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Abstract

Purpose — The recent innovations of Industry 4.0 have made it possible to easily collect data related to a
production environment. In this context, information about industrial equipment — gathered by proper
sensors — can be profitably used for supporting predictive maintenance (PdM) through the application of data-
driven analytics based on artificial intelligence (AI) techniques. Although deep learning (DL) approaches have
proven to be a quite effective solutions to the problem, one of the open research challenges remains — the design
of PAM methods that are computationally efficient, and most importantly, applicable in real-world internet of
things (IoT) scenarios, where they are required to be executable directly on the limited devices’ hardware.
Design/methodology/approach — In this paper, the authors propose a DL approach for PdM task, which is
based on a particular and very efficient architecture. The major novelty behind the proposed framework is to
leverage a multi-head attention (MHA) mechanism to obtain both high results in terms of remaining useful life
(RUL) estimation and low memory model storage requirements, providing the basis for a possible
implementation directly on the equipment hardware.

Findings — The achieved experimental results on the NASA dataset show how the authors’ approach
outperforms in terms of effectiveness and efficiency the majority of the most diffused state-of-the-art techniques.
Research limitations/implications — A comparison of the spatial and temporal complexity with a typical
long-short term memory (LSTM) model and the state-of-the-art approaches was also done on the NASA dataset.
Despite the authors’ approach achieving similar effectiveness results with respect to other approaches, it has a
significantly smaller number of parameters, a smaller storage volume and lower training time.

Practical implications — The proposed approach aims to find a compromise between effectiveness and
efficiency, which is crucial in the industrial domain in which it is important to maximize the link between
performance attained and resources allocated. The overall accuracy performances are also on par with the
finest methods described in the literature.

Originality/value — The proposed approach allows satisfying the requirements of modern embedded Al
applications (reliability, low power consumption, etc.), finding a compromise between efficiency and
effectiveness.
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1. Introduction

Currently, we are living in the Industry 4.0 era that refers to the ongoing automation of
traditional manufacturing and industrial practices by using modern smart technologies, such
as mternet of things (IoT) and artificial intelligence (Al) (Hansen and Bogh, 2021). In this
context, an increasing integration between physical and digital systems of production
environments is more and more required, allowing the collection of large amounts of data that
are gathered by different and distributed smart equipment and sensors.

Generally speaking, smart sensors are particular devices which generate data regarding
physical parameters (e.g. temperature, humidity or vibration speed, etc.) and can provide
further functionalities from self-monitoring and self-configuration to efficiently manage
complex processes (Zhang et al., 2019).

The analysis of such data provides at the same time useful information about the health
status of the machinery and the level of production. By applying data driven analytic
approaches, it is then possible to find important results for strategic decision-making,
providing advantages such as: maintenance cost reduction, machine fault reduction, spare
parts inventory reduction and increased production.

Most of these benefits certainly concern maintenance procedures. This aspect is
particularly critical in the industrial field because it has a strong impact on the production and
availability of the offered services. Nowadays, the industry is making significant investments
for equipping itself with the elements necessary for applying maintenance strategies based
on gathered data.

In the literature, there are two main kinds of approaches for supporting maintenance
tasks, namely model-driven and data-driven methods, but also hybrid-driven approaches have
also become popular in recent years. Specifically, model-driven techniques require expert’s
strong theoretical understanding to model the behavior of equipment and its detailed
degradation process (Petrillo ef al.,, 2020; Liu et al, 2022). From the other hand, as mentioned
above, thanks to the huge amount of information that is possible to collect, data-driven
techniques are emerging as the more promising ones to detect anomalies in the operation of
the machinery. Regarding hybrid-driven solutions, they are based on the construction of
multi-domain models and the development of hybrid algorithms in order to achieve model
and data fusion (Luo et al., 2020; Zhang et al., 2022a, b).

According to Susto et al. (2015), approaches for maintenance management can be further
grouped into three categories: run-to-failure (R2F), preventive maintenance (PvM) and
predictive maintenance (PdM). Here, we focused on PdM, where maintenance is performed
based on the health status of the specific equipment as reported by attached sensors.
Through data driven analysis techniques, it is possible to know when the machinery is going
to fail and then planning maintenance procedures accordingly. Basically, maintenance
operations are conducted only when necessary, without waiting for machinery to report a
fault. With this strategy, companies can save costs due to unnecessary maintenance, but also
increase the longevity of the machine. Nevertheless, critical PAM requires several strictly
requirements such as reliability, low latency, privacy and power (Mohammadi ef al., 2018;
Sharma et al., 2019).

As in many other areas concerned with huge amount of complex data to be analyzed,
approaches exploiting machine learning (ML) and deep learning (DL) techniques appear to be
the best among the diverse array of modern PAM techniques (Carvalho et al., 2019; Ran et al.,
2019; Rieger et al., 2019). Such approaches usually leverage historical datasets, structured as
labeled time series about equipment operations, to train a variety of regression/classification
models which can then be used to predict possible failures, in terms of remaining useful life
(RUL) estimation.

