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Abstract

Purpose – The purpose of this paper is to investigate how different manufacturing technologies are
bundled together and how these bundles influence operations performance and, indirectly, business
performance. With the emergence of Industry 4.0 (I4.0) technologies, manufacturing companies can use a
wide variety of advanced manufacturing technologies (AMT) to build an efficient and effective production
system. Nevertheless, the literature offers little guidance on how these technologies, including novel I4.0
technologies, should be combined in practice and how these combinations might have a different impact on
performance.
Design/methodology/approach – Using a survey study of 165 manufacturing plants from 11 different
countries, we use factor analysis to empirically derive three distinct manufacturing technology bundles and
structural equation modeling to quantify their relationship with operations and business performance.
Findings – Our findings support an evolutionary rather than a revolutionary perspective. I4.0 technologies
build on traditional manufacturing technologies and do not constitute a separate direction that would point
towards a fundamental digital transformation of companies within our sample. Performance effects are rather
weak: out of the three technology bundles identified, only “automation and robotization” have a positive
influence on cost efficiency, while “base technologies” and “data-enabled technologies” do not offer a

Use of
technology

bundles

1

©Krisztina Demeter, Levente Sz�asz, B�ela-Gergely R�acz and Lehel-Zolt�an Gy€orfy. Published by Emerald
Publishing Limited. This article is published under the Creative Commons Attribution (CC BY 4.0)
licence. Anyone may reproduce, distribute, translate and create derivative works of this article (for both
commercial and non-commercial purposes), subject to full attribution to the original publication and
authors. The full terms of this licence may be seen at http://creativecommons.org/licences/by/4.0/
legalcode

This work was supported by the project entitled “Strengthening the digitalization of businesses in
Eastern Europe – a micro and macro-level approach” funded by the European Union –
NextGenerationEU project and the Romanian Government, under the National Recovery and
Resilience Plan for Romania (No: 760036/23.05.2023 and cod PNRR-C9-I8-CF 198/28.11.2022), through
the Romanian Ministry of Research, Innovation and Digitalization, within Component 9, Investment I8.

The current issue and full text archive of this journal is available on Emerald Insight at:

https://www.emerald.com/insight/1741-038X.htm

Received 21 July 2023
Revised 2 November 2023

12 January 2024
Accepted 20 January 2024

Journal of Manufacturing
Technology Management

Vol. 35 No. 9, 2024
pp. 1-23

Emerald Publishing Limited
1741-038X

DOI 10.1108/JMTM-07-2023-0299

http://creativecommons.org/licences/by/4.0/legalcode
http://creativecommons.org/licences/by/4.0/legalcode
https://doi.org/10.1108/JMTM-07-2023-0299


competitive advantage, neither in terms of cost nor in terms of differentiation. Furthermore, while the business
performance impact is positive, it is quite weak, suggesting that financial returns on technology investments
might require longer time periods.
Originality/value – Relying on a complementarity approach, our research offers a novel perspective on
technology implementation in the I4.0 era by investigating novel and traditional manufacturing technologies
together.

KeywordsManufacturing technology, Industry 4.0, Smartmanufacturing, Technology bundles, Performance

Paper type Research paper

Quick value overview
Interesting because: The relationship between traditional and I4.0 production technologies
has so far not been analyzed in the literature. Furthermore, complementarity theory indicates
that bundles of technology provide a greater improvement than individual technologies. This
study investigates bundles of I4.0 technologies in combination with traditional advanced
manufacturing technologies (AMT). This introduces an evolutionary perspective where,
instead of a revolutionary transformation, I4.0 technologies are implemented as stepwise use
cases combined with the existing technology base of companies. The study also investigates
how bundles of “new” and “old” technologies influence performance.

Theoretical value: It was found that there are three technology bundles: basic physical
manufacturing technologies, data generation or data processing technologies and
automation and robotization technologies. Technologies connected to automation and
robotization offer a competitive cost advantage, while the remaining two bundles do not offer
operations performance benefits. Furthermore, there was no evidence for an immediate
financial benefit of implementing novel I4.0 and traditional manufacturing technologies.

Practical value: Companies should not expect quick business returns from their
investments in basic physical manufacturing technologies, or data generation or data
processing technologies. However, they need to make these investments to remain in
business because these become qualifying technologies. Investment in automation and
robotization is particularly worthwhile for larger enterprises.

Introduction
In the context of the fourth industrial revolution [including Industry 4.0 (I4.0) in a
manufacturing] manufacturing companies implement new digital technologies that enable
intelligent products and production processes. The purpose of using these advanced
technologies is to increase the operational and business performance of companies (Cheng
et al., 2018; Sz�asz et al., 2020). Therefore, understanding the impact of I4.0 technologies on the
existing technology base and on performance is vital for companies to make plans and
decisions about their future technology investments.

Though definitions are diverse, I4.0 is generally used as an umbrella term to denote the
appearance and use of a critical mass of novel technologies that create a new manufacturing
context characterized by smart products and processes where all actors are digitally
interconnected and share real time information (e.g. Frank et al., 2019; Sz�asz et al., 2020;
Meindl et al., 2021). While I4.0 is expected to fundamentally revolutionize manufacturing
(Schwab, 2016), current studies andpractical reality indicate that this is not entirely the case (Buer
et al., 2021): digital technologies are usually implemented in isolation (Maghazei et al., 2022),
manufacturers face several challenges during the implementation (Raj et al., 2020; Enrique et al.,
2022), and in many cases, the expected performance benefits are also missing (Dalenogare et al.,
2018; Losonci et al., 2022). According to the Oxford Language Dictionary, a revolution should
bring a “dramatic and wide-reaching change in conditions”, but whether such change is
happening, or we are merely at the beginning of it, is still debated. Completely digitally
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transformed and intelligent factories are still very scarce, which indicates that traditional and
new technologies are combined with each other, pointing towards a gradual (“evolution”), rather
than a radical, “digital-only” transformation of themanufacturing technology base (“revolution”).

Although numerous studies have been conducted on the implementation and performance
impact of I4.0 technologies (e.g. Dalenogare et al., 2018; Sz�asz et al., 2020), the relationship
between traditional and I4.0 production technologies has not been analyzed so far. A widely
accepted approach in the technology and management literature, however, is that the
production system of companies is built of so-called technology configurations which in a
“package” can induce a greater improvement in performance than what individual
technologies are expected to achieve separately. This is the exact argument raised by the
so-called complementarity theory (Furlan et al., 2011). The definition of I4.0 itself also
highlights the importance of interconnectedness and integration of different technologies. In
this light, it is surprising that the joint investigation of traditional and I4.0 technologies is still
scarce. This is an important gap in the literature and filling this gap by the bundling approach
might also explain the contradictory findings in terms of the performance benefits of I4.0.

Thus, we formulate the following two research questions:

RQ1. How are I4.0 and traditional manufacturing technologies bundled together in
practice?

RQ2. How do different technology combinations influence the operations and business
performance of manufacturing firms?

Our preliminary hypothesis is that instead of a revolutionary, complete digital transformation,
novel I4.0 technologies gradually replace some and complement the remaining, already
existing, traditional technologies of companies, thus describing a slow, stepwise development
path instead of a revolutionary industrial transformation. It also means that production
technologies can be connected to each other in many ways and these systems formed by
technological combinations can affect company performance in different ways.

Our approach is also in line with the recently introduced “use case” concept in technology
management literature: to find useful practical applications of an emerging technology
managers generally experiment in an iterative manner, connecting the technology with
various existing areas of the factory (Maghazei et al., 2022).

To answer the two research questions, in the following section we introduce the literature
on manufacturing technology bundles and performance implications to point out the gaps
intended to be filled by answering RQ1 and RQ2. Then, our data and the measurement model
are described. After analysis the results are discussed and implications are formulated.

Literature review
Technology bundles
AMT represent an umbrella term that describes “a variety of technologies which primarily utilize
computers to control, track ormonitormanufacturing activities” (Boyer et al., 1997, p. 332). These
technologies include pioneering solutions of the third industrial revolution, such as computer-
aided design (CAD), numerical control machinery (CNC), computer-aidedmanufacturing (CAM),
real-time process control system, automated material handling, bar coding, flexible
manufacturing systems (FMS), robotics, decision support systems, manufacturing resource
planning (MRP II), or electronic data interchange (EDI) (Beaumont et al., 2002; Dangayach and
Desmukh, 2005). The list of AMTs contains both hardware-based and software-based
technologies that are integrated through computing technology (Udo andEhie, 1996). I4.0 can be
conceptualized as a newer wave of AMT, which includes more advanced, smarter and more
automated technologies than classic AMTs (cf. Maghazei et al., 2022).
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A key issue of our paper is, in what combination companies use these technologies and
how traditional and I4.0 technologies relate to each other if they are combined (c.f., Tortorella
and Fettermann, 2018; Frank et al., 2019). According to Voss (2005) “there is a growing view
that we are looking at bundles of practices not just single practices. There is frequently strong
complementarity between practices leading to joint use; an example is lean manufacturing”
(Voss, 2005:1,225). Indeed, in leanmanufacturing usually four bundles are considered: just-in-
time (JIT), total quality management (TQM), total productive maintenance (TPM) and human
resource management (HRM) (Shah andWard, 2003; Tortorella et al., 2021). We can also find
this approach in the supply chain integration literature, where supply and demand side
(Frohlich and Westbrook, 2001) or external and internal practices (Das et al., 2006) are
grouped. While these practice bundles in lean and supply chain management are supported
by empirical studies (and therefore represent taxonomies), we could not find a similar
empirical bundling approach for manufacturing technologies. A partial exception is Benitez
et al. (2023). Their study provides some case-based background to how various I4.0
technologies, such as 3D printing or IoT can become a platform, which serves as a basis for
the implementation of other new technologies. These technology combinations can also be
considered as bundles, where the individual elements strengthen each other. Nevertheless,
while the study provides interesting examples, the cases are very different from each other
and low in number, thus limiting the generalizability of the results.

