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Abstract
Purpose – The purpose of this paper is to develop, describe and validate a machine learning model for
prioritising which financial transactions should be manually investigated for potential money laundering.
The model is applied to a large data set from Norway’s largest bank, DNB.
Design/methodology/approach – A supervised machine learning model is trained by using three types
of historic data: “normal” legal transactions; those flagged as suspicious by the bank’s internal alert system;
and potential money laundering cases reported to the authorities. The model is trained to predict the
probability that a new transaction should be reported, using information such as background information
about the sender/receiver, their earlier behaviour and their transaction history.
Findings – The paper demonstrates that the common approach of not using non-reported alerts (i.e.
transactions that are investigated but not reported) in the training of the model can lead to sub-optimal
results. The same applies to the use of normal (un-investigated) transactions. Our developed method
outperforms the bank’s current approach in terms of a fair measure of performance.
Originality/value – This research study is one of very few published anti-money laundering (AML)
models for suspicious transactions that have been applied to a realistically sized data set. The paper also
presents a new performance measure specifically tailored to compare the proposed method to the bank’s
existing AML system.
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Paper type Research paper

1. Introduction
The true extent of money laundering transactions is unknown and uncertain, potentially
because financial firms lack incentive and tools to estimate the extent of money laundering
in their accounts (Reuter and Truman, 2004). In an old report to US Congress (1995), it was
estimated that about 0.05-0.1 per cent of the transactions through the Society for Worldwide
Interbank Financial Telecommunications system involved money laundering. A meta-
analysis by United Nations Office on Drugs and Crime (2011) estimates that the total
amount of money laundered through the financial system is equivalent to about 2.7 per cent
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of global gross domestic product, or US$1.6tn in 2009, while Walker (1999) estimates money
laundering to account for US$2.85tn worldwide. As financial fraud of such an extent is a
serious threat to societies and economies all over the world (Schott, 2006), it is crucial to
detect as many of the fraudulent transactions as possible. The topic of the present paper is
thus methodology which can identify the very few suspicious/fraudulent transactions from
the very many legitimate transactions.

Historically, alert systems based on a set of fixed threshold rules were used to flag
suspicious transactions that then underwent further manual control. Such systems are still
being used today. See, for example, Demetis (2018) for an up-to-date study on the
practicalities of a UK bank’s efforts to combat money laundering.

There are three main problems with current AML systems:
(1) Keeping the rules up-to-date and relevant at all times, as well as deciding how to

weigh the different rules, is a Sisyphean task.
(2) While such rules in principle can be found from data analysis (Gao and Ye, 2007;

Alexandre and Balsa, 2015), rule-based systems are often too simplistic.
(3) As millions of transactions pass through a typical bank each day, reducing the

number of false alerts is of paramount importance (Grint et al., 2017). This is
almost as important as increasing the number of correct alerts (Deng et al., 2009).

Owing to these issues, new and bold anti-money laundering (AML) tools are needed.
Both Bolton and Hand (2002) and Sudjianto et al. (2010) provide excellent overviews of

statistical methods for financial fraud detection.

1.1 Learning methods and previous work
In spite of the clear need for well founded, science-based AML methods, the literature on
methods for detecting money laundering is fairly limited (Ngai et al., 2011). The existing
literature on AMLmethods can be grouped into two broad classes:

(1) unsupervised learning (Alexandre and Balsa, 2015; Sudjianto et al., 2010); and
(2) supervised learning (Colladon and Remondi, 2017; Deng et al., 2009; Liu et al., 2008;

Savage et al., 2016; Sudjianto et al., 2010).

For (1), the methods try to identify patterns in the data without information on which data
correspond to money laundering and not. For (2), latter, the methods attempt to learn the
patterns that differentiate between money laundering and legitimate operations by using
data where the label/outcome (money laundering or not) is known.

Supervised learning is generally preferable when data with known outcome/labels are
available. For AML that is problematic as, in contrast to other types of financial fraud, a
financial institution rarely finds out if a money laundering suspect is actually guilty of
crime. We can, however, get around this issue by modelling “suspicious” behaviour instead
of actual money laundering. In Section 2, we argue that “suspicious” behaviour is actually
what most financial institutions are indeed interested in. Thus, we only concentrate on
supervised learning hereafter.