Although DL approaches have proven to be a quite effective solution to the PAM problem,
one of the open research challenges remains the design of PdM methods that are



computationally efficient, and most importantly, applicable in real-world IoT scenarios,
where they are required to be executable directly on the limited devices’ hardware.

Indeed, one of the most important issues for deploying DL architectures in real production
scenario is related to the required high computational resources, not available for current
equipment micro-controllers, thus favoring cloud or edge/fog computing solutions, which
efficiency is often influenced by network connectivity (Teoh et al., 2023).

To overcome such problems, embedded Al techniques are more and more diffusing to
propose efficient and not computational expensive data driven analysis approach, directly
executable on devices’ hardware of industrial equipment (Brandalero et al., 2020).

In this paper, we propose a DL approach for PdM task, which is based on a particular and
very efficient architecture. The major novelty behind the proposed framework is to leverage a
multi-head attention (MHA) mechanism to obtain both high results in terms of RUL
estimation and low memory model storage requirements, providing the basis for a possible
implementation directly on the equipment hardware. The attention mechanism has gained a
lot of popularity in last years for its better capacities in several analytics tasks (e.g. NLP) in
terms of achieved results and model complexity than recurrent models. For this reason, our
basic intuition has been to rearrange such a mechanism to analyze time-series data.
The achieved experimental results on the NASA dataset show how our approach
outperforms in terms of effectiveness and efficiency the majority of the most diffused state
of the art techniques, thus providing a suitable solution for PdM in real scenarios.

The paper is organized as in the following. Section 2 reports the related work about PAM
approaches and the related challenges, while Section 3 describes the proposed methodology
together with the introduced deep architecture for PdM task. Sections 4 and 5 present the
experimental protocol and the achieved results, respectively. Finally, Section 6 reports a final
discussion together with some conclusions and future work.

2. Related work

PdM is one of the hottest research topics of recent years and several techniques have been
developed in this area. More in detail, the spread of IoT and Al technologies has led several
studies to design data-driven methodologies based on ML and DL, exploiting techniques
for time series analysis and mining (see Tortorella ef al., 2022 and Lundgren et al., 2021).
In addition, a recent study proposed by Sala et al. (2021) underlines the features of a
framework for PdM capable of jointly analyzing historical and real-time data, to make a
continuous improvement of its performances.

Some of the most popular proposals are summarized in Table 1, where it is easy to note as
the majority of the approaches is based on long-short term memory (LSTM) networks and
comvolutional neural networks (CNNs). Among the plethora of DL approaches, the most
interesting ones for benchmark aims are surely those leveraging the Nasa Turbofan Engine
dataset. In particular, the most recent methods that have inspired our work can be classified
into two broad categories: Recurrent models and Hybrid models (see Table 2). In the following,
we are describing the adopted criteria for literature section, the discussed models and how our
proposal overcomes the related limitations.

2.1 Selection criteria
The literature review was conducted following the guidelines introduced by Durach et al.
(2017) and Dekkers et al. (2021), which are applicable in different disciplines to achieve quality
systematic research.

Specifically, several steps were applied including, first, defining the research question to
be met; finding samples of the relevant literature; synthesizing the literature found and
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Chen Automobile AE + DNN Estimation of TBF of Private
et al. (2019) an automobile
Wang Railway LSTM with residual Prediction of the next Private
et al. (2020) Power connections failure time
538 Equipment
Kiangala and Conveyor GAF + CNN A class corresponding ~ Private
Wang (2020) Motor to: No Fault, Minor
Fault and Critical Fault
Wu et al. (20200 Motor Bearing LSTM Health Status NASA
Bearing
Dataset
Zare and Wind Turbine  Texture Signal Health Status or a Synthetic
Ayati (2021) Images + Multichannel specific fault
CNN
Li et al. (2019) Rotating SAE + LSTM / Private
Machine
Chen Rolling CNN + Bid. RUL Private
et al. (2020) Bearing GRU + Attention
mechanism
Garcia Helicopter Time-series Anomaly detection Airbus
et al. (2020) imaging + CAE
Martinez- Milling GAF + CNN Tool wear class Milling
Arellano Machine Machine
et al. (2019) Cutter Dataset
(PHM10)
Pinedo- Rolling GS 4+ CNN Tool wear class NASA
Sanchez Bearing Bearing
et al. (2020) Dataset
Luetal (2020)  Hard Disk CNN-LSTM A class indicating HDD Dataset
whether or not an HDD
is going to fail
Yang Hard Disk LSTM A class indicating ZTE’s disk
et al. (2020) whether or not an HDD  dataset
is going to fail
De Santo Hard Disk LSTM A class representing HDD
et al. (2022) the health state of the Backblaze
Table 1. HDD dataset
A summary of the most Purohit Industrial Autoencoder Anomaly detection MIMII Dataset
recent papers et al. (2019) equipment
regarding deep Ferraro Hard Disk GAF + CNN A class representing HDD
learning models for et al. (2020) the health state of the Backblaze
predictive maintenance HDD dataset
Ref Year Deep learning (DL) approach
Aydemir and Acar (2020) 2020  Anomaly triggered long short-term memory (LSTM)

Table 2.

