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Abstract
Digital twin (DT) is an emerging technology that enables sophisticated interaction between physical objects
and their virtual replicas. Although DT has recently gained significant attraction in both industry and
academia, there is no systematic understanding of DT from its development history to its different concepts
and applications in disparate disciplines. The majority of DT literature focuses on the conceptual development
of DT frameworks for a specific implementation area. Hence, this paper provides a state-of-the-art review of DT
history, different definitions andmodels, and six types of key enabling technologies. The review also provides a
comprehensive survey of DT applications from two perspectives: (1) applications in four product-lifecycle
phases, i.e. product design, manufacturing, operation and maintenance, and recycling and (2) applications in
four categorized engineering fields, including aerospace engineering, tunneling and underground engineering,
wind engineering and Internet of things (IoT) applications. DT frameworks, characteristic components, key
technologies and specific applications are extracted for each DT category in this paper. A comprehensive
survey of the DT references reveals the following findings: (1) Themajority of existing DTmodels only involve
one-way data transfer from physical entities to virtual models and (2) There is a lack of consideration of the
environmental coupling, which results in the inaccurate representation of the virtual components in existing
DT models. Thus, this paper highlights the role of environmental factor in DT enabling technologies and in
categorized engineering applications. In addition, the review discusses the key challenges and provides future
work for constructing DTs of complex engineering systems.
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1. Introduction
To trigger the core value of the Internet of things (IoT), stakeholders in both industry and
academia are merging a large number of physical entities with virtual models, which is
considered one of themost important aspects of the digital twin (DT). ADT is a real-time digital
replica of a physical entity, in which the real part can be mirrored in a virtual environment and
continuously updated from multiple sources for various purposes (Fuller et al., 2019).

As an emerging technology, the development of DTmatches the profound strategic plans
of some leading manufacturing countries. For example, in accordance with the development
and application of a cyber-physical system (CPS), DT has become a key component in the
Made in China 2025 plan, which targets the development of intelligent control systems;
industrial application software, fault diagnosis software and related tools; and sensor and
communication system protocols to realize real-time connection, accurate identification,
effective interaction, and intelligent control of manufacturing equipment and products (State
Council Of China, 2015). Industry 4.0, which is a German high-tech strategy, requires the CPS
as one of the four major components to predict and optimize a production system in real time
(Negri et al., 2017). This requirement aligns with the targets of implementing DT in a
manufacturing system.

DT will contribute considerable economic benefit; Market Research Future predicts that
the DT market will reach 35 billion USD by 2025 (Market Research Future, 2019). A joint
report by the Fraunhofer Institute and the industry association Bitkom indicated that the
German gross value of the DT market can be boosted by a cumulative 267 billion euros by
2025 after introducing Industry 4.0 (Lee et al., 2015). DT has also recently gained an
increasing amount of attention in academia. According to statistical data of search results
from Google Scholar (2020), Figure 1 shows the number of DT-related studies that were
published from 2011 to 2019. The surge of DT research is clearly seen from 2017–2019;
Gartner listed DT as one of the top 10 technological trends with strategic value during these 3
years (Panetta, 2016, 2017, 2018).

DT has been extensively investigated in different industry fields. DT allows companies to
have a virtual copy of their product in their full lifecycles, rapidly detect defaults, solve physical
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issues sooner, more accurately predict outcomes and better serve their customers (Parrott and
Warshaw, 2017). Tuegel (2012) proposed an airframe digital twin (ADT) that was specified for
spacecraft. Tao and Zhang (2017) established DT shop-floor (DTS) technology for intellectual
shop-floor design. General Electric (GE) has developed the platform “Predix” for a DT wind
farm (Noel and Jackson, 2015). A DT for healthcare and a DT for smart cities is categorized in
Fuller et al. (2019) and Qi et al. (2021), respectively. Although it has recently gained significant
attraction in both industry and academia, there is no systematic understanding of DT from its
development history to different concepts and applications in disparate disciplines. The
majority of DT literature focuses on the conceptual development of DT frameworks for a
specific implementation area. However, a unified, general and abstract theoretical framework
and practical platform of DT has not appeared (Negri et al., 2017). Thus, it is necessary to
provide a systematic summary of DT history, definitions, models, technologies and
applications to promote the maturity of DT in an extensive range of engineering fields.

Based on a comprehensive survey of DT literature, this paper provides a state-of-the-art
review of DT history, different definitions and models, as well as 6 types of key enabling
technologies according to the 6-dimensional DT model, which is based on 5-dimensional DT
model proposed in Tao and Zhang (2017), while concerning environment factor
simultaneously. The review also categorizes the various DT applications from two
perspectives (1) applications in four product-lifecycle phases (i.e. product design,
manufacturing, operation and maintenance and recycling) and (2) applications in four
engineering fields, including aerospace engineering, tunneling and underground engineering,
wind engineering, and IoT applications. Another contribution of this paper is that
environmental coupling technologies are highlighted and summarized for creating high-
fidelity virtual components in DT.

The remainder of the paper is organized as follows: Section 2 summarizes the history,
definitions and models of DT. Section 3 summarizes the key technologies required for each of
the components of the five-dimensional DT model. Section 4 elaborates DT technologies and
the applications from the perspective of the four production lifecycle phases and four
different engineering applications. The key challenges of constructing DT are extracted in
Section 5, followed by concluding remarks in Section 6.