Deng et al. (2009) propose an active learning procedure through a sequential design
method for prioritisation, using a combination of stochastic approximation and D-optimal
designs to select the accounts for investigation. The method is applied to both transaction
data from a financial institution (unfortunately with only 92 accounts) and a simulation
study. Lopez-Rojas and Axelsson (2012) discuss the pros and cons of using synthetic data to
detect anomalous transactions, as financial institutions can be reluctant to share data, and
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new financial services like mobile payment have not yet generated enough data. Liu et al.
(2008) propose a sequence matching based algorithm to identify suspicious sequences in
transactions. Other recent works aim at taking advantage of the inherit social networks
(Savage et al., 2016; Colladon and Remondi, 2017). Many of the commonly used solutions are
proprietary to the technology provider and often completely opaque to the regulators (Grint
et al., 2017). Open research on AMLmethods is therefore needed. Some solutions are tailored
to specific money laundering strategies, such as Riani et al. (2018), who target systematic
mispricing to detect misinvoicing.

1.2 The present paper
In this paper, we develop a supervised machine learning method for discriminating between
legitimate transactions and transactions that are suspicious in terms of money laundering.
Our method improves the existing methodology, while also reducing the manual work. Our
work stands out from earlier work in the field in a number of ways:

(1) We build our model directly on the transactions, instead of suspicious accounts
(Deng et al., 2009) or groups of so-called parties (Savage et al., 2016).

(2) Most supervised AML methods assume that suspicious activities are marked as so
by experts, while legitimate activities are actually just randomly sampled from the
pool of regular customers – the latter is motivated by the fact that the chance of a
random (or normal) activity being suspicious is almost zero (Liu et al., 2008; Deng
et al., 2009; Savage et al., 2016).

(3) We broaden the definition of legitimate transactions by including transactions
both from:
� random customers; and
� AML alerts that did not result in an AML report.

(4) As we shall see, both types of legitimate transactions are crucial in developing a
robust predictive model.

(5) While the data sources and modelling frameworks are somewhat limited in the
AML literature (Ngai et al., 2011), we summarise background customer data,
transaction information and history and information about any earlier (semi-)
suspicious behaviour into a fixed set of well-defined explanatory variables (data on
matrix form). In trying to learn a binary outcome (suspicious or legitimate), we
train a predictive model by using state-of-the-art supervised machine learning
methods with proper model tuning.

(6) The literature seems to lack proper validation of the proposed modelling
approaches. We develop a performance measure, allowing for direct comparison
between the system currently implemented in the bank and our method, and carry
out complete performance comparisons between both our alternative model
variants and the existing alert-based system.

(7) Previous AML studies typically work on real but small (Deng et al., 2009) or
simulated data sets (Lopez-Rojas and Axelsson, 2012). We apply our methodology
to an AML scenario in Norway with a data set that is both real and large. The
performance results should thereby closely resemble the expected performance in a
real-life scenario. To the best of our knowledge, no AML study of this extent has
been published before. (The study of Savage et al. (2016) is comparable in size, but
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considers two types of transactions only; large cash deposits and international
funds transfers.)

Throughout this paper, we refer to each transaction as having a sending and a receiving
party. These are the individuals or companies that control the sending and receiving
accounts. In Section 2, we describe AML in Norway and motivate why it is beneficial to
model suspicious transactions directly rather than accounts or parties. We also describe the
data and howwe summarise them into proper explanatory variables. We describe our model
for a suspicious transaction in Section 3. In Section 4, we introduce our new performance
measure and show the results from our performance study. We discuss and sum up in
Section 5.