Early studies on AMT use a typology of design technologies for designing products and
processes (e.g. Computer-aided engineering (CAD), CAE and Computer-aided production
planning (CAPP)), manufacturing technologies for manufacturing and physical
transformation (e.g. Computer-aided manufacturing (CAM), Automated storage and
retrieval system (AS/RS)) and administrative technologies for tracking (e.g. Manufacturing
resources planning (MRP), shop floor control) (Boyer et al., 1996; Jonsson, 2000; Cheng et al.,
2018). Using these typologies, the studies deal with clustering companies based on the level of
adoption of various technologies. This means, however, that technology bundles are
conceptually defined, but are not empirically derived or verified.

With the increasing interest towards the I4.0 technologies, some researchers provide
similar theoretical groupings of new technologies. For example, Dalenogare et al. (2018) define
two sets of I4.0 technologies, one related to product development (e.g. 3D printing, integrated
engineering systems) and one related to manufacturing (e.g. sensors, big data analytics), to
investigate their expected benefits related to product and operations performance. Demeter
et al. (2021) group technologies based on the dominance of virtual vs. physical attributes,
putting IoT, cloud, big data analysis, simulation and virtual/augmented reality into the
former group, while 3D printing or autonomous robots into the latter one, with sensors and
actuators connecting the two groups. The authors suggest that the physical technology
group is generallymoremature than the virtual one (Gartner, 2018), which resonates with our
“revolution versus evolution” reasoning, meaning that fully digitally transformed smart
factories are still farther away and newly emerged manufacturing technologies complement
the traditional ones. In a literature review, Culot et al. (2020) also acknowledge the physical-
digital dichotomy and conceptually group I4.0 technologies into four main categories: (1)
Physical/digital interface technologies (IoT, cyber-physical systems, visualization), (2)
Digital/physical process technologies (3D printing, advanced robotics, newmaterials, energy
management), (3) Network technologies (cloud, interoperability and cybersecurity,
blockchain), (4) Data processing technologies (simulation and modeling, machine learning
and artificial intelligence (AI), big data analytics). The four bundles are differentiated along
two factors: whether it is hardware or software dominated and whether it is single-unit or
network focused. Frank et al. (2019) andMeindl et al. (2021) differentiate between two layers of
I4.0 technologies: front-end technologies (smart manufacturing, smart product, smart
working and smart products) and base technologies (IoT, cloud, big data, analytics), the latter
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providing a platform for connection and intelligence to the former. Cimini et al. (2020) focus on
the principal features of I4.0 technologies and group them into three categories: (1)
Automation technologies (e.g. advanced manufacturing solutions, advanced robotics), (2)
information exchange (e.g. cybersecurity, IoT and big data) and (3) decision support systems
(e.g. simulation, augmented reality). Patrucco et al. (2022) focus on an even narrower set of I4.0
technologies in a buyer-supplier relationship context to empirically derive three technology
groups: (1) Big Data and Cloud Computing, (2) Tracking and Tracing (e.g. radio frequency
identification (RFID), quick response (QR) code, Bluetooth technologies) and (3) Simulation
and Modeling (e.g. 3D printing, advanced simulation software, 3D modeling). Nevertheless,
neither other types of I4.0 technologies, nor traditional manufacturing technologies are
considered in their research. Chiarini and Kumar (2021) review the literature on the variety of
I4.0 technologies and conceptually bundle some of these (e.g. the “AR and smart human
interfaces” bundle includes several technologies, such as smart screens, 3D glasses,
exoskeletons). However, their main focus is not on technology bundles, but rather on the
complementarity of I4.0 and Lean Six Sigma solutions. Enrique et al. (2022), on the other hand,
explicitly focus on discovering I4.0 technology bundles by factor analysis. With traditional
manufacturing technologies being excluded from their research, four different bundles are
defined: digital manufacturing, vertical integration, advanced manufacturing (i.e. robots and
3D printing) and online traceability. Benitez et al. (2023) rely on the findings of previous
literature to group technologies on a logical basis, creating groups of vertical integration
(Enterprise resource planning (ERP), Manufacturing execution system (MES) and
Supervisory control and data acquisition (SCADA)), base technologies (IoT, cloud, big
data, AI), virtualization (virtual commissioning, digital manufacturing, machine vision,
augmented/virtual reality, edge computing, smart grids) and physical processes (3D printing,
collaborative robots, industrial robots, flexible lines). Furthermore, they examine case studies
about how various technologies (such as IoT, 3D printing, ERP) can become platforms
providing a connection point for other technologies and becoming integrated systems, thus
supporting the bundling hypothesis. The different approaches to technology bundling in the
I4.0 context, as well as the gaps in this literature are highlighted in Table 1.

Thus, while there is a clear research intention to better understand technology bundles,
literature offers little empirical guidance on how manufacturing technologies are combined
and how they build on each other to create efficient and effective production systems in the
I4.0 era. We intend to fill this gap by answering RQ1.

Performance effects of technology bundles
In early AMT literature there has been a vivid interest in exploring the relationship between
AMT and performance. These studies, however, similarly to papers presented in Table 1, use
conceptually predefined technology bundles. Based on these bundles, companies are clustered to
find typical configurations (Boyer et al., 1996; Jonsson, 2000). Usually, clusters represent
companies using each bundle at low, medium, or high level and have different performance
implications, if they have an effect at all. Boyer et al. (1996), for example, did not find impact on
profitability along the different company groups, while Jonsson (2000) found differences in both
operational (measured by flexibility) and business performance (market and financial measures).

Nevertheless, these kinds of analyses do not offer a response to how different technology
bundles can contribute to performance. Furthermore, being relatively old, these studies do
not consider I4.0 technologies.

Considering the performance impacts of I4.0 technologies, in particular, L�opez-G�omez et al.
(2018) identified that the highest benefits can be achieved by the reduction of labor costs,
defects and errors and material costs; by increased outputs; and by improved delivery and
service performance. However, they did consider various technologies separately. In a
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literature review followed by large-scale empirical analysis Sz�asz et al. (2020) find that early
I4.0 technologies have a positive impact on the four basic operations performance indicators,
namely cost, quality, delivery and flexibility. Older AMT technologies offer similar
advantages (Jonsson, 2000; Cheng et al., 2018). Although the positive performance impact of
advanced technologies is clear, we do not know how various technologies are bundled
together to achieve these results.

From a technological perspective, organizations can be viewed as entities using different
technological configurations for achieving a higher competitive advantage and a better
operational performance. From this perspective the theory that best describes organizations is
the complementarity theory. The synergetic effects of bundling practices will eventually lead to
an overall performance that is greater than the sum of the performance contributions of each of

Source Technology bundles

Empirical
validation of the
bundles

Traditional
technologies
included

Performance
effect of bundles
investigated

Dalenogare
et al. (2018)

Product development
technologies;
manufacturing
technologies

No (derived
based on their
expected
benefits)

No No (expected
performance only)

Demeter et al.
(2021)

Physical technologies;
virtual technologies

No (conceptually
derived)

No No

Culot et al.
(2020)

Physical/digital interface
technologies; digital/
physical process
technologies; network
technologies; data
processing technologies

No (conceptually
derived)

No No

Frank et al.
(2019), Meindl
et al. (2021)

Front-end technologies;
base technologies

No (conceptually
derived)

No No

Chiarini and
Kumar (2021)

Big data collection and
analysis; smart products
and customer interaction;
AR and smart human
interfaces etc

No (conceptually
derived)

No No

Cimini et al.
(2020)

Automation; information
exchange; decision
support system

No (conceptually
derived)

No No

Patrucco et al.
(2022)

Big data and cloud;
tracking and tracing;
simulation and modeling

Yes (factor
analysis)

No Yes (supply chain
performance)

Enrique et al.
(2022)

Digital manufacturing;
vertical integration;
advanced manufacturing;
online traceability

Yes (factor
analysis)

No No

Benitez et al.
(2023)

Vertical integration; base
technologies;
virtualization; physical
process

No (conceptually
derived)

No No

Summary Existing approaches are
divergent in the literature
in terms of technology
bundling

Very little
empirical support
for the bundles

No investigation of
how traditional and
I4.0 technologies
are combined

Little focus on the
performance
impact of
technology bundles

Source(s): Authors’ work

Table 1.
Summary of the
literature on
technology bundles in
an Industry 4.0 context
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its parts (Furlan et al., 2011). Further research of this concept showed how complementarity has
an impact on performance and highlighted that complementarity among different activities
could account for business growth without any of the usual assumptions in the literature of
economics of scale. Over the last 3 decades complementarity has become a common concept
within management theories (Furlan et al., 2011; Choi et al., 2008; Guidetti and Mazzanti, 2007).
Moreover, many digital technologies should be implemented simultaneously to ensure their
proper functioning (Benitez et al., 2023). Consequently, the performance effects of using
technology bundles could be explained with the complementarity theory, as companies that
adopt one of the digital technologies, are more likely to make use of another technology to
benefit from their combination (Enrique et al., 2022).