2. History, definitions and models
2.1 DT history
The concept of the “twin” dates to the National Aeronautics and Space Administration
(NASA) Apollo program in the 1970s, where a replica of space vehicles on Earth was built to
mirror the condition of the equipment during the mission (Rosen et al., 2015; Miskinis, 2019).
This replica was the first application of the “twin” concept. In 2003, DT was proposed by
Michael Grieves in his product lifecycle management (PLM) course as “virtual digital
representation equivalent to physical products” (Grieves, 2014). In 2012, DT was applied by
NASA to integrate ultra-high-fidelity simulation with a vehicle’s on-board integrated vehicle
health management system, maintenance history, and all available historical and fleet data to
mirror the life of its flying twin and enable unprecedented levels of safety and reliability
(Glaessgen and Stargel, 2012; Tuegel et al., 2011a). The advent of IoT boosts the development
of DT technology in the manufacturing industry. Enterprises such as Siemens and
GE developed platforms of DT for real-time monitoring, inspection and maintenance
(Eliane Fourgeau, 2016). Recently, Tao and Zhang (2017) proposed a five-dimensional DTS
framework, which provides theoretical guidance for the digitalization and intellectualization
of the manufacturing industry. From 2017 to 2019, DT has been continuously selected as one
of the top 10 technological trends with strategic values byGartner (Panetta, 2016, 2017, 2018).
The history of the DT is briefly summarized in Figure 2.
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2.2 DT definitions
The definitions of DT have been continuously evolving, as DT-enabling technologies (e.g.
sensing technology, modeling technology, data management method, DT service technology
and data connection technology, Qi et al., 2021) have been developed since the 2000s. Although
the concept of DT was proposed by Michael Grieves as the “virtual digital representation
equivalent to physical products” in 2003 (Grieves, 2014), the development of DTwas stagnant
until 2012, when NASA defined DT as an integrated multi-physics, multi-scale, probabilistic
simulation of an as-built vehicle or system that employs the best available physical models,
sensor updates, fleet history, etc., to mirror the life of its corresponding flying twin (Glaessgen
and Stargel, 2012). Subsequently, the aerospace field became an important research branch of
the DT. In 2015, R�ıos et al. (2015) substituted “vehicle” with “product”, which extended the
definition of DT for more general purposes. The DT has been defined specifically in many
industrial fields. For instance Tao et al. (2019), considered DT “a real mapping of all
components in the product lifecycle using physical data, virtual data and interaction data
between them” in product design engineering. In IoT engineering, DT is defined as an evolving
digital profile of the historical and current behavior of a physical object or process that helps
optimize business performance (Parrott and Warshaw, 2017).

Table 1 lists variousDTdefinitions and their corresponding reference and applied fields in
chronological order. These definitions reveal the following points:

(1) The basic components of DT, including the physical entity, virtual model, and
connection, are included, either explicitly or implicitly.

(2) Different definitions have varied highlighted aspects raised by different people. For
example, Kritzinger et al. (2018) focus on data transmission, while (Liau et al., 2017)
concentrate on services of DT.

It is challenging to use a common DT definition for all industrial fields. In addition, the
influence from the virtual model to the physical entity is not mentioned in some DT
definitions (e.g. Liau et al., 2017; Vrabic et al., 2018; Grieves and Vickers, 2017; Madni et al.,
2019). According to Kritzinger et al. (2018), the definition in Madni et al. (2019) is more
consistent with the description of the digital shadow (DS), while the definitions of Vrabic et al.
(2018) and Grieves and Vickers (2017) aremore consistent with the requirements of the digital
model (DM). Although existing DT definitions may highlight specific aspects or components
of DT systems, a general definition of DT may refer to the digital replica of physical assets,
processes, people, places and systems, which provides both the elements and the dynamics of
how the complex system operates and evolves throughout its lifecycle.

Figure 2.
Brief history of DT
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2.3 DT models
Associated with the varied DT definitions, various DT models (or frameworks) have been
raised for different engineering fields. The early DT model proposed by Grieves (2014)
consists of three components: physical product, virtual product and their connection.
The virtual product contains not only geometrical information but also behavioral
characteristics that show the system performance in response to external stimuli. The
NASA andUSAir Force Research Laboratory have applied aDT framework to their aircrafts
to achieve a more efficient design, greater ability of aircraft, reduction in unexpected cracks
and better structural inspection (Tuegel et al., 2011a; Gockel et al., 2012).

Based on the original 3Dmodel of DT, Qi et al. (2021) andTao and Zhang (2017) proposed a
five-dimensional DTSmodel for intellectual shop-floor design, including the physical entities,
virtual models, services, DT data and connections. While in reconfigurable manufacturing,
Zhang et al. (2019b) proposed the reconfigurable digital twin (RDT) model, including the
geometry, physics, capability, behavior and rule. The DTS model and RDT model are
specified for shop-floor configuration to quickly implement CPS in smart manufacturing.

Other DT models, e.g. DT for waste electrical and electronic equipment (WEEE) (Wang
and Wang, 2019), DT-enabled fault diagnosis framework (Tao et al., 2018d) and DT-driven

References Definitions Applied fields

Grieves (2014) The virtual digital representation equivalent to physical
products

General

Glaessgen and
Stargel (2012)

The DT is an integrated multiphysics, multiscale, probabilistic
simulation of an as-built vehicle or system that employs the best
available physical models, sensor updates, fleet history, etc., to
mirror the life of its corresponding flying twin

Aerospace
engineering

Hochhalter et al.
(2014)

The DT is a life management and certification paradigm, where
model and simulations consist of as-built vehicle states, as-
experienced loads and environments, and other vehicle-specific
history to enable high-fidelity modeling of individual aerospace
vehicles throughout their service lives

Aerospace
engineering

R�ıos et al. (2015) An integratedmultiphysics, multiscale, probabilistic simulation
of an as-built product that employs the best available physical
models, sensor updates, history data, etc., to mirror the life of its
corresponding physical twin

General

Parrott and
Warshaw (2017)

An evolving digital profile of the historical and current behavior
of a physical object or process that helps optimize business
performance

IoT

Liu et al. (2018) A replication of real physical production system in the DM,
which are utilized for system optimization, monitoring,
diagnostics and prognostics via integration of artificial
intelligence, machine learning and software analyticswith large
volumes of data from physical systems

Manufacture
engineering

Vrabic et al. (2018) The DT is a digital representation of a physical item or
assembly that uses integrated simulations and service data

General

Tao et al. (2019) A real mapping of all components in the product lifecycle using
physical data, virtual data and interaction data between them

Design engineering

Grieves and Vickers
(2017)

A set of virtual information constructs that fully describes a
potential or actual physical manufacturing product from the
micro atomic level to the macro geometrical level

General

Madni et al. (2019) A virtual instance of a physical system (twin) that is continually
updated with the physical system’s performance, maintenance,
and health status data throughout the physical system’s
lifecycle

General

Table 1.
Different definitions of

DT in the literature
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product design (DTPD) framework (Tao et al., 2019) are referenced in the corresponding
literature. Table 2 provides a concise summary of various DT models or frameworks, their
key components and the corresponding references.