2. Data and anti-money laundering in Norway
A Norwegian financial institution is required by law (The Norwegian Money Laundering
Act, Chapter 3, 2009) to make enquiries and report suspicious transactions to The National
Authority for Investigation and Prosecution of Economic and Environmental Crime
(“Økokrim” in Norwegian). In 2016, 8,776 suspicious transactions were reported [72 per cent
of them reported by banks, and 23 per cent reported by payment solution providers
(Økokrim, 2016)]. Whether or not a reported transaction leads to a lawsuit, and thus is
defined as money laundering by the judicial power, is in principle not relevant for financial
institutions. Their task is solely to monitor all transactions passing through their system and
to classify each of them as suspicious or not. Although a transaction is reported to the
authorities, the customer is in no way warned and may continue his/her financial operations
as usual, until the authorities possibly take action. Thus, the very same customer could be
reported several times. This is problematic when modelling suspicious accounts (Deng et al.,
2009) or parties (Savage et al., 2016), as the same account/party would have multiple,
conflicting labels. As reports are made on transaction level, this is unproblematic when
modelling transactions directly.

The monitoring of suspicious transactions with respect to money laundering in a typical
Norwegian bank goes through three stages: the alert stage; the case stage; and the reporting
stage (Figure 1). These stages also apply to DNB, Norway’s largest financial group, from
which we have our data. All transactions with a customer of the bank go through the initial
alert stage, a proprietary system based on a set of rules. Alerted transactions, which seem to
be legitimate in terms of a simplified manual process, are left out of further investigation.

Figure 1.
Typical process of
monitoring,
investigating and
reporting suspicious
transactions in a
bank
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We refer to these as non-reported alerts or no case (B). The remaining alerts are gathered
into cases built around a main suspect party and possible related parties. At this stage,
several different alerts related to the very same party may be merged into a single case.
Finally, these cases are thoroughly investigated by experienced inspectors who make the
final decision on whether to report each case to the authorities. At each stage, decisions are
made based on information about the transaction itself and the recent transaction history of
bank accounts attached to the involved parties. Specifically, the manual investigation in the
second and third stages benefit from other background info about the parties,
unquantifiable financial information and experience. As discriminating between the
reported transactions (D) and all other types of transactions (A), (B), (C) is the sole task for
the bank, this is also what we aim to do.

2.1 Data sources and data refinement
In cooperation with the bank, we have been given access to anonymised data on a broad
class of alerted transactions spanning from 1 April 2014 to 31 December 2016. We also know
which of the transactions that led to a case and which of them ultimately led to reporting. To
complement these alert-based transactions, we have access to a purely random selection of
normal transactions, from the same time period, which were not given an alert or otherwise
investigated. When available, we have background variables for both sending and receiving
parties of each of these transactions. In addition, we have the full transaction history for all
accounts the parties have access to, two months back in time. Different alerts may be related
to the very same suspicious behaviour. In the present setting, alerts that pertain to the same
party are merged into a single case in the case stage (Figure 1).

To create a data set as transparent as possible, and to limit the inherent dependence
between themodelled transactions, we filtered out a number of transactions from our study
set. In particular, we ensured that only one alerted transaction connected to a specific case is
present in our data set. Moreover, the minimum time lag between two transactions from or
to the same party is two days. The specifics here were chosen as a compromise to reduce the
observation dependence, with a decent amount of data remaining. Note that this refinement
was only applied to themodelled transactions, and not to the data included in the transaction
history summaries described in Section 2.3.

2.2 Training and test data
To properly evaluate and compare the performance of different predictive models, we split
the data in two. One set is used for training the predictive models, while the other is used
only for evaluating the quality of the trained model. To mimic practical AML decisions, we
use a time-based splitting rule. Our training set comprises transactions from 1 April 2014 to
30 June 2016, while the test set comprises transactions from 1 July 2016 to 31 December
2016. The time-based splitting should make the performance results representative for the
performance that can be expected when using this methodology in practice.