In this paper, we also propose that – especially with the emergence of I4.0 technologies –
there is no one best way of using technology bundles at manufacturing companies and that
these bundles can have a different impact on operations performance, such as the traditional
performance dimensions of cost, quality, delivery and flexibility. Furthermore, enhanced
operations performance should also translate to an improvement in the business performance
of the firms, thus indirectly ensuring a high enough return on investment in manufacturing
technologies.

Thus, the general research framework based on the two research questions investigated in
this study is summarized in Figure 1.

Research methodology
Data
Weuse survey data on 165manufacturing plants from11 countries based on the latest edition
of the Continuous Innovation Network (CINet) survey database. The CINet represents a
global network of researchers and practitioners focusing on advancing the field of
(continuous) innovation in industrial, service and public organizations (https://www.
continuous-innovation.net/). The CINet survey is managed by a group of researchers
representing a range of European universities and has already accumulated the experience of
three global survey rounds. The survey focuses onmanufacturing, product development and
strategic activities, the unit of analysis being the single manufacturing plant within a
company. Given our research objective, we focus exclusively on the manufacturing function
of these units. The CINet survey is a multiple-respondent survey, where manufacturing-
related questions are directed to the chief operations officer (COO) or a person in an equivalent

Figure 1.
General research

framework
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position, while product development questions are answered by the chief technology officer
(CTO) or a manager with a similar role. Some general questions, such as the business
performance of the manufacturing unit compared to competitors, were answered by both
respondents. Given that our study refers to technologies used in the production/operations
function and their performance effect, COO items are used in this paper, except for the
business performance construct where agreement between respondents was assessed before
using the items in our study.

Survey data collection was carried out between November 2016 and June 2017, targeted at
manufacturing plants belonging to manufacturing industries (ISIC Rev. 4 10–32).
Respondents represent a wide range of countries and a diverse set of small, medium-sized
and large firms. The final sample used in this paper contains 165 valid questionnaires that
offer relevant data on our variables of interest. To ensure that this sample size is suitable for
structural equation modeling, a post-hoc power analysis was carried out (Faul et al., 2007),
indicating that at a 5% significance level the statistical power (1-β) of our results is 98.03%,
meaning that the probability of type II errors is less than 2% (β). The composition of the final
sample by country and industry is presented in Table 2.

Potential response bias was handled by two procedures. First, the questionnaire was pre-
tested with company managers and academics with relevant experience in the field.
Questionnaire items were discussed with each participant and where doubts regarding the
wording of the items were raised, the item was reformulated in cooperation with pre-test
participants (Gastaldi et al., 2022). Second, for the business performance items, where both
COO and CTO respondents provided separate answers, we used the direct consensus model
(Chan, 1998) based on the hypothesis that the true organizational-level business performance
(relative to main competitors) can only be assessed if there is sufficient consensus among the
individual respondents from the same organization. Agreement of COO and CTO
respondents was evaluated by computing intraclass correlations (ICC(1) and ICC(2)) and
the within-group reliability indicator (rWG(j)). For the business performance items, all three
indicators are well above the general threshold used in previous literature: ICC(1) 5 0.73
(exceeding the 0.12 threshold), ICC(2) 5 0.84 (exceeding the 0.7 threshold) and rWG(j) 5 0.89
(exceeding the 0.7 threshold), strongly indicating that item responses are consistent and there
is sufficient agreement between respondents from the same organization so that the
aggregation of their responses can truly represent organizational-level business performance
(Klein and Kozlowski, 2000; Dunlap et al., 2003; Fischer et al., 2014). Additionally, early and
late-response bias, as well as non-response bias was checked in all original country samples
with no significant effects being discovered (Gastaldi et al., 2022).

Country Frequency Pct Size Frequency Pct

Spain 34 20.6% ≤99 39 23.6%
Pakistan 30 18.2% 100–249 61 37.0%
Italy 25 15.2% ≥250 65 39.4%
Sweden 23 13.9% Total 165 100.0%
Brazil 11 6.7%
Denmark 10 6.1%
Hungary 9 5.5%
Switzerland 9 5.5%
Canada 6 3.6%
Austria 5 3.0%
Netherlands 3 1.8%
Total 165 100.0%

Source(s): Authors’ work

Table 2.
Composition of the
sample by country
and size
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Given that our survey includes several single-respondent, self-reported questionnaire items,
common method bias is a potential problem (Podsakoff et al., 2003). To treat this issue, we
applied several procedural and statistical methods to assess and reduce common method
variance. First, the CINet questionnaire is designed to inherently reduce common method
bias: technology and performance items used in this study are placed in different sections of
the survey (technologies on p. 6, operations performance on p. 8, business performance on
p. 4), reducing the potential bias of respondents to reflect on previous answers when filling in
the questionnaire. Second, respondent anonymity was fully protected: their name and other
personal data that could identify them, such as e-mail addresses or social media profiles, were
not included in the survey. This procedure also makes respondents more inclined towards
reflecting reality in their answers. Third, as a statistical procedure, we applied Harman’s
single factor test (Podsakoff et al., 2003) by loading all items used in our study in an
exploratory factor analysis (EFA). The unrotated factor solution shows that 5 factors exceed
the 1.0 eigenvalue threshold with the first factor accounting for only 25.38% of total variance.
Last, we also applied the collinearity approach with a random dependent variable added to
our model (Kock and Lynn, 2012). Given that all variance inflation factor (VIF) values related
to the random variable are way below the recommended 3.3 threshold, we conclude that the
amount of common method variance is not large enough to distort our results.

Measures
Based on the two research questions formulated in this paper, ourmeasurementmodel should
cover three major thematic areas, i.e. manufacturing technologies, operations performance
and business performance. While previous literature offers several established
operationalizations for operations and business performance (RQ2), manufacturing
technologies, especially the bundles of technologies that would include novel I4.0 items,
have no established measurement method (RQ1). Therefore, following the approach of
Enrique et al. (2022), we apply EFA to discover existing bundles of manufacturing
technologies. To make these results more robust, we complement this approach with a
confirmatory factor analysis (CFA) to validate a measurement model consisting of all three
constructs of interest: technology bundles developed through EFA, as well as operations
performance and business performance measures already established in the literature.

Given the role of I4.0 technologies in creating an interconnected manufacturing system, in
this paper we solely focus on technologies used in manufacturing and the administrative
tasks connected to manufacturing, filtering out new product/process development and
design activities which are less connected to the production process per se (Table 3).
Traditional technologies are based on previous AMT literature (Boyer et al., 1996; V�azquez-
Bustelo et al., 2007), while I4.0 items are adopted fromSz�asz et al. (2020), based on the notion of
physical (AMT) and digital (Smart) technologies (Table 1, Demeter et al., 2021).

While certainly the list of technologies can be further broken down into more dissected
items, we also targeted a more parsimonious measurement model with broader technology
categories that apply to a wider population of manufacturing firms.

Results of the EFA are shown in Table 4 with principal component analysis as the
extraction method and varimax rotation. The Kaiser–Meyer–Olkin (KMO) measure and
Bartlett’s test show that the correlation structure between technology items is adequate for
factor analysis: KMO5 0.821, Bartlett’s test of sphericity χ2(36)5 427.239, p5 0.000. Results
also indicate that the 3-factor solution is the best fit for the underlying data, with the first
three factors explaining 65.199% of total variance. Table 4 shows the results with factor
loadings higher than 0.40 displayed in the table. The first factor clearly contains basic,
overarching physical manufacturing technologies, therefore we label this factor as “Base
technologies” (BaseTech). The second factor contains data generation or data processing
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technologies, thus being labeled as “Data-driven technologies” (DataTech). One item (RFID)
has a significant cross-loading as it is both based on data, but at the same time it helps the
automation of processes. To a lesser extent a similar issue can be identified in the case of the
Smart variable which is in concordance with the practical reality of using these technologies.
Nevertheless, loading values indicate that both itemsmight bemore related to the data-driven
factor than to the automation and robotization factor (later confirmed by CFA as well). Thus,
the last factor contains only two items denoting “Automation and robotization technologies”

Item

Item wording
In our company, the degree of use of the following
tools, techniques and systems is . . . (1 5 low,
5 5 high)