A summary of the most
recent papers
regarding NASA
turbofan engine
dataset

Listou Ellefsen
et al. (2019)
Ragab ef al. (2021)

Al-Dulaimi et al. (2019)

Falcon et al. (2020)

Al-Dulaimi et al. (2020)

2019
2020
2019
2020

2020

Restricted Boltzmann machine (RBM) + long short-term memory (LSTM)

Long short-term memory (LSTM) with attention
Long short-term memory (LSTM) + convolutional neural network (CNN)
Multi-head attention (MHA) + LSTM + CNN + neural turing machine

(NTM)

Noisy bidirectional long short-term memory (BLSTM) + CNN




reporting the results. Operationally, we focused on retrieving the most relevant published
works in the field of PAM with DL-based approaches in different industrial contexts, with
special emphasis on those that used our own dataset for experimentation (see Table 1). Works
based on recurrent and hybrid network models were the considered. Eventually, the literature
study led to the answer to what are the open research challenges in the PdM field.

In detail, articles on Scopus and Google Scholar in the time interval 2017-2022 were
consulted and the following keywords, also combined, were used:

» o«

“predictive maintenance”, “deep learning”, “recurrent model”, “hybrid”, “machine learning”,
“attention mechanism” and “multi-head attention”.

To be specific, based on the selection criteria defined by the keywords above, 21 articles were
collected, 17 of which were retrieved from Scopus and four from Google Scholar. A screening
of the abstract and methodology was performed, while for only those articles that used the
Nasa Turbofan Engine Dataset, a full-paper screening was conducted.

2.2 Recurrvent models

Aydemir and Acar (2020) recently proposed a framework composed by two principal
components. The first is responsible of detecting a significant deviation from the normal
(healthy) condition and successively the second part (an LSTM model) is triggered for the RUL
estimation. The proposed system is based on continuously checking for an anomaly and
initiating continuous RUL estimation only after anomaly is detected on streaming sensor data.

Another interesting approach based on LSTM has been designed by Sohaidan et al. (2021)
for estimating RUL, unveiling hidden patterns through the analysis of sensors sequence
information. Similarly, Hesabi et al. (2022) relied upon a further LSTM model with data-driven
approach to predict failures based on real working conditions and dynamic loading.

An encoder-decoder architecture based on LSTM has been then used by Ragab et al. (2021),
also introducing an attention mechanism to deal with very long sequence. Specifically, by
focusing on one aspect of the input (text, image, etc.) while paying less attention to others,
attention mechanisms help direct and enhance the training process, also unveiling the
relationships between input and output Niu ef al. (2021) (see Section 3 for more details).
Likewise, Li et al. (2022) introduced another LSTM-based attention mechanism to improve the
ability of the model to analyze a sequence of signals in survival analysis. In turn, Chen et al.
(2021) proposed a PdM system based on LSTM network adapted on FPGA, whose aim is to
jointly reduce power consumption and management cost.

One of the issues related to supervised PdM applications is the lack of an adequate amount
of labeled data. To challenge this problem, Listou Ellefsen ef al. (2019) investigated the effect
of unsupervised pre-training in RUL predictions utilizing a semi-supervised setup.
Specifically, in the first layer a restricted Boltzmann machine (RBM) was utilized as an
unsupervised pre-training stage in order to automatically learn abstract features from raw
unlabeled input data and to initialize the weights in a region near a good starting point before
supervised fine-tuning of the whole architecture was conducted. Next, LSTM is leveraged to
learn long-term dependencies. Finally, a fully connected output layer is attached to perform
RUL prediction.

2.3 Hybrid models

Al-Dulaimi et al. (2019) proposed a hybrid deep neural network model (HDNN), composed by two
parallel paths (LSTM and CNN) followed by a fully connected layer to combine both output to
predict the target RUL. This framework uses the LSTM path to extract temporal features while
simultaneously the CNN is utilized to extract spatial features. An extension of this approach has
been then designed by Al-Dulaimi et al. (2020), introducing a dual path DL architecture which is
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trained with noisy input data (noisy bidirectional LSTM - NBLSTM). They highlighted that
training on noisy data, in particular using a Gaussian Noise, could improve the robustness of
the model leading to significantly robust and enhanced generalization behavior.

Recently, Falcon et al. (2020) proposed a dual-stream architecture, which consists of a
MHA and a neural Turing machine module. Briefly, the time-series are first cut into shorter
windows. For the labeling of these windows, piece-wise linear degradation model was used
with the maximum value of the RUL fixed to 125. The obtained windows are then fed to the
MHA module, which is a mean for identifying the existing relations between different sensor
data in order to reveal hidden patterns among them. The output of the MHA module is then
given as input to the networks in each stream. The features extracted by the LSTMs of the
first stream and by the CNN of the second one are concatenated to the augmented features
computed by the NTM module. At the end, two stacked feedforward networks are used to
map the extracted features to a sequence of RUL values.