The total amount of data available for training and testing is ntrain = 28,167 and ntest =
4,967, respectively. For (A), (B), (C) and (D) (Figure 1) there are, respectively, 13,782, 12,746,
1,036 and 603 transactions for the training data, and 2,410, 2,186, 224 and 147 for the test
data. For both training and test data, the number of normal transactions (A) were chosen to
match the number of non-reported alerts (B) þ (C). Other proportions may of course have
been chosen here. We discuss this challenge in Section 5. We do not use the full training set
(ntrain = 28,167) in all model variants. This choice is described in detail in Section 4.
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2.3 Background variables and transaction variables
To model the transactions that should be reported and those that should not, with the
supervised learning methodology, we first need to transform all data to a matrix form where
each column is a well-defined explanatory variable which means the same across all labelled
observations/rows that we are modelling (Whitrow et al., 2009). We consider four different
types of explanatory variables:

(1) background information about the sending and receiving parties;
(2) summary of the transaction history for the sending and receiving parties;
(3) summary of information about the suspicious transaction itself; and
(4) summary of the outcome of previous alerts and cases where the sending or the

receiving party are involved.

The background information for both sending and receiving parties is summarised into
kbackground = 30 explanatory variables of the following type:

� indicator of any previous bankruptcies registered to the party, and the number of
years since the last one;

� number of years since the first and last customer relationship was established;
� the type and number of customer relationships registered to the party (individual,

corporation or both);
� the sex and ten-year age group of the party (for individuals);
� the nationality of the party;
� the activity level of the party;
� number of years since corporation was established; and
� industry and sector type (for corporations).

We summarise the transaction history for the previous two months for both sending and
receiving parties with analogous variables for both debited and credited transactions. The
ktrans history = 1,716 unique explanatory variables constitute:

� The maximum and total amount, and the number of transactions in each of over 100
different currencies.

� The maximum and total amount, and the number of transactions of each of almost
30 different transaction types, such as cash deposit, store purchase, salary,
interest rate, manual payment with/without message, subscription payment,
pension payment.

We summarise the information about the specific transaction we are modelling into the
kcurrent trans = 3 unique explanatory variables: the amount and currency being
transferred, and the type of transaction being transferred (like for the transaction
history).

Finally, the outcome of any previous alerts and cases for both sending and
receiving parties are summarised into kprev behaviour = 18 explanatory variables
comprising:

� The proportion of the previous transactions which led to an alert, case and reported
case, respectively, registered with the specified party as sender, receiver and either
of them.
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In total, we have kbackgroundþ ktrans historyþ kcurrent transþ kprev behaviour = 1,767 explanatory
variables. After recoding categorical variables as dummy variables (Garavaglia and
Sharma, 1998), and removing non-informative variables (i.e. explanatory variables taking
only a single value across the training data), we are left with about 1,100 numerical
explanatory variables for the model.

3. Amodel for a suspicious transaction
3.1 Predictive modelling for reporting
For each transaction introduced in Section 2, let Yi take the value 1 if transaction i was
reported to the authorities, and 0 if not. Let xi denote vectors containing the numerical
explanatory variables related to transaction i described in Section 2.3. We attempt to model
the probability that a transaction is reported, given its associated explanatory variables (i.e.
Pr(Yi = 1|xi), by f xið Þ 2 [0, 1] for some function f (). This is usually done by aiming at
minimising the logistic loss:

L Yi; f xið Þ� � ¼ Yi log f xið Þ� �þ 1� Yið Þlog 1� f xið Þ� �
(1)

To fit the model, we use the machine learning library XGBoost (Chen and Guestrin, 2016).
XGBoost is very fast, scales to large data sets and also has a graphics processing unit
module (Mitchell and Frank, 2017), which can reduce the training time even further (at least
an order of magnitude less than the standard central processing unit version).

XGBoost is built around an optimised parallelised (gradient) boosting framework, with
tree models as so-called base models. A tree model may be viewed as a decision tree with
branches based on explanatory variables and function values in the leaf nodes [Hastie et al.
(2009), Ch 9.2]. Tree models incorporate non-linearities and interactions directly, do not
require much pre-processing, and may be trained in a quite simple and greedy fashion.
Owing to their limited predictive power, they are, however, seldom used as stand-alone
models, but they suit perfectly as base models in an ensemble model like boosting. Boosting
combines base models of a model ensemble to obtain a model which better fits the training
data. This is done by iteratively adding new base models to the ensemble, to constantly try
to repair the poorest fitting parts of the model. Gradient boosting is a certain type of
boosting algorithm which approximates the loss function [here the logistic loss in
equation (1)] using its gradient.