Mean
(st. dev.) Source

Robot Industrial robots for machining and/or handling
operations

2.54 (1.30) Boyer et al. (1996),
V�azquez-Bustelo et al.
(2007)AS_RS Automated materials storage and retrieval systems

(AS/RS)
2.13 (1.20)

JIT_
Kanban

Just-in-time/Kanban controlled production 2.96 (1.32)

RFID Automatic identification/bar code systems/RFID 2.91 (1.50)
MRP_
ERP

Manufacturing resource planning (MRP II)/enterprise
resource planning (ERP)

3.56 (1.21)

CNC Computer numerically controlled machines tools
(CNC)

2.88 (1.56)

FMS Flexible manufacturing and/or assembly systems
(FMS/FAS)

2.74 (1.32)

AMT Advancedmanufacturing technologies (e.g. water and
photonics-based/laser cutting, additive
manufacturing/3D printing, high precision
technologies, micro/nano-processing)

2.42 (1.28) Industry 4.0
Sz�asz et al. (2020)

Smart “Smart” ICT applications supporting supplier/
customer collaboration, connectivity (plants,
equipment, robots, lines, workers), data processing
(big data)/information mining, modeling/simulation

2.65 (1.22) Industry 4.0
Sz�asz et al. (2020)

Source(s): Authors’ work

Item
Factor 1

(BaseTech)
Factor 2

(DataTech)
Factor 3

(RobotTech)

CNC 0.846
FMS 0.807
AMT 0.744
MRP_ERP 0.820
Smart 0.677 0.400
RFID 0.550 0.515
JIT_Kanban 0.518
AS_RS 0.862
Robot 0.633
Eigenvalue 3.780 1.091 0.997
% of variance (cumulative) 42.001 54.126 65.199
Cronbach alpha 0.831 0.746 0.633

Source(s): Authors’ work

Table 3.
Manufacturing
technology measures

Table 4.
Results of the EFA
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(RobotTech). Furthermore, it is important to highlight that I4.0 technologies (labeled here as
AMT and Smart) do not form a separate factor, but they are loaded separately on already
existing factors. Thus, EFA results suggest that these technologies are mainly built on
existing, older manufacturing technologies and are bundled together by manufacturing
plants rather than the new technologies replacing the old ones to create a purely I4.0 based,
smart production environment.

Next, CFA is applied to validate manufacturing technology measurement as well as
operations and business performance constructs. Operations performance is measured as
two distinct constructs related to cost (CostPerf) and differentiation performance (DiffPerf),
while business performance (BusPerf) includes market and financial indicators, all being
measured relative to main competitors (1 5 much lower, 3 5 equal, 5 5 much higher). The
exact wording of the items is presented in Table 5.

To assess our final measurement model (Table 6), best practice procedures recommended
by Hair et al. (2021) are followed. First, indicator reliability, internal consistency reliability
and convergent reliability are investigated. Indicator reliability is assessed by calculating the
path loadings between the constructs and their indicators. All loadings exceed or are very
close to the commonly used 0.70 threshold, all of them being highly significant. Only one
problematic item is identified, namely IntQual with a 0.515 loading. Here we followed the
recommendations of Hair et al. (2021): given that this loading is still higher than the absolute
lower threshold of 0.40, while other reliability measures [composite reliability (CR), ρA and
average variance extracted (AVE)] are met on the construct-level, the item is kept in our
measurement model to remain as consistent as possible with similar measurement models
previously applied in the literature.

Next, internal consistency is evaluated using three indicators, namely, Cronbach’s alpha,
composite reliability (CR) and Dijkstra–Henesler’s ρA. Values exceed or are very close to the
commonly accepted threshold of 0.70, none of them falling below 0.60 (Henseler et al., 2016),
showing an appropriate reliability of the constructs. Furthermore, AVE scores are computed

Construct Item

Item wording
Over the past three years, our performance
relative to our main competitors was, on
average. . . (1 5 much lower, 3 5 equal,
5 5 much higher)

Mean
(st. dev.) Source

CostPerf Cost Cost effectiveness (including ordering cost,
manufacturing cost, quality cost, inventory
cost; man, machine, material efficiency)

3.76 (0.86) Demeter et al. (2016),
Gastaldi et al. (2022)

Invt Finished product inventory level 3.43 (0.94)
DiffPerf IntQual Internal quality (e.g. conformance to product

specifications, percentage of scrap and rework)
3.97 (0.80)

ExtQual External quality (e.g. product quality and
reliability; ease of product maintenance, repair,
disassembly and recycling; defect products
returned by customers)

4.03 (0.77)

DelivTime Customer order delivery time 3.95 (0.88)
DelivRel On-time delivery 3.97 (0.87)
SizeFlex Order size flexibility 3.95 (0.85)

BusPerf Sales Sales 2.71 (1.14)
NetProfit Net profit 2.58 (1.16)
dProfit Profit growth 2.80 (1.08)

Source(s): Authors’ work
Table 5.

Performance measures
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to measure the convergent reliability of each latent construct. All AVE values exceed the 0.50
threshold required for convergent validity (Hair et al., 2021).

As a final step, the discriminant validity between constructs is assessed by using the
Fornell–Larcker criterion and, as more recently suggested, by the heterotrait-monotrait ratio
(HTMT). Bothmethods show clearly sufficient discriminant validity. HTMT ratios presented
in Table 7 are all significantly below one.

Analysis
Structural model assessment and findings
Having a valid and reliable measurement model, partial least squares structural equation
modeling (PLS-SEM) is implemented in SmartPLS 4.0 to estimate the strength of
relationships between the main constructs (Ringle et al., 2022). The following relationships
were included in our model: in terms of the manufacturing technology bundles, we
hypothesize that first each manufacturing plant develops its base technology (BaseTech)
which then enables the collection of data related to those technologies and requires
administrative processes to manage the operation of these technologies (DataTech).
Moreover, base manufacturing technologies can further be automated and robotized

Construct Item Loading AVE Cronbach alpha CR ρA

BaseTech CNC 0.855 0.747 0.831 0.899 0.842
FMS 0.893
AMT 0.845

DataTech MRP_ERP 0.658 0.568 0.746 0.839 0.764
JIT_Kanban 0.788
RFID 0.812
Smart 0.746

RobotTech AS_RS 0.871 0.731 0.633 0.845 0.638
Robot 0.839

Cost_Perf Cost 0.892 0.722 0.621 0.838 0.651
Invt 0.805

Diff_Perf DelivRel 0.823 0.520 0.762 0.841 0.784
DelivTime 0.798
ExtQual 0.755
IntQual 0.514
SizeFlex 0.671

BusPerf Sales 0.852 0.691 0.776 0.869 0.808
NetProfit 0.895
dProfit 0.737

Source(s): Authors’ work

BaseTech BusPerf CostPerf DataTech DiffPerf

BaseTech
BusPerf 0.184
CostPerf 0.193 0.430
DataTech 0.686 0.237 0.127
DiffPerf 0.179 0.334 0.775 0.313
RobotTech 0.647 0.200 0.425 0.664 0.262

Source(s): Authors’ work

Table 6.
Assessing
measurement model
reliability and validity

Table 7.
Discriminant validity
assessment using
HTMT ratios

JMTM
35,9

12



(Robot_Tech). This process is also enabled by the data-based technologies that collect data on
manufacturing processes and support automation. Thus, we hypothesize that BaseTech
drives the implementation ofDataTech andRobotTech, whileDataTech has a further positive
impact on the implementation of RobotTech. Beside the interconnectedness of different
technology bundles, the structural model also assesses their individual impact on the two
operations performance indicators (CostPerf and DiffPerf ). Furthermore, based on the
sandcone model (Ferdows and De Meyer, 1990) we also include a positive link between
differentiation performance and cost efficiency, arguing that better performance in terms of
quality, delivery and flexibility enables a manufacturing plant to become more cost efficient.
Finally, we propose that higher operations performance in terms of both indicators should
lead to a better business performance (BusPerf).

To further strengthen the validity of our research model, control variables are included.
The first control variable is related to the size of the manufacturing unit expressed as the
number of employees in 2016. To be able to perform further subgroup analyses, a binary
variable is created to differentiate between large manufacturing units and SMEs, the cutoff
value being at 250 employees. Size has been generally used as a contingency variable in
technology-related studies and can have a significant influence on technology investments
and performance (Sz�asz et al., 2023). The second control variable is related to the economic
development of the country the respondent unit is located in. We use the latest classification
of countries released by the IMF (2022) to differentiate between developed and developing
economies. Previous research has demonstrated that the country context might matter when
investigating technology use and their performance implications (Sz�asz et al., 2020). We
account for the impact of the two control variables on both operations performance indicators
(CostPerf and DiffPerf ) and on the business performance indicator (BusPerf ).

Finally, to estimate the relationships between the constructs, we run the PLS algorithm
with standardized data, stop criterion set to 1e�7, the maximum number of iterations to
3,000, the algorithm creating a total of 5,000 bootstrap samples. Path coefficients and
significance levels are summarized on Figure 2. For sake of simplicity, the effect of control
variables is not shown.