3. DT enabling technologies
To construct DT, a variety of enabling technologies should be implemented, as demonstrated
in Figure 3. Tao and Zhang (2017) has already proposed a five-dimensional model which has
encompassed comprehensive elements required for DT. Based on the five-dimensional DT
model, we further emphasize the environmental coupling technologies when constructing a
high-fidelity DT model. This extended DT model is particularly suitable for health-condition
monitoring of complex equipment in varied engineering fields, e.g. in tunneling and
underground space engineering, marine engineering and wind engineering.

The physical object ought to be capable to percept the outside world. Thus, sensing
technology needs implementation to gain a full understanding of the environment. Once data
are acquired, the virtual model should then be adjusted to keep track of the changes in
physical entities. To replicate the physical world as realistically as possible, the virtual model
should contain an intact features set that consists of geometrical, physical, behavioral and
rule information (Tao and Zhang, 2017; Qi et al., 2021; Tao et al., 2018d). Since massive
multisource heterogeneous data are generated during the operation of a physical object, big
data analytics technologies are required to collect, transmit, store and process the data. DT
services cope with the concrete functions depending on the usage of the physical object. To
deliver the original and processed data, data transmission technologies, such as different
communication protocols and IoT technologies, should be imported. Data-driven technology
is also essential for controlling the physical object to respond to the commands from the upper
level. The environment factor is an important component of DT, which provides information
necessary to secure the consistency of physical entity and virtual model, collect and integrate
information on all elements, precisely predict the change of the environment. Thus, the

References DT models Key components

Grieves (2014) Original DT Physical products, virtual products, and connection
between physical and virtual products

Tuegel et al. (2011a),
Gockel et al. (2012)

Airframe digital twin (ADT) Structural definition, structural models, material
state evolution models, and flight dynamics

Qi et al. (2021) Five-dimensional DT model Physical entities, virtual models, services, DT data,
and connections

Tao and Zhang
(2017)

Digital twin shop-floor (DTS) Physical shop-floor, virtual shop-floor, shop-floor
services, shop-floor DT data, and connection

Zhang et al. (2019c) Product manufacturing digital
twin (PMDT)

Product definition model (PDM), geometric and
shapemodel (GSM), manufacturing attributemodel
(MAM), behavior and rule model (BRM), and data
fusion model (DFM)

Zhang et al. (2019b) Reconfigurable digital twin
(RDT)

Physical layer, model layer, data layer and service
layer

Wang and Wang
(2019)

Digital twin for waste electrical
and electronic equipment
(WEEE)

Cyber world, service flow, DT knowledge, and
physical flow

Wang et al. (2019) Digital twin enabled fault
diagnosis framework

Physical system, enabling technology, DT model,
and predictive maintenance

Tao et al. (2019) DT-driven product design
(DTPD) framework

Planning and task clarification, conceptual design,
embodiment design, detail design, virtual
verification

Table 2.
Summary of different
DT models
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environment coupling technology is required in order to consider the effect of environmental
factors. This section surveys the enabling technologies for constructing a DT model.

3.1 Technologies for physical objects
Physical objects are key components of the DT because they are the sources of massive
multisource heterogeneous data from the real world. To perceive real-world data, such as
geometric shape, physical property and mechanical precision, sensing and measurement
technologies are implemented for DT, including IoT sensing technologies, reverse
engineering, image recognition measurement and particle sensing technology, etc.
(Qi et al., 2021). In aerospace engineering, Hochhalter et al. (2014) implemented sensory
material, which produces a phase transition when sufficient strain occurs, into structural
alloy to improve the reliability of crack detection.

Because physical objects are used to performing designated tasks, the control technologies
of the physical objects need to be considered when implementing the DT, including the power
selection (e.g. electrical power and hydraulic power), mechanical transmission design (e.g. gear
drive, belt drive, and connecting rod drive) and control technologies (e.g. programmable
control, supervisory control, simulation-based control, etc.) (Qi et al., 2021; Zhuang et al., 2018).
For control technologies, Wang et al., (2017) utilized the IEC-61499-based function block to
compile the algorithm into robot control codes. Atorf et al. (2017) controlled the robot arm of an
assembly line in a simulation-based manner, where users can implement complex abort
conditions and objective functions to control the automated simulations.

3.2 Data construction and management technologies
Both the physical entities and the virtual models are driven by data, which are the media by
which DT understands, responds and interacts with the real world. The whole lifecycle of DT

Figure 3.
DT enabling
technologies
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data consists of data generation, data storage, data transmission and data processing. Since
data generationmainly refers to perceptions of the outside world, which is discussed in 3.1, and
data transmission has a strong association with the connection, which is elaborated in 3.5, this
subsection focuses on a survey of data storage and data transmission technologies as follows:

A high-fidelity DT model contains intricate information, such as geometry information,
physical information, condition information, etc., where a high volume of data needs to be
stored intact. Some IoT technologies, such as bar code, quick response (QR) code and radio
frequency identification (RFID), can be utilized to store a certain amount of information.With
the development of big data storage frameworks, such as the MySQL database, HBase,
NoSQL database, etc., a large amount of data can be correctly arranged and utilized. In
MySQL the data are stored in the form of tables, where each row has various record names
and each column has concrete values of data. Many rows and columns comprise a form, and
several forms compose a database (Ongo and Kusuma, 2018). HBase employs the Hadoop
Distributed File System (HDFS) as its file storage system, and Hadoop MapReduce provides
HBase with high-performance computing power. Zookeeper provides stable service, and a
failover mechanism for HBase (Bhupathiraju and Ravuri, 2014). The feature of NoSQL is to
remove the relational feature of relational database. The NoSQL database has very high read-
write performance, especially in large data volume, also excellent performance.

The basic purpose of data processing is to extract and derive data that are valuable and
meaningful to particular people from large, potentially cluttered, incomprehensible amounts of
data. Raw data are useless unless they undergo data cleaning, compression, smoothing,
transformation, reduction, etc. Big data analytics may be divided into the following aspects:
analytic visualizations, data mining algorithms and predictive analytic capabilities. Data
visualization aims to communicate clearly and effectivelywith the aid of graphical means. Data
can be visualized by different forms of tables and graphics (histograms, bar charts, pie charts,
etc.). Data mining generally refers to the process of algorithmically searching for information
that is hidden in a large amount of data from a large amount of data. Commonly employed data
mining algorithms includeK-means algorithms (Kapil et al., 2016), support vectormachines, the
apriori algorithm, the expectation–maximization algorithm, the nearest neighbor approach
(Dr€oder et al., 2018), the naive Bayesian model and classification and regression trees (CART),
etc. Predictive analytics are advanced analytic techniques that leverage historical data to
uncover real-time insights and predict future events. These techniques combine a variety of
advanced analytics capabilities, including ad hoc statistical analysis, predictive modeling, data
mining, text analysis, optimization, real-time scoring, machine learning, etc.