In this particular application, we used ten-fold cross validation (CV) [Hastie et al.
(2009), Ch 7.10] to train the model with the mean AUC (see Section 4.1 for the definition)
as the stopping criterion for the number of boosting iterations. To select hyper
parameters, we use a method combining a random and an iterative local grid search
procedure (Bergstra et al., 2011) that we have developed. Our final predictive model
takes the form:

ffinal xið Þ ¼ 1
10

X10

k¼1

fLO fold k xið Þ (2)

where fLO fold k ( ) is the model fit when the k-th fold is left out (using the remaining 90
per cent of the training data) when training the model. Taking a pure average of
these 10 CV-fitted models is essentially a bagging average (Hastie et al., 2009, Ch 8.7)
(with 90 per cent subsampling of the data instead of bootstrapping). This is a more
natural choice than learning an ensemble model for combining the predictions from
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the CV-fitted models into a single predictive model, as the CV-fitted models have
exactly the same specifications, just fitted on partly different data. The model
described in equation (2) was also found to give better predictive performance than
retraining the model with the full training set using the best hyperparameters from
the tuning process.

Alternative modelling frameworks were also considered, such as elastic net (Zou and
Hastie, 2005) and Random Forest (Hastie et al., 2009, Ch. 15), but none of them were found to
be competitive with XGBoost. Combining the XGBoost model with GLMnet, Random Forest
or other XGBoost configurations into a single final model using an ensemble technique was
also rejected because of the increasedmodel complexity.

3.2 Are three or four classes better than two?
The model described above merged the different types of non-reported transactions into a
single class. As additional model configurations, we consider two variants of multiclass
models. The first has four classes (A)-(D) (Figure 1). The second has three classes: (A) and
(D) constitutes two separate classes, while (B) and (C) are merged into a single class. A
multiclass model with K classes can be fitted with XGBoost by combining K � 1 binary
models, each of themmodelling the difference between a reference class and one of theK� 1
other classes. This is carried out analogously to howmultinomial logistic regression extends
regular logistic regression. The multiclass model is introduced to give more flexibility to the
model, as the key discriminators may not be the same when attempting to distinguish
between, e.g. (A) and (D), as between (C) and (D). That being said, our aim when applying the
predictive model is still to distinguish between reported and non-reported transactions, and
not between the sub-classes. Therefore, this model is compared directly with the binary
version in terms of its predictive performance as a discriminator between the reported
transactions (D) and the non-reported transactions (A)þ (B)þ (C).

4. Results
4.1 Performance metrics
We use three different criteria for measuring the performance of the predictions from the
various models on the test set: The Brier score, the AUC and our own invention, the PPP.

Let pi = f (xi) and yi be the i-th prediction and observed true response in the test set. The
Brier score (Brier, 1950) then takes the form:

BS ¼ 1
ntest

Xntest

i¼1

pi � yið Þ2; (3)

That is, the mean squared error of the predicted probabilities compared to the true response.
This is a proper scoring rule (Gneiting and Raftery, 2007), and lower values indicate a better
model. It penalises for lack of refinement, meaning that a prediction pi is far from the true
response yi relative to other predictions. It also penalises for lack of calibration. A calibrated
predictor has the property that in the long run, for all observations with a prediction pi = p, a
proportion corresponding to p of them have yi = 1, i.e. the predictions are true probabilities.

The area under the [receiver operating characteristic (ROC)] curve, or simply AUC, is
another measure of the quality of the predictions (Fawcett, 2006). The ROC curve shows
which true positive rate (TPR) corresponds to which false positive rate (FPR) when
assigning Class 1 to all predictions above a threshold t , while moving t from 1 to 0. The
AUC is the area under this curve between 0 and 1. It takes the value 0.5 for completely
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random predictions and 1 for perfect predictions. As the AUC is based solely on the ranking
of the predictions, it penalises only for refinement relative to other predictions and is
ignorant to calibration of the predictions. Thus, this is a better measure when the predicted
probabilities themselves are not of interest.

