors). Scheduled vs unscheduled maintenance (Maintenance Index) is observed at a
mean of 78.92% yielding toward scheduled maintenance, but below best practice of 85%.
This yields a 10.87% benefit relative to maintenance work management process model
formulated without 4IR technologies. Furthermore, standard deviation is observed at 2.07%,
representing an improved defect detection before failure when compared to experiment 1,
thus yielding partial predictive maintenance strategy.

Experiment 3: This experiment represents descriptive statistics simulation for
maintenance index with full implementation of 4IR technologies at 50% of critical assets.
Table 6 illustrates the maintenance index at a mean of 85.79%, above best practice of 85%.
This yields a 17.74% benefit relative to maintenance work management process model
formulated without 4IR technologies, and up by 6.87% from experiment 2. Furthermore,
standard deviation is observed at 2.10, representing an improved defect detection before
failure when compared to experiment 1, thus yielding partial predictivemaintenance strategy
and reinforcing 4IR technologies implemented in experiment 2.

Experiment 4: This experiment represents descriptive statistics simulation for maintenance
index with full implementation of 4IR technologies at 100% of critical assets. Table 6 illustrates
simulatedmaintenance index at amean of 95.51%, above best practice of 85% by 10.51%. This
yields a 27.46% benefit relative to maintenance work management process model formulated
without 4IR technologies, and up by 16.59% and 9.72% from experiment 1 and 2, respectively.
Furthermore, standard deviation is observed at 1.77% improved by 2.74% from maintenance

Descriptive statistics for maintenance index based on 4IR technologies implementation
4IR technologies benefit Min Max Mean Median SD (Norm)

Without 4IR technologies 66.67 88.24 68.05 66.67 4.51 0.07
Partial 4IR technologies implementation (VR/AR
Inspections)

78.26 88.24 78.92 78.26 2.07 0.03

4IR technologies deployed at 50% of critical assets 77.02 88.24 85.79 86.26 2.10 0.02
4IR technologies deployed at 100% of critical assets 88.24 96.18 95.51 96.09 1.77 0.02

Note(s): Focusing on 4IR technologies’ benefits
Source(s): Created by authors

Table 6.
Descriptive statistics
simulation for
maintenance index
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work management process model formulated without 4IR technologies, representing an
improved defect detection before failure when compared to experiment 1, 2, and 3, thus yielding
overall predictive maintenance strategy and intensifying overall asset performance.

7. Discussion
The research study aimed at developing amaintenance workmanagement simulated process
using process modeling from a combination of extant literature, empirical observation
(organizational documents), and using systems thinking. The research study considered
modeling maintenance work management using a non-complex flow chart approach, from
extant literature and direct analysis of organizational documents for maintenance work
management processes. The formulated maintenance work management process was then
subjected to complex modeling techniques, using a system dynamics modeling approach
(hybrid approach). To achieve the objectives of this study, a mixed method approach was
used incorporating system dynamics modeling.

In line with Sterman (2002), Martinez-Moyano and Richardson (2013), and Chitongo and
Pretorius (2018), the first stage unpacked the dynamic hypotheses of the impact of the
maintenance work management process incorporating 4IR technologies on best practice
maintenance index (at least 85%/15% ratio) and to an extent the conceptual model emanating
from amaintenance workmanagement process model formulation and its attempt to address
subjectivity observed empirically and supported by the extant literature. The process
modeling of maintenance work management suggested that for any emergency work
identified and approved for execution, such work can be subjected to execution without any
detailed prior planning, hence a need to achieve the maintenance Index of at least 85%/15%.
Furthermore, the 4IR technologies adoption assisted in achieving the world-class
maintenance index discussed in the preceding sections, particularly when combined with
the structured process of maintenance work management (WIA to WE) as discussed in
preceding sections.

The second stage of SD unpacked model simulation of the maintenance work
management process formulated using Vensim DSS software (Ventana Systems, 2022).
The process model for maintenance work management was then subjected to complex
dynamic modeling to examine its behavior with the gradual implementation of 4IR
technologies to yield a predictive maintenance strategy. To examine this phenomenon
(predictive maintenance), the study used two descriptive statistics, namely, mean values to
determine best practice maintenance mix, and standard deviation to determine defects
detection predictability. This research study revealed that 4IR technologies intensify asset
performance with an overall gain of 27.46% yielding the best maintenance index. This
research study also revealed that a standard deviation of 1.77, improved by 2.74 when
compared to a model without the benefit of 4IR technologies can be used to represent the
overall predictive maintenance strategy achieved through the implementation of both the
maintenance work management process and 4IR technologies.

Maintenance performance data used for calibration, experimental simulations, and
analysis of 4IR technologies impact or sensitivity analysis was gathered from six types of
equipment used at underground coal mines from two unique maintenance departments. The
results from calibrations, simulations, and impact analysis suggested that although M4 and
M6 equipment types are the best fit for real-world data at 0.065 OMAPE, random equipment
breakdowns remained a challenge to replicate real-world data, particularly without the
benefit of 4IR technologies. The phenomenon of randomness on equipment breakdowns
impacts negatively CM MAPE represented in the preceding section. Various scholars
indicated the prevalence of controlling equipment defects through both corrective and
preventative maintenance (Manenzhe, 2018; von Thun and Maier, 2004).
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8. Conclusion
This study concludes that SD modeling can be used to model the maintenance work
management system dynamic behavior. The unintended effect of corrective maintenance task
execution that impacts negatively on the maintenance index can be controlled using 4IR
technologies for prior work identification, yielding an overall maintenance strategy benefit that
is predictive. 4IR technologies positively impacts the overall maintenance work management
system thereby reducing the unintended subjective approach in decision-making.

In the extant literature, there is a lack in addressing the impact of the maintenance work
management model incorporating 4IR technologies using SDmodeling, particularly when its
validation and testing consider more than just one equipment type and multiple maintenance
departments. The work carried out in this study serves as a novel extension to the body of
knowledge in the field of asset management (maintenance work management), SD model
validation, and testing through calibration techniques of maintenance management. The
benefits of this research study are expected to support future research in asset management
studies, implementation of 4IR technologies in maintenance management, SD model
calibration, and most importantly, industry practitioners using physical assets.

The authors of this research study intend to (among other objectives) incorporate other
subsystems such as cost of maintenance, production process, human resources, and supply
chain management process to the subsystem (maintenance) presented in this research study
to further understand the dynamic behavior of maintenance work management when such
subsystems are subjected to multiple variables amongst them. The authors further aim at
intensifying overall business performance through asset management system behavior best
practices.
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