To address multisource heterogeneous data, data fusion is necessary for collection,
transmission, synthesis, filtering, correlation and synthesis of useful information from
various information sources. There are three levels of data fusion methods: signal-level
fusion, feature-level fusion and decision-level fusion (Liu et al., 2018). Data fusion methods
include Kalman filtering (Li et al., 2017), image regression, principal component transform
(PCT), the K-T transform, the wavelet transform, etc. Despite these data fusion methods, few
articles discuss the implementation of these concrete algorithms or technologies into DT.

3.3 Virtual modeling technologies
As explained in Tao and Zhang (2017) and Tao et al. (2018d), a complete virtual model
contains the geometry, physical, behavioral and rule model. Geometry information includes
the shape, size, position and assembly relationship. There are diverse mature computer-aided
design (CAD) software that can visualize the geometrical information of a physical object,
such as UG, AutoCAD, SolidWorks and Creo.

Physical information contains the tolerances (dimensional tolerance, geometrical
tolerance, surface roughness, etc.), material properties (density, Young’s modulus,
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Poisson’s ratio, etc.) and other information. Verner et al. (2018) employed Creo to build a robot
DTmodel, in which the geometry information is recorded and its balance characteristics were
calibrated using “center of gravity analysis” and “sensitivity analysis” features of Creo.

A behavioral model describes how the virtual model responds to external stimulates; for
example, changes in the outside world, interaction with other objects, etc. Numerous physics-
based theories/models have been established to reveal the mapping relationship between the
input and the behavior, such as the computational fluid dynamic (CFD) model, finite element
model (FEM) (Tuegel et al., 2011b), robot dynamics model, etc. In shop-floor design, Tao and
Zhang (2017) suggest that behavioral models describe the mechanical correspondence of
production equipment under the circumstance of a given numerical control program and
disturbance, such as human interference, and proposed that descriptions of behavior can be
implemented specifically using finite element models and neural networks.

The rule model involves associations and constraints, which can be applied to analyze,
optimize and predict the object performance. To extract rule information, several
technologies and algorithms can be utilized, such as the data mining algorithm (K-means
(Tao and Zhang, 2017) and neural network (Tao et al., 2018d)), semantic data analytics
(Abramovici et al., 2016) and XML-based specific data format (AutomationML (Schroeder
et al., 2016) and CityGML (Ruohom€aki et al., 2018)). Tao et al. (2018d) proposed that in thewind
turbine rule model, the limitation of wind speed can be calculated by force analysis and
correlations between parameters can be explored via neural networks.

It is important to apply verification, validation and accreditation (VV&A) technology to
evaluate the accuracy of the virtual model (Tao et al., 2018c). Tao and Zhang (2017) applied
VV&A technology to verify the accuracy in the model to the corresponding programming
code, simulation confidence, sensitivity and simulation accuracy, etc.

3.4 Services technologies
DT services technologies aim to fulfill different objectives in different applications. For
example, in aerospace engineering, DT services refer to aircraft structural life prediction
(Tuegel et al., 2011b) while in healthcare, DT services focus on monitoring, diagnosing and
predicting the health conditions of the elderly (Liu et al., 2019b). The diversity of services
leads to the demand for expertise. To generate a service, corresponding data, knowledge and
algorithms must be encapsulated where service description and encapsulation technology is
needed (Tao and Zhang, 2017; Qi et al., 2018).

A service description refers to an accurate statement of specific demand, e.g. production
planning inmanufacturing engineering (Tao and Zhang, 2017) and structural monitoring and
fault prediction (Tuegel, 2012). Since multiple services are often embedded in a complex
system, decomposing services to corresponding subservices and making a smart service
selection are important. The real-time visualization of DT services is a key object of DT,
which requires computer graphics processing technology, such as computer graphics, 3D
rendering and image processing technology.

3.5 Connection and data transmission technologies
To realize real-time control and virtual-real state mapping, connection methods with high
fidelity are necessary for DT. There are abundant connection protocols for data exchange
between the physical space to the DT and inside the cyber space among different software.
The existing data transmission method consists of wire transmission and wireless
transmission (refer to Figure 3). Wire transmission includes the twisted pair (categories 5
and 6), coaxial cable (coarse and fine) and optical fiber (single-mode and multimode), while
wireless transmission includes Zig-Bee, Bluetooth, Wi-fi, ultra-wide band (UWB) and near-
field communication (NFC) (Cheng et al., 2018). For long-distance wireless transmission
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technology, GPRS/CDMA, digital ratio, spread spectrum microwave communication,
wireless bridge and satellite communication are available. An extensive range of
application program interfaces (APIs) are commonly employed for data exchange between
different software to realize data transmission on the software level. Recently, 5G technology
can be applied to satisfy the demand of high data rates, high reliability, high coverage and
low latency (Cheng et al., 2018).

3.6 Environment coupling technologies
Similar with DT virtual model, the virtual environment model also contains geometry,
physics and behavioral information. Geometric information describes the environment in
terms of its geometry and appearance, and presents it in a data format that can be processed
by a computer. Physical information contains the mechanical parameters of the environment,
which are essential when performing physics-based simulation, e.g. finite element analysis
and hydrodynamic analysis. For example, in marine engineering, the mechanical parameters
of the ocean, such as density, viscosity, etc., will affect the influence of the marine
environment on the operation and performance of marine equipment, such as ships and oil
wells. Environmental mapping techniques, sensor acquisition techniques and full element
digital definition techniques can be used to describe geometric and physical information
about the environment. Environmental mapping technologies include remote sensing
technologies, seismic wave method, polarization, radio navigation system, hydroacoustic
positioning systems, 3Dmodeling technology, etc. Behavioral information reflects the change
of environment in response to the operation of DTmodel. For example, during tunneling, the
cutting head of the tunnel boring machine (TBM) churn up the rocky soil, which has a
significant impact on the subsurface environment. Finite element analysis and computer fluid
dynamics can be used to simulate the influence exerted by virtual models in the environment,
whereas neural network and surrogate model are also able to be implemented to predict the
future state of the environment. The visualization of environment is as prominent as the
visualization of virtual model. Due to the large volume of the environment, a multi-channel
immersive stereoscopic display method through wearable devices (e.g. head-mounted
displays, tactile gloves) combined with virtual reality (VR) and mixed reality (MR) would be
suitable for the environment visualization.