We also add 90 per cent confidence intervals (CI) to both the AUC and the Brier scores,
computed using Gaussian approximations based on asymptotic theory (DeLong et al., 1988).
We consider scores with non-overlapping CI as significantly different.

Both AUC and the Brier scores are commonly used for measuring the performance of a
predictive binary model. Unfortunately, we cannot compute such metrics for the alert/case
system in use today, as it is a highly manual process without available scores or rankings.
We therefore include a third measure which can be compared directly to the current system.
This measure is equal to the proportion of all predictions classified as positive when
adjusting the classification threshold such that the TPR is at a certain level (say 0.95). This
corresponds to the proportion of transactions that needs to be controlled to find 95 per cent
of the reported transactions, when sequentially controlling transactions, starting with those
having the highest predicted probabilities. Thus, lower values indicate a more efficient
classifier. We refer to this “proportion of positive predictions” measure as PPP(TPR = g )
below. The value of PPP(TPR = g ) is directly comparable to g times the proportion of all
transactions in the test set that are manually controlled in the current system:

# B þ C þ Dð Þ=ntest (4)

As this measure is not a proper scoring rule, and is rather sensitive to the predictions for
whichYi = 1 (especially if g is close to 1), we use it with care.

Although we consider three performance metrics, the ranking-based AUC is the most
important one, as its properties match those which are desirable in the current system. This
is also whywe use AUC as a stopping criterion (see Section 3.1).

4.2 The value of different classes of legitimate transactions
To properly validate the effect of including the different types of legitimate transactions in
the training process of our predictive model, we compare models where both levels of
legitimate transactions are used to models which leave out, respectively, the normal
transactions and the alerts/cases not leading to reporting. We evaluate the performance
using the Brier score and AUC for these different models using both 1) all transactions in the
test set and 2) only using the alerted transactions in the test set. The latter is included in
order to show that the gain of including normal transactions in the training is only visible
when evaluating on a realistic test set where normal transactions are actually present. For
the PPP measure, we include results using TPRs of both 0.8 and 0.95 with the full test set.
To make the performance study completely fair, the different models need to have the same
number of observations available in the training set. Thus, when training the model with all
variable types, only half of the normal transactions (A) and half of the non-reported alerts/
cases (B) and (C) are included in the training. These are selected at random. This ensures
that all models use 13,782 transactions for training, and can be compared under equal terms.

The first message from the binary model comparison shown in Table I is that excluding
the transactions stemming from the non-reported alerts/cases while training (column 2),
gives a significant performance decrease for all performance measures, compared to the
model using all transaction types (column 1). This is natural as non-reported alerts/cases are
typically more similar to reported transactions (Yi = 1) than normal transactions (Yi = 0),
causing the model to incorrectly assign high probabilities to transactions stemming from the
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non-reported alerts/cases. Relative to the reported transactions, this has a greater negative
impact on the predicted probabilities for the non-reported alerts/cases (too high
probabilities), than their ranking. As a consequence, the Brier score is affected more by this
than the other criteria.

The second message is that not using normal transactions when training (column 3)
gives no decrease in performance when considering only alerted transactions in the test set.
There is, however, clearly a decrease in performance when all transactions are considered (in
terms of AUC and PPP). The Brier score is more or less unaffected by the exclusion of the
normal transactions, quite likely since the degree of over/underfitting is optimised with
respect to AUC (the stopping criterion), which is ignorant to calibration. Note that the
performance for “only alerts” in the test set does not decline when including normal
transactions, demonstrating that including the normal transactions does not confuse the rest
of the predictive model. To compare the efficiency of the predictive models with the current
system, we rely on the PPP scores. As noted above, these scores are directly comparable to
the proportions of the transactions being manually investigated by the bank in the current
system (times g ). In our test set these scores are 0.489 and 0.412 (g � 0.515), for g = 0.95 and
g = 0.8, respectively. 0.515 is here found equation (4). Thus, using all transaction classes in
the training of the binary model, we get a reduction in the number of transactions we need to
consider of (0.95 � 0.515 � 0.315)/(0.95 � 0.515) = 36 per cent and (0.8 � 0.515 � 0.203)/
(0.8 � 0.515) = 51 per cent when requiring detection of, respectively, 95 per cent and 80
per cent of the reported transactions. This is a major improvement compared to the current
rule based system.