Hong et al. (2021) presented the ConwNet model using a CNN-LSTM network for
estimating RUL of a turbofan engine, also reducing the number of parameters, while Zhang
et al. (2022a, b) proposed a novel bi-directional gated recurrent unit with temporal self-
attention mechanism (BiGRU-TSAM) to predict RUL.

Finally, Shcherbakov and Sai (2022) proposed a hybrid multi-task DL approach that
integrates the advantages of CNN and LSTM networks. The former has been used as features
extractor while the latter is used to capture the long-term temporary dependency features.

2.4 Research challenges in predictive maintenance
Despite numerous efforts have been made for developing approaches for PAM in recent years,
a set of drawbacks can be identified.

(1) Dueto the inherently sequential nature of recurrent neural networks (RNNs), this type
of model precludes parallelization within training examples.

(2) When training this type of network the length of time window feeding as input could
be anissue. Indeed, RNN suffers from the vanishing and explosion gradient problems.
If the sequence is too long, it becomes difficult for the model to retain information
about the first timesteps when processing the last ones. Although LSTMs are a type
of RNN specifically designed to solve this problem, it still remains an important issue
when dealing with very long-term dependencies.

Furthermore, another disadvantage of the reported frameworks concern their complexity.
Even if not explicitly explained, it is clear from the models’ descriptions that they have a lot of
parameters, thus they require a significant storage space. Authors often do not consider this
type of complexity, although it is one of the more important aspect when deploying PdM
models. Indeed, the hardware usually hosting these models is resource constraint, especially
in terms of memory size and power consumption.

Therefore, it is important to design fast analytics in smaller scale platforms for critical
PdM applications to satisfy different requirements, as shown in Mohammadi et al. (2018).

(1) reliability: relying on an Internet connection may not be a viable option;

(2) low latency: these type of applications need an immediate response: transferring data
to a cloud server for analysis and returning back the response is subject to latency
that could cause problems;

(3) privacy: machinery-related data may be private and therefore should not be
transmitted or stored in external places;

(4) power: moving data requires more energy.



Driven by the success obtained by transformer models in natural language processing (NLP)
tasks (see Vaswani et al. (2017) for more details), several researchers decided to investigate
their use in other fields. Song ef al. (2018) developed the SAnD (simpy attend and diagnose)
architecture to deal with clinical time-series data, which employs a masked, self-attention
mechanism and uses positional encoding and dense interpolation strategies for incorporating
temporal order. Wu et al. (2020) used Transformer for time-series forecasting. This is a crucial
task in many scientific and engineering disciplines because it aims to predict future trends
based on historical data.

The main novelty of our work lies in the introduction of an efficient MHA based deep
network for PAM tasks capable of preserving good accuracy performances with reduced
times and storage.

Note that, as previously reported, there are various articles in the literature of PAM making
use of the attention mechanism, but always in combination with other kind of networks (LSTMs
or CNNs). In this work, however, the proposed model relies only on the attention mechanism,
as explained in Section 3, thus providing an efficient solution for embedded Al applications.

3. Methodology
As we have seen from previous sections, tasks related to PdM can be modeled as:
(1) regression problem, in which the main purpose is the RUL estimation of a machinery;
(2) a classification problem, namely the health state prediction. Using data driven techniques,
maintenance procedures can be then optimally scheduled, avoiding a downtime period due to
the replacement or repair of the faulty asset.

Our aim is to design an Al model capable of estimating RUL from different types of
measured equipment data. The general workflow for a RUL estimation process is:

(1) Choose the best type of RUL estimation model for the data and available system
knowledge.

(2) Train the estimation model using the historical data.

(3) Using test data of the same type as historical data, estimate the RUL of the test
component.

In this section, we details the adopted methodology: we first provide the PdM task definition,
then we present the model architecture, with a focus on the related core part, the introduced
attention module.

3.1 Task definition
We modeled the PdM task as a particular regression problem.

Let X = {x1, 2o, ..., x,} aset of input samples, related to the observed RUL values for our
equipment in a given z-length temporal window, the PdM task consists in learning from past
historical data a particular mapping function f capable of associating to the each input
sequence some output samples Y = {y1, ys, ..., ¥,,} In a given m-length temporal window,
representing the estimated RUL values.

Formally, we have,

Y=f(X,7)+¢ )]

7 being a set of unknown parameters, which we have to determine for our model, and ¢
consists in some error terms that are not directly observed in input data.

The PdM task goal is to estimate the function ¥ = AX, 7) that most closely fits the real data.
Thus, we have to chosen an Al model providing a reliable mapping function f.
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Figure 1.
Proposed Al
architecture

3.2 Model architecture
Figure 1 shows a high-level view of the proposed model architecture for the described PdM
task. The figure also describes the data analysis pipeline required for the generation of
estimated RUL values.

In particular, the input consists in the historical data coming from sensors giving useful
information about the conditions of the monitored machinery. Such data have a temporal
component, which is crucial in detecting the degradation trend.