In terms of technology bundles, results of the structural model indicate that BaseTech has
a strong positive impact on DataTech (þ0.502, p5 0.000), which supports our presumption
that base technologies are a precondition to be able to generate and harness data related to
manufacturing. Furthermore, BaseTech also enables a higher level of implementation of
robotized and automated solutions (RobotTech), the two technology constructs being also
positively related to each other (þ0.285, p5 0.002). The effective implementation of robotized
and automated solutions (RobotTech) requires additional manufacturing data and the
capability to process these data (DataTech), which is also supported by the strong
relationship between the two latter constructs (þ0.348, p 5 0.000). Thus, while we created
separate manufacturing technology bundles, SEM results suggest that these technology
bundles reinforce each other, building up together the production system of
manufacturing firms.

Nevertheless, the separation of the three technology bundles is supported, beside EFAand
CFA results, by their differences in operational performance impacts. Base technologies alone
have no impact on operational performance, the path coefficient between BaseTech and the
two operational performance indicators (CostPerf, DiffPerf) not being significantly different
from zero (BaseTech→CostPerf: �0.037, p5 0.688; BaseTech→DiffPerf: �0.067, p5 0.508).
Data-based administrative technologies (DataTech) have a significantly negative impact on
cost performance (�0.239, p 5 0.003) and no significant impact on differentiation (þ0.145,
p5 0.139). This means that data-based technologies do not (yet) offer a competitive edge in
terms of differentiation and can actually harm the cost competitiveness of manufacturing
firms. On the other hand, robotization and automation (RobotTech) has a positive impact on
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cost performance (þ0.287, p5 0.002), meaning that these solutions can readily confer a cost
advantage for manufacturing companies, making their production operations more cost
efficient. At the same time, our results show no immediate positive impact at all on
differentiation (þ0.072, p5 0.521). Taken the opposite findings on the performance impact of
DataTech and RobotTech together, it is worth noting that the indirect effect of DataTech on
Cost Perf (i.e. DataTech→RobotTech→CostPerf ) is significantly positive (þ0.100, p5 0.016),
meaning that while DataTech directly harms the cost efficiency of the firm, it is a necessary
precondition for automation and robotization which in turn improves cost efficiency.

In terms of performance effects, there is a strong confirmation of interrelatedness between
operational performance indicators, DiffPerf being positively and significantly associated
with CostPerf (þ0.512, p 5 0.000), confirming the classic sandcone model (Ferdows and De
Meyer, 1990). Surprisingly, however, the impact of the two operational performance
indicators on business performance is positive, but not strong enough to become statistically
significant on the p5 0.05 level (CostPerf→BusPerf:þ0.174, p5 0.092; DiffPerf→BusPerf:
þ0.156, p 5 0.091). This result suggests that a competitive performance in terms of
differentiation or cost efficiency is not always directly and immediately translated to higher
business performance (i.e. sales and profitability) relative to competitors.

Robustness check
Given that technology bundles are not created along the division between traditional and I4.0
technologies (Table 4), we further assess whether I4.0 technologies do make a difference in
terms of the performance effect of different technology bundles. While doing so, we also
further test the robustness of our research model and the stability of the relationships when
eliminating certain items from our constructs (Hair et al., 2020). More specifically, we test the
same measurement and structural model as before (Table 5, Figure 2), but this time without
the two items that collectively describe I4.0 technologies (AMT and Smart). This way the
BaseTech and DataTech construct composition changes. Using a similar CFA approach,

Figure 2.
Results of the
structural model
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analysis shows that the constructs are valid and reliable without the two I4.0 items as well.
Thus, a research model containing purely traditional manufacturing technologies can be
tested using SEM. The results are detailed in Figure 3.

Results of the robustness check show that our structural model and path coefficients
remain stable even if some variables are removed from the model, further supporting the
reliability of our results. From a conceptual perspective, however, this finding means that the
addition of I4.0 technologies to the production system of manufacturing firms does not
significantly improve the performance impact of technology bundles, path coefficients
between the three technology bundles and the two operations performance indicators
remaining fairly stable. This suggests that I4.0 technologies cannot currently confer a general
competitive edge to manufacturing companies in terms of operations performance (note that
operations performance ismeasured as current performance of the respondent firm compared
to main competitors).

Multigroup analysis
Given the unexpected weak links between technology bundles and performance indicators,
we further perform multigroup analyses (MGA) along the categories of the control variables
involved in our study (Sarstedt et al., 2011). Given that measurement invariance between the
groups could only be established in case of the size variable, it is meaningful to compare the
path coefficients of the model between large manufacturing firms and SMEs only, while
the developed versus developing country approach has to be dropped (Henseler et al., 2016).
This difference might be accountable to the fact that only few developing countries were
involved in the study, while in terms of size, the sample is more balanced (Small andmedium-
sized enterprise (SME), n5 100; large, n5 65). Based on this result, we apply the bootstrap-
basedMGA and test whether path coefficients have significant differences between the large
and SMEmanufacturers. SmartPLS 4.0 offers multiple methods to test the significance of the

Figure 3.
Robustness check –

results of the structural
model without

I4.0 items
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path coefficient differences between subgroups. Table 8 lists the results based on both
bootstrap MGA, parametric test and the Welch-Satterthwaite test (Ringle et al., 2022).

MGA results suggest that themodel is fairly similar between large and SME firms, further
supporting the robustness of our results. Only two path coefficients are worth investigating
in terms of a significant difference between the two groups. The first one estimating the
impact of BaseTech on CostPerf is around the significance limit, two of the three tests
indicating that there might be a significant difference between the two groups. However,
given that the difference is quite weak in terms of p-values and that the path coefficients are
not significant in either of the two size categories (large: �0.173, p 5 0.100, SME: þ0.163,
p 5 0.213), this apparent difference has no meaningful conceptual relevance. On the other
hand, however, the impact of RobotTech on CostPerf seems to significantly differ between
large manufacturing firms and SMEs, all three tests indicating a statistically significant
difference between the two groups in terms of the value of the path coefficient. This finding
suggests that size acts as a moderator on the relationship between RobotTech and CostPerf:
large manufacturing units experience a strong positive impact of using RobotTech on cost
efficiency (þ0.527, p5 0.000), while the same relationship in SMEs becomes non-significant
(0.063, p 5 0.606). Thus, robotization and automation technologies can contribute to better
cost performance at large manufacturing units, while SMEs do not benefit of such cost
performance impact.

Discussion
Results of our analysis suggest that there are 3 main bundles of manufacturing technologies
(RQ1): (a) base technologies, that are fundamental manufacturing technologies that have an
overarching effect on the way products are produced (CNC technology, additive
manufacturing, flexible manufacturing systems, high precision technologies, etc.), that can
be complemented/enhanced by (b) automation and robotization (e.g. industrial robots,
automated materials handling and storage) and by (c) data-enabled technologies (e.g. MRP II/
ERP, kanban controlled JIT production, automatic product identification, connectivity
solutions, big data analytics, modeling and simulation). This result is partially in concordance
with previous AMT literature, which differentiates between manufacturing and
administrative technologies (note: AMT literature considers a third group too, referring to
design technologies, which were not examined in this paper) (Boyer et al., 1996; Jonsson, 2000;
Cheng et al., 2018). Our taxonomy confirms this separation, even when I4.0 technologies are
added to the equation. However, we found two subgroups within the manufacturing
technologies group (base technologies and automation/robotization). We assume that the key
difference between the two groups is the volume of products they handle. This assumption is
supported by the MGA, which shows a difference between the impacts of these technologies
on cost performance: large companies can benefit significantly more from implementing
automation/robotization.

An entirely novel and unexpected finding, however, is that our factor analysis indicates
that newly emerging I4.0 technologies are used complementary to already existing
technologies and do not form an independent bundle, as presumed by previous research.
New AMT complement other base technologies, while smart technologies complement
existing data-based technologies.While this result is quite logical, it questions the direction of
the literature, which deals exclusivelywith new I4.0 technologies (Benitez et al., 2023; Demeter
et al., 2021; Frank et al., 2019; Meindl et al., 2021), without taking into consideration how these
new technologies are combinedwithmore established ones. Thus, as recently suggested, “use
cases” of emerging technologies in connection with the existing technological base of
companies might provide a more practical way to extract value from I4.0 technologies
(Maghazei et al., 2022).