4. DT in categorized applications
4.1 DT in product lifecycle phases
As the complexity of equipment is increasing, the lifecycle cost has increased significantly.
PLM is the business activity of managing products across the lifecycle, from the very first
idea for a product until it is retired and disposed (Tao et al., 2018a). Traditional computer-
aided tools (e.g. CAD/CAE/CAM), structural health monitoring, condition and performance
monitoring, and other technologies have been applied to the PLM. However, this research
focuses on physical products rather than virtual models and lacks the fusion of physical
products, virtual models and data. With data and enabling DT technologies, DT can
provide services for the entire lifecycle of the product, including design, manufacturing,
operation andmaintenance, and recycle phases. The potential applications of DT in the four
phases of a product lifecycle are investigated as follows: After surveying 32 relevant
studies in this section, the proportions of the DT paper that address the four phases are
shown in Figure 4.

4.1.1 DT for design. Traditional product design process considers the professional
knowledge and experience of the individuals. In this case, the designers must carry out
various tests to constantly show the validity and usability of the design at the designing stage
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(Tao et al., 2018a). Furthermore, with the individualized designing demands, more realistic
virtual models that mirror the real world of production lines are essential (Zhang et al., 2017).
In allusion to these problems, some new product design approaches based on DT have been
developed.

Tao et al. (2019) proposed a framework of DTPD, which includes five parts: planning and
task clarification, conceptual design, embodiment design, detail design and virtual
verification. In the task clarification phase, customer needs are translated into functional
requirements with design constraints, where DT serves as an “interpreter” to facilitate the
“translation” process. In the conceptual design phase, the functional requirements are
mapped to the design parameters, working principles and physical structures. In the virtual
verification phase, driven by the incoming physical data, the virtual model is progressively
upgraded and optimized. A case of bicycle redesign is presented to illustrate an application of
the proposed DTPD method.

To ensure the validity and usability of the DT model for design purposes, key enabling
techniques are proposed. For example Zhang et al. (2017), presented a DT-based approach for
rapid individualized design of a production line and three key enabling techniques, including
reference models, distributed integration and multi-objective optimization between static
design and dynamic control. Liu et al. (2019a) proposed four key techniques for DT-driven
design of the automated flow-shop manufacturing system (AFMS), including initial, rapid
and individualized design based on reference models, real-time cyber-physical
synchronization, distributed semi-physical integration, multi-objective optimization of
dynamic execution and bi-level programming between static configuration and dynamic
execution. Tao et al. (2018a) applied big data technology to DT-based product design.
A simulation package from a commercial PLM software has been released to address design
challenges in water pumps (Ferguson et al., 2017).

DT technologies have also been implemented in product geometry control in the design
phase. For instance, Schleich et al. (2017) propose a comprehensive reference model that is
based on the concept of skin model shapes and apply this model to geometrical variations
management. S€oderberg et al. (2017) propose a DT concept for real-time geometry assurance
in design and use a sheet metal assembly example to illustrate this approach. A detailed
survey of characteristic features, key technologies and specific applications of the DT in the
design phase is provided in Table 3.

4.1.2 DT for manufacturing. Similarly, a DT system for manufacturing has four key
components, including physical entity, virtual model, data and service system (Tao and
Zhang, 2017). The following three core techniques have been researched: (1) construction of

Designing 22%

Manufacturing
47%

O&M 28%

Recycling 3%

Figure 4.
Proportion of the

literature that
addresses DT in four

lifecycle phases
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the DT model; (2) acquisition and management of data and (3) services that consist of
prediction and production management (Zhuang et al., 2018).

The DTS concept was proposed in Tao and Zhang (2017), where the four components, i.e.
physical shop-floor (PS), virtual shop-floor (VS), shop-floor service system (SSS) and shop-
floor DT data (SDTD), its key technologies and current challenges are discussed. The PS
consists of manufacturing factors, i.e. human, machines, material and products. The
implementation of sensors (e.g. RFID, Zhuang et al., 2018) are needed to collect data and
communication interfaces and protocol (such as CoAP, Tao et al., 2017a), which is essential to
transmit data and receive commands from the upper level. The VS is considered from the
following perspectives: geometry, physics, behavior and rule (Tao and Zhang, 2017; Zhang
et al., 2019b; Zhuang et al., 2018; Tao et al., 2017b). SSS encapsulates various data, functions
and algorithms to satisfy different demands from the PS andVS, such as production planning
and monitoring, models calibration and validation, etc. (Qi et al., 2018; Ciavotta et al., 2017).
SDTD collect, converge, store and analyze data generated from the PS, VS and SSS (Tao et al.,
2018a). Zhang et al. (2019c) explored the concept and basic components of the PMDT, which
consists of five models, i.e. PDM, GSM, MAM, BRM and DFM. Based on the PMDT, a new
architecture of the cyber-physical production system (CPPS), which is composed of five layers
(i.e. the physical layer, the network layer, the database layer, the model layer, and the
application layer), was composed. In Qamsane et al. (2019), the overall DT platform is
partitioned into individual DT classes that allow modeling of the major components, such as
physical topology, machine assets, machine processes and system processes, and the DT
instances of these classes are combined via coordination of the DTmanager. Leng et al. (2019)
proposed a DT-driven manufacturing cyber-physical system (MCPS) for parallel controlling
of a smart workshop, which consists of four parts: the manufacturing workshop, the
manufacturing execution, the online parallel controlling and the decentralized self-
organizing.