After processing the input data, they are fed into the model able to capture temporal
dependencies between features. After setting a proper time window, the data that is gathered
as input to the model, is a matrix of size (7, N,), where T, is the length of the input time
window and N, is the number of considered features. The output of the model is a real number
representing the RUL of the machinery.

Specifically, the main components of the proposed architecture are.

(1) the positional encoding block to take into account the relative or absolute position of
the time-steps in the input sequence;

(2) the attention module, which is composed by two sub-layers (with residual
connections between them):

« the MHA block;
« a fully connected network module.

In the following, we are reporting more details about each component.

3.3 Positional encoding
Since the proposed model contains no recurrences, the model does not have any sense of
position and order for each timestep. Consequently, there is the need for a way to incorporate
the order of the timesteps into the model. Indeed, the order is important to capture a
degradation trend in analyzed data.

The proposed solution was to add a piece of information to each timestep about its position
in the sequence, and this is named positional encoding.

The idea is to sum to each of the input timesteps a vector of length N, that contains
information about a specific position in a time window.

Let ¢ be the desired position in an input sequence and p; €N its corresponding
encoding, according to Vaswani et al. (2017), in this work we use sine and cosine functions of
different frequencies,

— (%) . ¢

pt = SIn <W) (2)
@it t
b =cos (1000()((2#1)/%)) ®

where 7 is the related dimension.

Positional
Encoding

Attention module

Multi-Head Fully @ /
d}‘/ Attention Connected Flatten Laver _> ii':]‘g“;" —> (%D S
RUL Score
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As it can be derived from the formulas, the frequencies are decreasing along the vector
dimension. Thus the wavelengths form a geometric progression from 2z to 10,000 X 2x.
Finally, the obtained encoding for position # is summed to the #th timestep in the input
sequence.

3.4 Attention module
The proposed attention module is further composed by two sub-modules: the MHA sub-
module and a fully connected network.

3.4.1 Multi-head attention. Attention mechanism can be described as mapping a query and
a set of key-value pairs to an output. Queries, keys, values and outputs are vectors. The
output is computed as a weighted sum of the values, where the weight assigned to each value
is given by an arbitrary compatibility function of the query with the corresponding key.
According to Vaswani et al. (2017), the selected compatibility function, is the scaled dot-
product attention.

Firstly, each of the timesteps in input is linearly projected to obtain its specific query, key and
value vectors of dimension d,. Next, given a query, the dot product of the query with all keys is
computed. Then, these products are divided by +/d;. Finally, the softmax function is applied to
obtain the weights on the values. These weights can be seen as scores, thus they represent the
importance of the values (each corresponding to one multiplied key) with respect to the value
corresponding to the query. Intuitively, a subset of more important times receives high weights,
while useless ones receive lower weights. At this point, weighted values are summed up.

The explained calculation is valid only when there is a single query. In practice, as we have
seen, there are a number of queries equal to the number of timesteps in the selected time
window, 1.e. T,,. Therefore, in order to speed-up the computation, the scaled dot-product
attention is computed on a set of queries of queries simultaneously, packed together into a
matrix . If we do the same with the keys and values, the output can be expressed as,

Attention(Q,K, V) = softmax (QKT) Vv )
b b \/H—};

MHA mechanism (Figure 2) simply repeats the above computation a number of times equal to
the chosen number of heads, /. More precisely, instead of calculating a single attention
function with one set of queries, keys and values, this mechanism first creates / different sets
of queries, keys and values and for each of them performs the attention function in parallel.

Linear

Concat

‘ ‘ Scaled Dot-Product J{Ln
Attention
1 ) L 1

] ) (o]
1]

\% K Q
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The outputs of each head are concatenated and the final result is linearly projected in order to
obtain the matrix of shape (7, N,).
Mathematically, MHA is defined as,

MuitiHead(Q,K, V) = Concat(head,, . . ., heady,) wo ®)

where
head; = Attention (QW? JKWE, VWiV) 6)

At a higher level of abstraction, the MHA sub-module computes a new representation of the
input time window. In this representation, each timestep is enriched by the knowledge of the
timesteps that precede or follow it in the sequence.

After the attention module, there is a feed forward network. This network is applied to
each position separately and identically. Specifically, it consists of two linear transformations
with a ReLLU activation function.

Mathematically:

FFN(JC) = max(O, Wix + bl)Wz + by (7)

As regards to the input and output dimensions, they are equal to N,. The inner-layer has a
variable dimension, given by N, X FFN_FACTOR.

Finally, after stacking a variable number of attention modules, there are a flatten layer and
a final layer containing only one neuron with a ReLU activation function.

4. Experimental evaluation

As already described, the major novelty of this work is to introduce an attention-based deep
architecture for PAM. In particular, we designed it for applications requiring predictive
models to be stored in memory constraint device. In order to show its validity with respect
to common recurrent deep models, a comparison has been made with the most diffused
architecture in terms of model’'s storage size and accuracy performance according to
specific metrics. Specifically, we chose an LSTM network with two layers, each containing
128 units and a final Dense layer with a ReLU as activation function to perform the
regression task.