JMTM
35,9

16



L
ar
g
e

S
M
E

D
if
fe
re
n
ce

in
co
ef
f

(S
M
E
-la
rg
e)

p-
v
al
u
e
(l
ar
g
e
v
s
S
M
E
)

B
oo
ts
tr
ap

M
G
A

P
ar
am

et
ri
c
te
st

W
el
ch
-S
at
te
rh
w
ai
te

C
oe
ff

p-
v
al
u
e

C
oe
ff

p-
v
al
u
e

B
as
eT

ec
h
→

C
os
tP
er
f

�0
.1
73

0.
10
0

0.
16
3

0.
21
3

0.
33
6

0
.0
4
7

0.
06
6

0
.0
4
7

B
as
eT

ec
h
→

D
at
aT

ec
h

0
.4
8
7

0
.0
0
0

0
.5
0
0

0
.0
0
0

0.
01
3

0.
94
9

0.
92
2

0.
92
3

B
as
eT

ec
h
→

D
if
fP
er
f

0.
06
3

0.
67
0

�0
.0
70

0.
58
8

�0
.1
34

0.
50
2

0.
50
4

0.
49
8

B
as
eT

ec
h
→

R
ob
ot
T
ec
h

0.
21
5

0.
15
6

0
.3
2
3

0
.0
0
7

0.
10
8

0.
57
0

0.
57
3

0.
57
5

C
os
tP
er
f
→

B
u
sP
er
f

0.
15
5

0.
33
9

0.
18
8

0.
22
3

0.
03
3

0.
84
1

0.
88
7

0.
88
3

D
at
aT

ec
h
→

C
os
tP
er
f

�0
.3
3
0

0
.0
1
1

�0
.2
01

0.
06
2

0.
12
9

0.
44
0

0.
44
6

0.
44
4

D
at
aT

ec
h
→

D
if
fP
er
f

�0
.0
81

0.
69
0

0
.2
9
6

0
.0
1
2

0.
37
6

0.
10
1

0.
08
6

0.
11
0

D
at
aT

ec
h
→

R
ob
ot
T
ec
h

0
.4
8
4

0
.0
0
0

0
.2
6
8

0
.0
2
2

�0
.2
16

0.
21
0

0.
22
9

0.
22
2

D
if
fP
er
f
→

B
u
sP
er
f

0.
28
5

0.
06
9

0.
09
2

0.
47
9

�0
.1
93

0.
33
7

0.
34
3

0.
34
2

D
if
fP
er
f
→

C
os
tP
er
f

0
.6
2
2

0
.0
0
0

0
.5
0
3

0
.0
0
0

�0
.1
19

0.
32
8

0.
35
9

0.
33
8

R
ob
ot
T
ec
h
→

C
os
tP
er
f

0
.5
2
7

0
.0
0
0

0.
06
3

0.
60
6

�0
.4
65

0
.0
3
3

0
.0
1
6

0
.0
1
6

R
ob
ot
T
ec
h
→

D
if
fP
er
f

�0
.0
89

0.
71
6

0.
09
6

0.
48
7

0.
18
5

0.
51
1

0.
47
7

0.
51
0

N
o
te
(s
):
C
oe
ff
.5

p
at
h
co
ef
fi
ci
en
t;
v
al
u
es

in
it
al
ic
ar
e
si
g
n
if
ic
an
t
at

th
e
p
5

0.
05

le
v
el

S
o
u
rc
e
(s
):
A
u
th
or
s’
w
or
k

Table 8.
Multigroup analysis
results (large firms

versus SMEs)

Use of
technology

bundles

17



Results of the PLS-SEM show that the three technology bundles have different impacts on
operations performance (RQ2).

First, base technologies have no significant effect. This result is surprising as AMTs (both
older and newer ones) are claimed to have a positive effect on costs as well as on quality,
delivery or flexibility (Cheng et al., 2018; Jonsson, 2000; L�opez-Gomez et al., 2018; Sz�asz et al.,
2023). A possible explanation for this result can be that operations performance was
measured relative to competitors. Thus, the correct interpretation of our results is that if
companies apply the same technologies, they do not necessarily achieve higher performance
than the competitors (even if a performance improvement is attained). These results might
suggest that, as such base technologies spread in the economy, they become qualifying
factors – they are necessary to stay in competition, but do not readily offer a competitive
advantage. Adding the I4.0-related AMT to this bundle did not change the impact of base
technologies on operations performance, although probably some companies could gain
advantage by being first adopters. The question is, however, the ratio of the newest
technologies within the bundle. If it is low because of the slow and gradual adoption, then its
impact will be negligible.

Second, automation and robotization has a positive impact on cost efficiency, but no effect
on differentiation factors (quality, delivery, flexibility). Since technologies serving automatic
material handling and robotic technology are usually developed for mass production
purposes, having positive effect on costs while no differentiation effect makes sense. Thus, it
is not surprising either that additional subgroup analysis indicated that larger companies
could benefit significantly more than smaller ones, in line with previous findings (Sz�asz et al.,
2023). Given that these technologies can partially or fully replace humans (Acemoglu, 2017),
their economic return is direct and therefore easily measured and realized.

Third, results are different for data-enabled technologies. Data-based administrative
technologies have only a negative impact on costs (and no significant impact on
differentiation), suggesting that manufacturing companies that employ these technologies
incur higher operating costs relative to their competitors. Implementing these technologies
usually results in more complex systems, relying on additional ICT experts and data
scientists (Demeter et al., 2021). Therefore, especially at the beginning of these investments,
but due to fast developments of the field later on as well, these technology implementation
projects are more costly (Buer et al., 2021). Furthermore, they themselves do not add direct
value to operations as manufacturing automation and robotization technologies do.
Nevertheless, they still have positive indirect impact on performance, as they are
important enablers of better automation and robotization and in general can contribute to
faster and more evidence-based decision making or better capacity utilization (L�opez-Gomez
et al., 2018; Patrucco et al., 2022). Although not significant at 5% level, but at 10% both cost
and differentiation have a positive impact on business performance. Therefore, we can state
that technology investments might pay off for companies. The few existing findings in the
literature are also ambiguous in this aspect (Cheng et al., 2018; Jonsson, 2000). One potential
explanation could be related to a temporal aspect: technology investments need longer time to
pay off until their operational performance effects are translated to tangible, competitive
business performance gains.

Relevance and contribution
Manufacturing systems aremore andmore complex, combiningmany different technologies.
Understanding the relationship of these technologies is crucial, especially in a technology-
driven era. So far, literature used technology typologies without testing how they are bundled
in practice. Furthermore, newer I4.0 and older AMT technologies were not discussed
together, neither in terms of bundling, nor related to their potential performance benefits.
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Our paper aimed to partially fill this gap by relying on the arguments of the
complementarity theory, showing that different technology bundles exist that combine I4.0
technologies with traditional ones. Thus, our findings suggest that I4.0 technologies are
complementary to existing, traditional manufacturing technologies, instead of completely
replacing them and forming a separate bundle. Furthermore, we cannot witness a
breakthrough performance effect of I4.0 technologies. These findings support the
evolutionary, rather than the revolutionary perspective.

The existing literature typically classified technologies into three groups: design,
manufacturing and administrative technologies. Our findings indicate a notable distinction
within the manufacturing technologies, separating them into two key bundles with different
performance implications: base technologies (capable of flexible small-scale production) and
automation/robotization technologies (more efficient in large-scale manufacturing). These
technology bundles remain stable even when I4.0 technologies are added.

The practical relevance of our results is connected to the reality that manufacturing
companies encounter many obstacles with the introduction of I4.0 technologies and expected
performance impacts after the introduction are frequently lacking. Our study contributes to
easing these challenges by focusing on manufacturing technology bundles in a novel
approach and aiming to assess performance effects along these bundles.

Based on our research, on the one hand, companies should not expect quick business
return from their investments in base and administrative technologies. Still, they need to
make these investments: not to gain competitive advantage, but to remain in business.

On the other hand, leveraging automation/robotization can swiftly yield cost advantages.
However, for reaping the benefits, a substantial scale is necessary. Hence, this investment is
particularly worthwhile for larger enterprises. However, while automatization/robotization
can certainly yields results, realizing its full potential may require a more extended
timeframe.

Limitations and further research
A limitation of this study is that we only considered manufacturing and administrative
technologies connected to the production function, while neglecting design technologies, so
their relation to other technologies remains unclear. Furthermore, the technologies were
measured on a high level, without offering the possibility for a fine-grained assessment of
individual I4.0 technologies.

Another limitation is the timeframe of data collection (2016–2017).Whether I4.0 could gain
more ground in the following period and bring a revolutionary shift in technology bundling
and performance effects deserves further investigation.

As for additional further research, it would be worthwhile to investigate not only the
performance compared to competitors, which is surely important in the market, but also how
companies can improve operations performance in time due to investing into various
technology bundles. Furthermore, althoughwe found that company size affects the impact of
automation, it is still worth investigating whether production volume is the real cause behind
this result. Finally, it should be highlighted that during technology implementations the
technology is just one element and not necessarily the most important one to achieve success.
Therefore, it is a promising avenue for future research to consider all other elements of the
socio-technical system surrounding I4.0 implementation when assessing the success of such
projects.

References

Acemoglu, D. (2017), Automation and the Future of Jobs, Toulouse School of Economics, Toulouse.

Use of
technology

bundles

19



Beaumont, N., Schroder, R. and Sohal, A. (2002), “Do foreign-owned firms manage advanced
manufacturing technology better?”, International Journal of Operations and Production
Management, Vol. 22 No. 7, pp. 759-771, doi: 10.1108/01443570210433535.

Benitez, G.B., Ghezzi, A. and Frank, A.G. (2023), “When technologies become Industry 4.0 platforms:
defining the role of digital technologies through a boundary-spanning perspective”,
International Journal of Production Economics, Vol. 260, 108858, doi: 10.1016/j.ijpe.2023.108858.