4.3 Multiclass model
As mentioned in Section 3.2, we fit both three and four class models, which handle the non-
reported transaction types as separate classes. As our interest is still in separating non-
reported and reported transactions, we use the performance measures for the binary model
when comparing the multiclass models to the binary ones. The results are found in Table I
in the two rightmost columns and should be compared with the “All types (binary)” column.

There is a tiny performance increase in terms of AUC for both multiclass models.
Although this performance increase is far from significant, it could stem from the multiclass
models concentrating on the distinguishing features of one class at a time, which is
beneficial for the performance. Note, however, that when using the four class model, the PPP
with TPR = 0.95 increases. This is perhaps a result of the predictive model becoming too
busy attempting to distinguish between the different subclasses, while the PPP measure is
solely concerned with distinguishing the reported cases from the rest.

5. Discussion and conclusion
We constructed and properly validated a machine learning model for prioritising which
transactions should be further investigated by AML investigators. We demonstrated that
the common approach of ignoring non-reported alerts/cases in the training of the model can
lead to far from optimal results. The unfortunate habit of ignoring non-reported alerts/cases
could be because of the fact that these alerts/cases are simply not stored, as they are not
considered important in the day-to-day activities. On the other hand, it is required by law to
report cases, and normal transactions are always available. As shown in our study, the ideal
data set comprises all data; transactions related to reported cases, non-reported alerts/cases
and normal transactions. We carried out the time validated analysis using a comprehensive,
real data set from Norway. Our results should therefore closely resemble those expected in a
production setting.
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In a real-life setting, the procedure to detect suspicious transactions would be run
through all transactions for a certain time period. The small number of reported cases would
make this highly inefficient and too time-consuming for the present study. Instead, we
therefore applied our trained model on a test set of the same type as the training set, where
there are as many normal transactions (A) as there are non-reported alerted transactions
(B)þ (C). This test set is less imbalanced than the set of all transactions within a time period,
but it is still heavily imbalanced (with 147 reported versus 4,820 non-reported transactions).
With a higher proportion of normal transactions in the test set, we would most likely see
slightly lower Brier and PPP scores, and slightly higher AUC scores. The reason for this is
that a higher proportion of the non-reported transactions is easier to distinguish from the
reported ones. In a production setting, we therefore expect slightly better results than those
reported in Table I.

We used two months of history when summarising the transaction history of every
party. This was chosen in cooperation with AML experts. However, our modelling
procedure can be carried out using a longer or shorter transaction history, or using multiple
history lengths (for example the past week, month and year). As this will increase the
number of explanatory variables substantially, investigation of the effect of multiple history
lengths was therefore deemed out of scope for the current paper.

Our approach can be extended further in many ways. One approach is to include
information onwho the funds are transferred to, i.e. how the cash flows through the financial
network around every account and party (Savage et al., 2016; Colladon and Remondi, 2017).
Such data were unfortunately not available for the present study. As the AML process is
stepwise, we also envision that it can be beneficial with a hierarchical model (Gelman and
Hill, 2006) with different levels of suspiciousness as an extension of the (flat) multiclass
model.

Our approach is preferable to the current rule-based approaches that many banks rely
on. Instead of keeping the rules up-to-date at all times, our model has relatively few
assumptions about the money laundering patterns and can continuously adapt and learn
from new data.

Although the XGBoost framework is efficient, computing the set of explanatory
variables themselves can be computationally demanding because of the sheer number
of transactions that go through a bank. The most straightforward method for updating
each of the transaction variables would require a daily scan of the two-month
transaction history of every DNB customer. Instead, by temporarily storing the values
of the explanatory variables for each day in the past two months, only a scan through
the transactions history for the current day, and some clever bookkeeping, would be
sufficient for maximums/minimums, means and other combinations of statistical
moments (Pebay, 2008).

Finally, our model predicts the probability that a transaction should be reported. With
minimal effort, the same approach could instead be used to predict the probability that a
customer should be reported.
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