Furthermore, the comparison has been realized by using Turbofan engine degradation
simulation dataset [1] provided by NASA Ames Prognostics Data Repository. It is a well-
known benchmark used in prognostic and health management (PHM) field. It is generated by
C-MAPSS tool that simulates various degradation scenarios of the fleet of engines of the same
type. It contains four sub-datasets (called FDOO1, ..., FD004) with different operating
conditions and fault modes. Each sub-dataset includes training dataset and testing dataset.

The training dataset is composed of run-to-failure sequential data collected from 21
sensors (see Saxena et al. (2008) for detailed information about the sensors). The engine
operates normally at the beginning with certain degrees of initial wear. The sensors record
the data of the engine until the fault develops to a system failure.

More in details, each row of the dataset has 26 fields.

(1) Engine ID,
2) Cycle index,
(3) Three fields representing the operating condition of the engine,

(4) 21 sensor readings.



Test set data is different: the engine starts in an unknown deteriorated state and the readings
terminates at some point prior to system failure. Therefore, the aim is to predict the RUL of each
engine. For evaluation purposes, the true RUL values for the test trajectories are provided.
In the test dataset, the sensory data of the system prior to the system failure are recorded. The
task is to estimate the RUL of the engine in the testing dataset. Therefore, in the testing dataset,
the actual RUL of each data sample is provided to check the result of the proposed method.

4.1 Hyperparameters
In order to provide more details about the model’s hyperparameters, here is reported a
summary.

(1) NUM_ENC: the number of stacked attention modules.
(2) NUM_HEADS: the number of attention heads in the MHA mechanism.

(3) KEY_DIM: the dimension of the query and key vectors. Although it is not mandatory,
in this work the value vector has this dimension.

4) FFN_FACTOR: this regulates the number of neurons in the first layer of the fully
connected sublayer in each of the attention modules.

However, there are other hyperparameters such as learning rate, batch size and number of
epochs which are not dependent on the proposed model but affect the training stage of the
model. The proposed model has been implemented in Tensorflow 2.0 using the corresponding
Keras layers.

Below are summarized the steps followed in the analysis and then give more details
about them.

(1) Feature selection and normalization;
(2) RUL target function definition;

(3) Time-windows creation.

4.2 Feature selection and normalization

We perform some feature selection activities, such as the elimination of constant columns.
Specifically, deleted columns are: sensory, sensors, sensoryg, Sensorig and sensor;q. Moreover,
we eliminate the columns related to the operational condition, since we know it is the same
across the engines.

Looking at Figure 3, we can also observe sensorg and sensoryq are not very useful in
detecting a degradation trend. For this reason, we prefer dropping these features. Obviously,
this is true also for the other engines.

Finally, the ID of the engines and the cycle numbers are not used when training the model,
but they are important when constructing the time windows.

After applying this features selection, we consider 14 columns.

Due to the different ranges for collected sensor measurements, a normalization step is also
required to uniform the values and to provide unbiased involvement from the readings of
each sensor. In particular, for each sensor we perform a min-max scaling in the range [0, 1].

4.3 RUL target function definition

Data downloaded from the NASA UCR repository cannot be used directly to train a model
through supervised learning techniques because it does not contain the ground-truth.
In order to solve this issue, various approaches have been proposed in the literature.
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Figure 3.
Features plot of the
first engine
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We used the so called piece-wise linear degradation model. The main idea behind this
strategy is quite simple. Because the engine failure occurred gradually, it is not appropriate to
utilize the real RUL when adding the RUL label. In general, the strategy used is to establish
the degradation threshold and ignore the period before the engine degrades. When the
operating time reaches the degradation threshold, the engine’s remaining useable life reduces
monotonically. To address this issue and map this process, a piece-wise linear deterioration
model was developed on the basis of Ramasso (2014) approach.

According to most of the related works, we set the clip value equal to 125.

Figure 4 shows the difference between the two main used RUL target functions.

Let us formalize this idea. Let #; be the number of cycles for the i-th engine. Let x; be the
actual cycle of the engine. If 7, — x; > 125 then the RUL value for this cycle is fixed to 125.
Otherwise, it is equal to #; — ;.

4.4 Time-windows creation
To conclude the data preparation phase, since the proposed model takes a sequence of
timesteps as input, there is the need to create such time windows.

We follow the sliding window method, as depicted in Figure 5. Given the window size,
W, the total number of cycles, T, and the stride of the window, s, it is possible to construct
T — W — s time windows for each engine. For training purposes, we associate the time
window the RUL value of the last timestep (cycle) it contains. In this thesis work, various time
window size are used: 10, 20, 30 and the stride s is fixed to 1.
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4.5 Performance metrics
In this section the evaluation metrics used are described. For Turbofan engine degradation
dataset, we consider two objective metrics to test the performance of the model: the scoring
function, and the root mean square error (RMSE), since it is a regression problem. Defining
RUL and RUL,; respectively the estimated and the actual RUL of the ith test engine (N in
total), the RMSE can be expressed as:

1 & ,
RMSE = | ;(RULZ- — RUL))

©)

The scoring function was initially proposed in Saxena et /. (2008), but now is widely used in
PHM applications. Defining #; = RUL; — RUL,, this function can be expressed by:

N
S= ZS;‘
i=1

©)
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Figure 4.