Boyer, K.K., Ward, P.T. and Leong, G.K. (1996), “Approaches to the factory of the future. An empirical
taxonomy”, Journal of Operations Management, Vol. 14 No. 4, pp. 297-313, doi: 10.1016/s0272-
6963(96)00093-9.

Boyer, K.K., Leong, G.K., Ward, P.T. and Krajewski, L.J. (1997), “Unlocking the potential of
advanced manufacturing technologies”, Journal of Operations Management, Vol. 15 No. 4,
pp. 331-347, doi: 10.1016/s0272-6963(97)00009-0.

Buer, S.-V., Semini, M., Strandhagen, J.O. and Sgarbossa, F. (2021), “The complementary effect of lean
manufacturing and digitalisation on operational performance”, International Journal of
Production Research, Vol. 59 No. 7, pp. 1976-1992, doi: 10.1080/00207543.2020.1790684.

Chan, D. (1998), “Functional relations among constructs in the same content domain at different levels
of analysis: a typology of composition models”, Journal of Applied Psychology, Vol. 83 No. 2,
pp. 234-246, doi: 10.1037/0021-9010.83.2.234.

Cheng, Y., Matthiesen, R., Farooq, S., Johansen, J., Hu, H. and Ma, L. (2018), “The evolution of
investment patterns on advanced manufacturing technology (AMT) in manufacturing
operations: a longitudinal analysis”, International Journal of Production Economics, Vol. 203,
pp. 239-253, doi: 10.1016/j.ijpe.2018.06.019.

Chiarini, A. and Kumar, M. (2021), “Lean Six Sigma and Industry 4.0 integration for operational
excellence: evidence from Italian manufacturing companies”, Production Planning and Control,
Vol. 32 No. 13, pp. 1084-1101, doi: 10.1080/09537287.2020.1784485.

Choi, B., Poon, S.K. and Davis, J.G. (2008), “Effects of knowledge management strategy on
organizational performance: a complementarity theory-based approach”, Omega, Vol. 36 No. 2,
pp. 235-251, doi: 10.1016/j.omega.2006.06.007.

Cimini, C., Boffelli, A., Lagorio, A., Kalchschmidt, M. and Pinto, R. (2020), “How do Industry 4.0
technologies influence organisational change? An empirical analysis of Italian SMEs”, Journal
of Manufacturing Technology Management, Vol. 32 No. 3, pp. 695-721, doi: 10.1108/jmtm-04-
2019-0135.

Culot, G., Nassimbeni, G., Orzes, G. and Sartor, M. (2020), “Behind the definition of Industry 4.0:
analysis and open questions”, International Journal of Production Economics, Vol. 226, 107617,
doi: 10.1016/j.ijpe.2020.107617.

Dalenogare, L.S., Benitez, G.B., Ayala, N.F. and Frank, A.G. (2018), “The expected contribution of
Industry 4.0 technologies for industrial performance”, International Journal of Production
Economics, Vol. 204, pp. 383-394, doi: 10.1016/j.ijpe.2018.08.019.

Dangayach, D.S. and Desmukh, S.G. (2005), “Advanced manufacturing technology implementation:
evidence from Indian small and medium enterprises (SMEs)”, Journal of Manufacturing
Technology Management, Vol. 16 No. 5, pp. 483-496, doi: 10.1108/17410380510600473.

Das, A., Narasimhan, R. and Talluri, S. (2006), “Supplier integration—finding an optimal
configuration”, Journal of Operations Management, Vol. 24 No. 5, pp. 563-582, doi: 10.1016/j.
jom.2005.09.003.

Demeter, K., Sz�asz, L. and R�acz, B.G. (2016), “The impact of subsidiaries’ internal and external
integration on operational performance”, International Journal of Production Economics,
Vol. 182, pp. 73-85, doi: 10.1016/j.ijpe.2016.08.014.

Demeter, K., Losonci, D. and Nagy, J. (2021), “Road to digital manufacturing”, Journal of
Manufacturing Technology Management, Vol. 32 No. 3, pp. 820-839, doi: 10.1108/jmtm-06-
2019-0226.

JMTM
35,9

20

https://doi.org/10.1108/01443570210433535
https://doi.org/10.1016/j.ijpe.2023.108858
https://doi.org/10.1016/s0272-6963(96)00093-9
https://doi.org/10.1016/s0272-6963(96)00093-9
https://doi.org/10.1016/s0272-6963(97)00009-0
https://doi.org/10.1080/00207543.2020.1790684
https://doi.org/10.1037/0021-9010.83.2.234
https://doi.org/10.1016/j.ijpe.2018.06.019
https://doi.org/10.1080/09537287.2020.1784485
https://doi.org/10.1016/j.omega.2006.06.007
https://doi.org/10.1108/jmtm-04-2019-0135
https://doi.org/10.1108/jmtm-04-2019-0135
https://doi.org/10.1016/j.ijpe.2020.107617
https://doi.org/10.1016/j.ijpe.2018.08.019
https://doi.org/10.1108/17410380510600473
https://doi.org/10.1016/j.jom.2005.09.003
https://doi.org/10.1016/j.jom.2005.09.003
https://doi.org/10.1016/j.ijpe.2016.08.014
https://doi.org/10.1108/jmtm-06-2019-0226
https://doi.org/10.1108/jmtm-06-2019-0226


Dunlap, W.P., Burke, M.J. and Smith-Crowe, K. (2003), “Accurate tests of statistical significance for r
[wg] and average deviation interrater agreement indexes”, Journal of Applied Psychology, Vol. 88
No. 2, pp. 356-262, doi: 10.1037/0021-9010.88.2.356.

Enrique, D.V., Marodin, G.A., Santos, F.B.C. and Frank, A.G. (2022), “Implementing Industry 4.0 for
flexibility, quality, and productivity improvement: technology arrangements for different
purposes”, International Journal of Production Research, Vol. 61 No. 20, pp. 1-26, doi: 10.1080/
00207543.2022.2142689.

Faul, F., Erdfelder, E., Lang, A.G. and Buchner, A. (2007), “G* Power 3: a flexible statistical power
analysis program for the social, behavioral, and biomedical sciences”, Behavior Research
Methods, Vol. 39 No. 2, pp. 175-191, doi: 10.3758/bf03193146.

Ferdows, K. and De Meyer, A. (1990), “Lasting improvements in manufacturing performance: in
search of a new theory”, Journal of Operations Management, Vol. 9 No. 2, pp. 168-184.

Fischer, S., Frese, M., Mertins, J.C., Hardt, J.V., Flock, T., Schauder, J., Schmitz, M. and Wiegel, J. (2014),
“Climate for personal initiative and radical and incremental innovation in firms: a validation
study”, Journal of Enterprising Culture, Vol. 22 No. 01, pp. 91-109, doi: 10.1142/
s0218495814500046.

Frank, A.G., Dalenogare, L.S. and Ayala, N.F. (2019), “Industry 4.0 technologies: implementation
patterns in manufacturing companies”, International Journal of Production Economics, Vol. 210,
pp. 15-26, doi: 10.1016/j.ijpe.2019.01.004.

Frohlich, M.T. and Westbrook, R. (2001), “Arcs of integration: an international study of supply chain
strategies”, Journal of Operations Management, Vol. 19 No. 2, pp. 185-200, doi: 10.1016/s0272-
6963(00)00055-3.

Furlan, A., Vinelli, A. and Dal Pont, G. (2011), “Complementarity and lean manufacturing bundles: an
empirical analysis”, International Journal of Operations and Production Management, Vol. 31
No. 8, pp. 835-850, doi: 10.1108/01443571111153067.

Gartner (2018), Gartner Hype Cycle, available at: https://www.gartner.com/en/research/methodologies/
gartner-hype-cycle (accessed 8 April 2019).

Gastaldi, L., Lessanibahri, S., Tedaldi, G. and Miragliotta, G. (2022), “Companies’ adoption of Smart
Technologies to achieve structural ambidexterity: an analysis with SEM”, Technological
Forecasting and Social Change, Vol. 174, 121187, doi: 10.1016/j.techfore.2021.121187.

Guidetti, G. and Mazzanti, M. (2007), “Firm-level training in local economic systems:
complementarities in production and firm innovation strategies”, The Journal of Socio-
Economics, Vol. 36 No. 6, pp. 875-894, doi: 10.1016/j.socec.2007.01.021.

Hair, J.F., Howard, M.C. and Nitzl, C. (2020), “Assessing measurement model quality in PLS-SEM using
confirmatory composite analysis”, Journal of Business Research, Vol. 109, pp. 101-110, doi: 10.
1016/j.jbusres.2019.11.069.

Hair, J., Hult, G., Ringle, C. and Sarstedt, M. (2021), A Primer on Partial Least Squares Structural
Equation Modeling (PLS-SEM), SAGE, Washington DC.

Henseler, J., Ringle, C.M. and Sarstedt, M. (2016), “Testing measurement invariance of composites
using partial least squares”, International Marketing Review, Vol. 33 No. 3, pp. 405-431, doi: 10.
1108/imr-09-2014-0304.