References Characteristic components Key technologies
Specific
application

Tao et al.
(2019)

Framework of DTPD Planning and task clarification;
Conceptual, embodiment and detail
design; Virtual verification

Bicycle redesign

Schleich et al.
(2017)

Comprehensive reference model
based on skin model shapes

Geometrical variations
management

Geometrical
variations
management

Zhang et al.
(2017)

Rapid individualized design of
production line; Platform of
hollow glass production

Distributed integration;
Multiobjective optimization

Hollow glass
production line

S€oderberg
et al. (2017)

Real-time geometry assurance;
Design, preproduction and
production phases

Locating scheme optimization;
Statistical variation simulation

Sheet metal
assembly

Liu et al.
(2019a)

Framework of DT-driven design
of AFMS; Rapid individualized
design platform for AFMS

Cyber-physical synchronization
and distributed semiphysical
integration; Multiobjective
optimization of dynamic execution;
Bi-level programming between
static configuration and dynamic
execution

Sheet material
production line

Tao et al.
(2018a)

Big data in product lifecycle; DT-
based product design process

Conceptual design; Detailed design;
Virtual verification;

Bicycle design

Ferguson
et al. (2017)

DT platform development Using Siemens PLM Software
platform

Water pumps
design

Table 3.
Survey of DT
references for the
design phase
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In themanufacturing process, numerous data will be generated. The collection, fusion and
transmission of these data is an important part in constructing DT. The data collected in the
physical manufacturing shop-floor are divided into three categories: real-time perception
data, production process data and production activity plan data (Zhuang et al., 2018).
Multimodal data acquisition has to be conducted. Sensor-based tracking and machine vision
are introduced for data acquisition in small andmedium-sized enterprises (SMEs) (Uhlemann
et al., 2017). The collected data need to be fused and integrated and then uploaded to the
database via the network. The 5G networks contribute higher bandwidth, faster speeds and
lower latency. Coronado et al. (2018) developed a mobile Android OS-based manufacturing
execution system (MES), and the data obtained from theMES is sent to the cloud and stored in
a database, where it is merged with MT Connect data collected from the networked machine
tools. The database can use the Hierarchical Data Format Version 5 (HDF5) file format, which
provides a flexible structure to enable the storage of multiple different data (Zambal et al.,
2018). The data flow of DTs for the manufacturing stage is shown in Figure 5.

With DTmodel and acquired data, some prediction and production management services
will be provided. Zambal et al. (2018) used an analytical model and finite-element model to
predict product defects; however, in the case of critical defects, the finite-element model
requires a considerable amount of time to generate a result. Regarding the production
management and control principles, Leng et al. (2019) proposed the idea of bi-level intelligence
between local decentralized self-organizing and holistic online parallel controlling. Malik and
Bilberg (2018) explored the human-robot allocation scheme in a production setting and
estimate the task completion times. Liau et al. (2017) presented the application of the DT
concept in the injection molding industry frommold design to mold making and the injection
molding process. In addition, Priggemeyer and Rossmann (2018) explored a technology that
allows transparent transfer of the simulation results from a virtual environment to a real
system and then apply the virtual system’s state to actually control the physical components.
The research of DT in the product manufacturing stage is summarized in Table 4.

Globalization contributes new challenges to manufacturers: unpredictable market
changes, rapidly varying demands and frequent introduction of new products. In this
circumstance, the demand of rapid response to these changes has been proposed.
Reconfigurability is a capacity that allows manufacturing systems to add, remove and

Database (HDF5 format, etc.) DT platform

Fused Data

Real-time 
perception data

Production 
process data

Production 
activity plan 

data

Internet
WAN
5G
...

Operation log Data analysis

Production prediction,
management and control

Physical entity

Sensors
Machine vision

Manual entry
…

Figure 5.
Data flow of DT in

manufacturing
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References Characteristic components Key technologies Specific application

Tao and Zhang
(2017), Qi et al.
(2018)

PS; VS; SSS; SDTD Perception and access,
Communication protocol analysis,
Data encapsulation and
publication; Multidimensional
modeling, Model integration,
Model verification; Data cleaning,
Data integration, Data fusion;
Iterative optimization, Self-
learning, self-organization, and
self-adaption mechanism; Service
encapsulation, composition and
publication; Demand
decomposition; Service-demand
matching

Shop-floor design

Priggemeyer and
Rossmann (2018)

Simulation-based Control Purdue Enterprise Reference
Architecture (PERA) and
Reference Architectural Model
Industry 4.0 (RAMI 4.0)

Robotic Workcell

Zambal et al.
(2018)

Data management and
database; Predict mechanical
properties

Structure of database; Finite
element calculations

Aircraft wing

Malik and
Bilberg (2018)

DT framework for HRC
workstation

Human-robot task allocation;
Human ergonomic analysis

Assembly work
station

Coronado et al.
(2018)

Android OS-based MES; Cloud
database

Data set integration; Cloud
computing and manufacturing

Manufacturing
shop-floor

Qamsane et al.
(2019)

Novel DT architecture: DT pool
and DT manager

DT pool consists of DT classes; DT
manager coordinates DT instances

Manufacturing
flow-shop

Leng et al. (2019) DT driven manufacturing CPS;
Workshop, execution, parallel
controlling and decentralized
self-organizing

Data driven cyber-physical fusion;
Triple-view cyber-physical
synchronization and integration;
Decentralized self-organizing
tasks; Holistic online parallel
controlling

Smart
manufacturing
workshop

Zhang et al.
(2019c)

PMDT consists of five models;
CPPS composed of five layers

/ Aircraft engine blisk
machining shop-
floor

Zhuang et al.
(2018)

Framework of DT-based smart
production; Prediction services
for the shop-floor

Big data technologies Satellite assembly
shop-floor

Uhlemann et al.
(2017)

Composition of a database;
Multimodal data acquisition

Sensor-based tracking; Machine
vision

Small- and medium-
sized enterprises

Liau et al. (2017) DT concept in injection molding
industry

Internet-of-Things; Cyber Physical
System

Injection molding

Stark et al. (2017) Modularized functional design
with a construction kit

Virtual prototyping and validation Shop-floor
reconfiguration

Liu et al. (2019a) DT-based design; Execution
engine; Production simulation;
Multiple optimization;
Balancing via bi-level
programming

Initial rapid individualized design
of static configuration; Multiview
synchronization and distributed
semi-physical simulation; Optimal
design of dynamic execution;
Iterative design between static
configuration and dynamic
execution

Shop-floor
reconfiguration

Malik and
Bilberg (2018)

Physical space; Virtual space:
simulate production plan,
optimize simulation, convert to
production plan