Linear and
Piece-wise linear
degradation model

Figure 5.
Time windows creation
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Figure 6.
Scoring function

Table 3.

Performance metrics of
the proposed model
varying the time
window length

where
e% -1 i <0
evn—1 if ;>0

Ideally, this function should be as lower as possible.

In Figure 6 there is a plot representing the scoring function and the RMSE. As we can see,
RMSE does not make difference between an early prediction (when the estimated RUL is lower
than the real) and a late one. However, in PHM it is crucial to have useful RUL predictions, i.e.
predictions that makes possible to repair a machine before its failure. This characteristic is
evident in the plot: as the predicted RUL is greater than the real one, the scoring function
increases exponentially; if the predicted RUL is lower than the real, clearly it is an error, but not
as bad as the previous case. Therefore, the scoring function increases with a lower rate.

Si = 10

=

5. Results

In this section the achieved results are reported and discussed. In particular, Table 3 shows
the performance metrics of the proposed model varying the time window length. To obtain a
more robust estimation, all the tests were repeated 10 times and means and standard
deviations were taken. Similarly, Table 4 reports the performance metrics of the LSTM
network varying the time window length.

More in details, the hyperparameters chosen for the proposed model are: NUM_ENC 1,
NUM_HEADS 8, KEY_DIM 28 and FFN_FACTOR 517. Regarding the LSTM model we
used two layer each with 128 units. Adam optimizer has been used to train both models, the
maximum number of epochs was set to 300, batch size to 128 and learning rate to 10e — 3.

300 T
-  RMSE
== Scoring Function
250
3 200}
2
u
2 150
S
5
T 100+
w
50
0 L 1 1
-40 =20 0 20 40
Erorr Value
TW [cycles] RMSE Score
10 1892 + 0.26 1,290 + 42
20 14.40 + 0.21 391 +17
30 13.50 + 0. 30 279 + 23




The first consideration we can derive from looking at the results is that,as we expected, both
the models benefits from the time window length increase.

Indeed, performance metrics reach their best score with a time window length fixed at 30
cycles. This behavior is quite reasonable because a larger number of samples can help in
extracting a degradation pattern in the engine.

As it can be noticed by analyzing the reported results, there is no statistical difference
between the two models in the score function when the time window length is equal to 20 (391
and 375) and 30 cycles (279 and 262). This difference becomes statistically significant in favor
of the proposed model when considering a time window length equal to 10.

Furthermore, reported results have to be compared also looking at the model complexity.
Table 5 reports the number of parameters of the models. As it can be observed, the proposed
model can achieve comparable performance respect to LSTM with about 86% less parameters.

This last aspect has a strong impact in two aspect: model storage size and training time.

Table 6 shows that the proposed model only requires 141 KB of memory compared to
2.5 MB required by LSTM network resulting 94.36 % most efficient in terms of model storage
size. Thus, it is possible to store it even if in a constrained hardware, that is usually employed
in critical PAM applications.

To understand how the importance of limited memory occupancy impacts industrial
contexts, we mention some published work about this topic. Concari and Bettini (2020)
defined a PdM strategy on embedded plant and machinery systems, being that embedded has
limited computing resources, a trade-off had to be considered between memory occupancy,
running speed and accuracy. Instead, Resende et al. (2021) presented TIP4.0, a modular
framework for PAM in IoT, where one of the main goals has been to offer a system that can
run on hardware with limited computational power and memory.

In Table 7 there is also reported the training time of the models varying the time window
length. As shown, the proposed model is 20% faster to train than the LSTM one, although
performance differs slightly (about 53[s] on average for all window length tested case). Even if
this is a limited improvement, in some real environments where the data to be processed are
characterized by high dimensionality, even a small improvement in training time can make a
difference, also in being able to ensure the scalability of the system (Gigoni et al., 2019) with
respect to dataset size.

TW [cycles] RMSE Score

10 19.73 + 0.46 1,521 + 44
20 14.76 + 0.28 375+ 37
30 1311 +0.36 262 + 20
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Table 4.

Performance metrics of
the LSTM network
varying the time
window length

TW [cycles] Proposed approach Standard LSTM

10 28,233 204,929
20 28,373 204,929
30 28,513 204,929

Table 5.
Number of parameters
comparison

Proposed approach Standard LSTM

141 KB 25MB

Table 6.
Models’ storage size
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Table 7.

Comparison of training
times by varying the
time window (TW)
between proposed
model and LSTM
network

Table 8 shows a comparison with the state of the art approaches on this benchmark.
Although it is not the best one, our attention-based approach is still comparable with them,
especially considering the scoring function. The best results are highlighted in italic.

In Figures 7 and 8 there are reported the prediction errors respectively of the best runs of
the proposed and the LSTM models.