IMF (2022), World Economic Outlook, International Monetary Fund, January 2022, Washington, DC.

Jonsson, P. (2000), “An empirical taxonomy of advanced manufacturing technology”, International
Journal of Operations and Production Management, Vol. 20 No. 12, pp. 1446-1474, doi: 10.1108/
01443570010353103.

Klein, K.J. and Kozlowski, S.W.J. (2000), “From micro to meso: critical steps in conceptualizing and
conducting multilevel research”, Organizational Research Methods, Vol. 3 No. 3, pp. 211-236,
doi: 10.1177/109442810033001.

Use of
technology

bundles

21

https://doi.org/10.1037/0021-9010.88.2.356
https://doi.org/10.1080/00207543.2022.2142689
https://doi.org/10.1080/00207543.2022.2142689
https://doi.org/10.3758/bf03193146
https://doi.org/10.1142/s0218495814500046
https://doi.org/10.1142/s0218495814500046
https://doi.org/10.1016/j.ijpe.2019.01.004
https://doi.org/10.1016/s0272-6963(00)00055-3
https://doi.org/10.1016/s0272-6963(00)00055-3
https://doi.org/10.1108/01443571111153067
https://www.gartner.com/en/research/methodologies/gartner-hype-cycle
https://www.gartner.com/en/research/methodologies/gartner-hype-cycle
https://doi.org/10.1016/j.techfore.2021.121187
https://doi.org/10.1016/j.socec.2007.01.021
https://doi.org/10.1016/j.jbusres.2019.11.069
https://doi.org/10.1016/j.jbusres.2019.11.069
https://doi.org/10.1108/imr-09-2014-0304
https://doi.org/10.1108/imr-09-2014-0304
https://doi.org/10.1108/01443570010353103
https://doi.org/10.1108/01443570010353103
https://doi.org/10.1177/109442810033001


Kock, N. and Lynn, G. (2012), “Lateral collinearity and misleading results in variance-based SEM: an
illustration and recommendations”, Journal of the Association for Information Systems, Vol. 13
No. 7, pp. 546-580, doi: 10.17705/1jais.00302.

L�opez-G�omez, C., McFarlane, D., O’Sullivan, E. and Velu, C. (2018), The Practical Impact of Digital
Manufacturing: Results from Recent International Experience, IfM University of Cambridge,
available at: https://www.ifm.eng.cam.ac.uk/insights/digital-manufacturing/the-practical-
impact-of-digital-manufacturing:-results-from-recent-international-experience/ (accessed 7
January 2020).

Losonci, D., L}orincz, L., Gran�at, M. and Demeter, K. (2022), “Directions of digitalisation and their
relationship to business performance”, Paper Presented at EurOMA 2022 Conference.

Maghazei, O., Lewis, M.A. and Netland, T. (2022), “Emerging technologies and the use case: a multi-
year study of drone adoption”, Journal of Operations Management, Vol. 68 Nos 6-7, pp. 560-591,
doi: 10.1002/joom.1196.

Meindl, B., Ayala, N.F., Mendonca, J. and Frank, A.G. (2021), “The four smarts of Industry 4.0:
evolution of ten years of research and future perspectives”, Technological Forecasting and Social
Change, Vol. 168, 120784, doi: 10.1016/j.techfore.2021.120784.

Patrucco, A., Moretto, A., Trabucchi, D. and Golini, R. (2022), “How do Industry 4.0 technologies boost
collaborations in buyer-supplier relationships?”, Research-Technology Management, Vol. 65
No. 1, pp. 48-58, doi: 10.1080/08956308.2021.1999131.

Podsakoff, P.M., MacKenzie, S.B., Lee, J.Y. and Podsakoff, N.P. (2003), “Common method biases in
behavioral research: a critical review of the literature and recommended remedies”, Journal of
Applied Psychology, Vol. 88 No. 5, pp. 879-903, doi: 10.1037/0021-9010.88.5.879.

Raj, A., Dwivedi, G., Sharma, A., Jabbour, A.B.L. and Rajak, S. (2020), “Barriers to the adoption of
Industry 4.0 technologies in the manufacturing sector: an inter-country comparative
perspective”, International Journal of Production Economics, Vol. 224, 107546, doi: 10.1016/j.
ijpe.2019.107546.

Ringle, C.M., Wende, S. and Becker, J.-M. (2022), SmartPLS 4, SmartPLS GmbH, Oststeinbek, available
at: http://www.smartpls.com

Sarstedt, M., Henseler, J. and Ringle, C.M. (2011), “Multigroup analysis in partial least squares (PLS)
path modeling: alternative methods and empirical results”, in Measurement and Research
Methods in International Marketing, Emerald Group Publishing, pp. 195-218.

Schwab, K. (2016), The Fourth Industrial Revolution, Portfolio Penguin, London.

Shah, R. and Ward, P.T. (2003), “Lean manufacturing: context, practice bundles, and performance”,
Journal of Operations Management, Vol. 203 No. 2, pp. 129-149, doi: 10.1016/s0272-6963(02)00108-0.

Sz�asz, L., Demeter, K., R�acz, B.-G. and Losonci, D. (2020), “Industry 4.0: a review and analysis of
contingency and performance effects”, Journal of Manufacturing Technology Management,
Vol. 32 No. 3, pp. 667-694, doi: 10.1108/jmtm-10-2019-0371.

Sz�asz, L., Demeter, K., Cs�ıki, O. and Horv�ath, R. (2023), “Technology, lean, quality and human resource
practices in manufacturing: how does size as a contingency factor matter?”, Journal of
Manufacturing Technology Management, Vol. 34 No. 2, pp. 234-264, doi: 10.1108/jmtm-05-
2022-0213.

Tortorella, G.L. and Fettermann, D. (2018), “Implementation of Industry 4.0 and lean production in
Brazilian manufacturing companies”, International Journal of Production Research, Vol. 56
No. 8, pp. 2975-2987, doi: 10.1080/00207543.2017.1391420.

Tortorella, G.L., Saurin, T.A., Filho, M.G., Samson, D. and Kumar, M. (2021), “Bundles of Lean
Automation practices and principles and their impact on operational”, International Journal of
Production Economics, Vol. 235, 108106, doi: 10.1016/j.ijpe.2021.108106.

Udo, G.J. and Ehie, I.C. (1996), “Advanced manufacturing technologies: determinants of
implementation success”, International Journal of Operations and Production Management,
Vol. 16 No. 12, pp. 6-26, doi: 10.1108/01443579610151733.

JMTM
35,9

22

https://doi.org/10.17705/1jais.00302
https://www.ifm.eng.cam.ac.uk/insights/digital-manufacturing/the-practical-impact-of-digital-manufacturing:-results-from-recent-international-experience/
https://www.ifm.eng.cam.ac.uk/insights/digital-manufacturing/the-practical-impact-of-digital-manufacturing:-results-from-recent-international-experience/
https://doi.org/10.1002/joom.1196
https://doi.org/10.1016/j.techfore.2021.120784
https://doi.org/10.1080/08956308.2021.1999131
https://doi.org/10.1037/0021-9010.88.5.879
https://doi.org/10.1016/j.ijpe.2019.107546
https://doi.org/10.1016/j.ijpe.2019.107546
http://www.smartpls.com
https://doi.org/10.1016/s0272-6963(02)00108-0
https://doi.org/10.1108/jmtm-10-2019-0371
https://doi.org/10.1108/jmtm-05-2022-0213
https://doi.org/10.1108/jmtm-05-2022-0213
https://doi.org/10.1080/00207543.2017.1391420
https://doi.org/10.1016/j.ijpe.2021.108106
https://doi.org/10.1108/01443579610151733


V�azquez-Bustelo, D., Avella, L. and Fern�andez, E. (2007), “Agility drivers, enablers and outcomes:
empirical test of an integrated agile manufacturing model”, International Journal of Operations
and Production Management, Vol. 27 No. 12, pp. 1303-1332, doi: 10.1108/01443570710835633.

Voss, C.A. (2005), “Paradigms of manufacturing strategy re-visited”, International Journal of Operations
and Production Management, Vol. 25 No. 12, pp. 1223-1227, doi: 10.1108/01443570510633620.

Corresponding author
Krisztina Demeter can be contacted at: krisztina.demeter@uni-corvinus.hu

For instructions on how to order reprints of this article, please visit our website:
www.emeraldgrouppublishing.com/licensing/reprints.htm
Or contact us for further details: permissions@emeraldinsight.com

Use of
technology

bundles

23

https://doi.org/10.1108/01443570710835633
https://doi.org/10.1108/01443570510633620
mailto:krisztina.demeter@uni-corvinus.hu

	Fourth industrial (r)evolution? Investigating the use of technology bundles and performance implications
	Quick value overview
	Introduction
	Literature review
	Technology bundles
	Performance effects of technology bundles

	Research methodology
	Data
	Measures

	Analysis
	Structural model assessment and findings
	Robustness check
	Multigroup analysis

	Discussion
	Relevance and contribution
	Limitations and further research
	References