Collision analysis; Reach test;
Placement test; Vision test

Shop-floor
reconfiguration

Table 4.
Survey of DT
references for the
manufacturing phase
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rearrange components to satisfy the rapid change in the markets. Koren et al. (2018) proposed
a reconfigurable manufacturing system (RMS), indicating that DT is an effective way to
overcome the complexity of the system, and established the requirement of the efficiency of
the developed strategy/algorithm that can be employed in real time. The framework of DT in
the shop-floor reconfiguration is shown in Figure 6. Based on the RMS, Zhang et al. (2019b)
presented a reconfigured DT (RDT) model based on a five-dimensional RDT model, i.e.
geometry, physics, capability, behavior and rule. The reconfiguration strategy is based on a
dependency tree. Malik and Bilberg (2018) applied Tecnomatix Process Simulate software to
perform human-robot task allocation, workstation layout configuration, human ergonomic

Replacement

Delete useless 
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components

Strategy and algorithm

Upgrade design

Deletion Addition Adjustment

Replace old
and the most 

worn
equipment

Simplify the
system and

improve
average

efficiency

Ensure
manufacturi

ng safety
and improve
cooperation
efficiency

Sequence

Choose
inefficient and

discordant 
entities

Match functional 
interfaces and spatial 

interfaces

Increase
productivity and add

new functions
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analysis in a virtual environment and automatic robot programming. Zhang et al. (2019a)
proposed a reconfigurable DT manufacturing system (RDTMS) and reconfigurable
strategies for different levels of manufacturing system from the equipment level to the
service level. For enterprise applications, DELMIA of Dassault Systems has several roles that
can assist in shop-floor design in the virtual environment. There are “shop-floor designer”,
“shop-floor equipment engineers” and “shop-floor equipment simulation engineer” roles,
which aid in the shop-floor layout design and simulation of the production process (Dassult
Systems, 2020).

4.1.3 DT for operation andmaintenance. Complex equipment, such as aircrafts, ships and
wind turbines are designed to work throughout decades in harsh environments. Thus,
performance degradation is inevitable during the operation of this equipment, which leads to
malfunctioning and high maintenance costs. Therefore, developing a DT for complex
equipment is essential tomonitor the equipment condition, performdiagnoses and prognoses,
and provide design rules for maintenance (Tao et al., 2018d).

Tao et al. (2018d) developed a five-dimensional DT model and presented the framework
and workflow of the DT-driven PHM for wind turbines. In this architecture, DT is modeled in
five dimensions: physical entity (PE), virtual equipment (VE), services for PE and VE (Ss), DT
data (DD), and connection among PE, VE, Ss and DD (CN). In the study by Magargle et al.
(2017), to realize the simulation-based DTs, several methods of systems, circuits and reduced
order modeling were shown using 3D finite element analysis and 0D multidomain circuit
simulation. As the physical device runs, its state will change, so we need to update its DT
model. Aivaliotis et al. (2019) propose a three-phase modeling scheme, which consists of
machine modeling, virtual sensors modeling and model parameters updating. In Wang et al.
(2019), a parametric sensitivity analysis-based model updating scheme is investigated to
enhance the model adaptability, and particle swarm optimization (PSO) is employed as an
optimization algorithm for model parameters updating.

In addition to virtual models, data serve as the key for the DT used in operation and
maintenance (O&M). In Boschert et al. (2018), the concept of products fleet data is proposed
and analyzed; a similarity search using a knowledge graph that comprises all devices of a
fleet provides knowledge for a specific device by searching for similar devices in a fleet.
However, there are challenges in the O&Mof fleet equipment: (1) the large amount of collected
data that need to be processed and (2) the variability between equipment of the fleet. By using
an adaptive physics-based model as a DT for fault detection, isolation and identification, the
challenges of considerable variations within equipment in the fleet can be addressed
(Zaccaria et al., 2018). In some cases, enough real-time data are not available for simulation
models. Monte Carlo simulation can be performed to generate fleet data (Zaccaria et al., 2018).
Both the signature-based technique and the machine learning approach can be utilized for
data processing; the machine learning approach includes the random forest regressor (RFR),
support vector regressor (SVR), gradient boosting regressor (GBR) and artificial neural
network (ANN) (Zaccaria et al., 2018; Balakrishnan, 2019).

With the DT model and data, some applications of DT in the product O&M phase are
developed. Tao et al. (2018d) applied DT technology to the prognostics and health
management (PHM) of wind turbines. Sivalingam et al. (2018) proposed a physics-based
methodology to accurately predict the damage accumulation and remaining useful life (RUL)
for an offshore wind turbine power converter by accountingmedium- and short-term thermal
transient loadings and long-term thermal loading. Li et al. (2017) applied the concept of a
dynamic Bayesian network (DBN) to build a versatile probabilistic model for the diagnosis
and prognosis of the aircraft wing fatigue crack growth. A particle filter is utilized as the
Bayesian inference algorithm for the nonlinear and non-Gaussian DBN. This paper also
showed that the DBN can be modified with reasonable assumptions about the measurement
error and load observation, which provides substantial computational savings. The research
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of DT in the product O&M stage is summarized in Table 5. According to these literatures, the
framework of the DTs for the O&M stage is summarized in Figure 7.

4.1.4 DT for recycling. Recently, DT technologies have been implemented in recycling,
recovery and remanufacturing. For example, a DT-based system has been developed for
WEEE recovery and international standard-compliant data models to support the
manufacturing/remanufacturing operations throughout a product’s lifecycle, from design
to recovery. Users can update the product status via various Industry 4.0 supports, e.g.
mobile apps. When an electrical and electronic equipment (EEE) device stops service, users
can update the digital status. Recyclers can start the recycling process and determine the
recycling mode, material recycling or component recycling based on cloud data recorded in a
DT-based system (Wang and Wang, 2019).

4.2 DT in different engineering fields
In this section, 26 papers are reviewed to categorize DT applications in different engineering
fields. The distribution of these papers in four industrial applications is shown in Figure 8.
The remainder of this section provides a brief introduction about how DT is implemented in
different engineering fields. Corresponding frameworks are discussed, and the relevant
models and technologies are demonstrated.

4.2.1 DT for aerospace engineering.The conventional design features include the usage of
a factor of safety and reference to previous design, which hinders the maximum performance
of a structure and material. Future aircrafts need to work in more complex environments
while reducing their weight (Glaessgen and Stargel, 2012). DT was technically applied in the
aerospace engineering area due to the contribution of NASA and US Airforce Research
Laboratory. The purpose of DT in aerospace engineering is to reduce the weight of aircraft,
even under more complex working conditions, and to mirror the life of the flying twin, which
enable unprecedented safety and reliance (Glaessgen and Stargel, 2012; Tuegel et al., 2011a).