More in details, the horizontal axis shows the test engine’s ID in decreasing order with
regard to their actual RUL. For example, in the test dataset, the engine with ID equal to 82 has
the lowest RUL, and so on. The vertical axis shows RUL:" — RULi, which is identified with
“diff” in the plots 7 and 8, indicating the projected RUL for the i-th engine as RUL?'.

The error is almost always less than 10 when the actual RUL has low values. However,
when the actual RUL is higher, the prediction error increases in both circumstances. One
probable reason for this behavior is because when the actual RUL is low, the degradation
process has already begun in that engine, and hence this pattern is recognized by the models.
However, when the actual RUL is very high, the engine is presumed to be in good condition,
and the models cannot detect the distinction between an engine with a true RUL of 80 and one
with an actual RUL of 105.

In summary, a number of useful considerations can be deduced from the analysis of all the
achieved results:

(1) Our approach obtains very good accuracy performance compared with the best deep
approaches in the literature, thus providing an effective solution for RUL estimation;

Our architecture requires reduced training time and limited storage requirements,
resulting in an efficient solution that is easily implemented on equipment hardware;

@

Our model, despite being validated in a limited scenario, shows promising results. This
suggests to us that a release in a real IoT scenario could enable the fulfillment of
reliability, low latency, privacy and low power requirements (Mohammadi et al. (2018).)

®)

6. Discussion and conclusions
In the Industry 4.0 era, PAM plays an important role and has important managerial and
practical implications, because it provides the possibility to reduce maintenance costs,

TW [cycles]

Proposed approach

Standard LSTM

10
20
30

217,68 + 4.04s]
235.08 + 1.69 [s]
27334 + 299 [s]

27254 + 381 [s]
290.21 + 2.83[s]
323,67 + 1650 [s]

Table 8.
Comparison with state-
of-the-art approaches

Authors DL approach RMSE Score

226 +3
263
251
288 +4

Al-Dulaimi et al. (2020)
Ragab et al. (2021)

Listou Ellefsen et al. (2019)
Al-Dulaimi et al. (2019)

He (2019)

Standard LSTM

Proposed approach
Aydemir and Acar (2020)
Falcon et al. (2020)

Noisy BLSTM + CNN
LSTM with attention
RBM + LSTM

LSTM + CNN

CNN + LSTM

LSTM

11.36 = 0.09
1144

12.10

12.22 + 0.04
12.46

1311 + 0.36
Attention-based 13.50 + 0.30
Anomaly triggered LSTM 17.63

MHA + LSTM + CNN + NTM /

262 + 20
279 + 23
424
275
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avoid failures and optimize the use of the industrial equipment. Data-driven approaches to
PdM have been studied in last years, especially ones adopting ML algorithms. Thanks to
these techniques, it is now possible estimate the RUL of the machinery just analyzing
related past operational data.
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Figure 8.
Best LSTM model’s
prediction errors
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One of most recent trend is using DL models for PAM purposes because of their state-of-the-
art results in fields such as computer vision and NLP are easily extensible for PAM task. The
first attempts have shown promising results.

However, proposed models often are too complex and not well suited for critical applications.
Indeed, in those cases, trained models are hosted in resource constrained hardware, especially in
terms of memory size and power consumption. While in general it could be possible to process



data in a cloud environment, this is not desirable for such applications requiring high reliability,
low latency, data privacy and low energy consumption.

In this work, a light attention-based model has been proposed to deal with the exposed problem.
The attention mechanism has gained a lot of popularity in last years for its better capacities in NLP
tasks in terms of achieved results and model complexity than recurrent models. For this reason, it
has been rearranged in a novel manner in this work to analyze time-series data.

In order to validate the proposal, the well-known Turbofan engine degradation dataset
provided by NASA has been used. In addition to making a comparison with the best latest
methods on this dataset in the literature, a spatial and temporal complexity comparison with
a standard LSTM model was also made. The results show there is no significant difference in
terms of RMSE and a PHM scoring function with such a recurrent model. However, the
proposed model has far fewer parameters, its storage size is much lower than the LSTM’s one
and it is also faster in the training stage. A trade-off between efficiency and effectiveness was
thus achieved, which is of paramount importance in industrial contexts where the
relationship between performance obtained and resources allocated is to be optimized
(Chen et al., 2021; Markiewicz et al., 2019). In addition, the overall accuracy performances are
comparable with the best techniques of the literature.

Summarizing, the achieved experimental results showed how the proposed approach
enables it to meet the requirements of modern embedded Al applications, with obvious
benefits for smart manufacturing systems where the requirements of reliability, low latency,
privacy and low power are imperative and important implications from a management point
of view in order to optimize the operation of a production line.

Possible future works could concern the further investigation of the attention mechanism
applied to different PAM applications.

Moreover, it would be interesting to inspect what actually the model learns (i.e. gives more
attention) in order to provide a sort of explanations using explainable artificial intelligence

(XAIJ) tools.

Note
1. https://data.nasa.gov/Aerospace/Turbofan-engine-degradation-simulation-data-set/vrks-gjie
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