References Characteristic components Key technologies Specific application

Sivalingam et al.
(2018)

Framework for DT platform;
Damage accumulation and
RUL prediction

Virtual sensors; Monte Carlo
Markov Chain (MCMC)

Offshore wind
turbine power
converter

Magargle et al.
(2017)

Simulation-based DT model;
Heat monitoring and
predictive maintenance

3D finite element analysis; 0D
multidomain circuit simulation;
Difference analysis

Automotive
braking system

Wang et al.
(2019)

Parameter sensitivity
analysis-based model
updating scheme

Particle swarm optimization Rotating
machinery

Aivaliotis et al.
(2019)

Physics-based DTmodeling;
Three phases of modeling

Machine modeling; Modeling of
virtual sensors; Updatable
modeling parameters

Industrial robot

Zaccaria et al.
(2018)

Fleet data in DT model;
Adaptive physics-based
model

Monte Carlo simulation; Signature-
based technique; NN model

Aircraft engines

Li et al. (2017) DBN for model building; DT
vision for diagnosis and
prognosis

Particle filter for nonlinear and
non-Gaussian DBN; Modify DBN
structure with reasonable
assumptions

Aircraft wing

Balakrishnan
et al. (2019)

Develop DT for puppet car;
Dataset transmission and
analysis

Open-source software platform;
Transmit dataset via Hono to Kura;
RVR, SVR and GBR

Automobiles
engine

Table 5.
Summary of DT
references in the

O&M phase
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One of the DT frameworks in aerospace engineering is named the Airframe DT (ADT), which
is aimed at the operation andmaintenance (OM) stage. As shown in Figure 9, by receiving the
fleet data according to diverse missions and trajectories, which contains information about
motion of the vehicle (Gockel et al., 2012), a CFD model calculates the aerodynamic loads
applied to the airplane. These loads are subsequently transmitted to an FEM that computes
the response of the aircraft, such as the vibration and stress/strain responses. The resulting
damage is simulated and accumulated for RUL evaluation (Tuegel et al., 2011b). Gockel et al.
(2012) took advantage of the ADT in a touch-and-go practice andmeasured the response with
discrete time.

To sense the change in the external environment and validate the DT model, some
sensitive technologies have been developed. Hochhalter et al. (2014) put an Ni–Ti sensory
particle into a specimen using standard manufacturing skills, which can sense microcracks
and replicate the geometry of the specimen with support of X-ray CT. Reifsnider and
Majumdar (2013) presented amultidisciplinary physics-basedmethodology to predict the life

DT Services for Product O&M

Digital ModelDigital Model

Parameter sensitivity analysis;
Particle swarm optimization;
Update modelling parameters

Fleet data;
Monte Carlo simulation

Data

Physical entity

Machine
modelling

Virtual sensors
modelling

Model simulation
Finite element analysis

Data Process
Signature-based technique
Neural network model

Aerospace 
engineering 35%

Tunneling and 
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engineering 12%Wind Turbine 
condition 

monitoring 15%

IoT 38%

Figure 7.
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of a flying DT and utilized dielectric spectroscopy to indicate material emergent behavior.
Bielefeldt et al. (2015) developed a nondestructive evolution (NDE) method for an aircraft
wing, whose key region was embedded with shape memory alloy (SMA) as sensor to detect
crack initiation and development. Inversely, the virtual model can be employed as a virtual
sensor to simultaneously monitor the condition of an airplane and reduce the frequency and
cost of repair and maintenance (Tuegel, 2012). The DT references and ADT component are
summarized in Table 6.We can imply that CFD and FEMare concurrently implemented in an
ADT framework, whereas sensing technology is researched independently.

Another framework is referred to as the industrial digital mock-up (iDMU), which covers
the beginning of life (BOL) and middle of life (MOL). The iDMU supports different product
structures, addresses the issues related to the integration of functional and industrial design,
and facilitates the creation of a collaborative deliverable to support the manufacturing,
sustaining and servicing of the aircraft (R�ıos et al., 2015). This framework is already
successfully applied byAirbus in its A400M final assembly line (FAL) (Mas et al., 2013, 2014).
Based on this framework, R�ıos et al. (2016) applied Dassault System�es V6 solutions for data
interoperability, manufacturing and assembly, as well as testing and maintenance, using
incidences of the aircraft and enabling the biunivocal relation between the physical
counterpart and the digital counterpart.

4.2.2 DT for tunneling and underground engineering. Underground engineering
equipment is an important complex high-end equipment for infrastructure construction in
the national railway, urban construction, water conservancy, mining and national defense
fields. Its service environment often has high uncertainty, high ground stress, high water
pressure and other characteristics, difficult to characterize with a simple mathematical
physical model. The complex structure of underground engineering equipment, the operation
process involves machinery and soil interaction simulation requires substandard high
computational costs. As an emerging technology that straddles the gap between the physical
and virtual worlds of complex products, DT provides a new way to solve the problems of
design, manufacturing, operation and maintenance of underground engineering equipment
to meet the requirements of complex underground conditions through simulation,
monitoring, diagnosis and prediction, optimization and control.
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Many tunneling and underground engineering companies have paid much attention to
research and application of DT. DigitalTwin Technology in German has raised a solution
called Tunnelware, where the working status of underground engineering equipment can be
diagnosed by tunnel designer, owner and the technical staff together (Tunnelware, 2020).
Germany Bauhaus Universit€at established a general tunnel informationmodeling framework,
proposed a numerical simulation-based ground settlement prediction method and developed
an interactive display system for ground settlement timing process caused by tunnel
construction (Beer, 2003). Kim and Kim (2020) used DT technology for noise barrier tunnels’

References Characteristic components Key technologies
Specific
application

Tuegel et al. (2011a) Thermal/heat transfer model;
Dynamics model; Stress
analysis model; Fatigue model

Multiphysics modeling,
multiscale damage modeling,
integration of structural FEM
and damage models; Uncertainty
quantification, modeling, and
control; Manipulation of large,
shared databases; High-
resolution structural analysis
capability

Aircraft
structural life
prediction

Glaessgen and
Stargel (2012)

Integrated vehicle health
management (IVHM) system;
Ultra-high-fidelity physical
models; Sensor updates;
Historical norms

Sensor materials and high-
fidelity response simulation;
Design and certification
methods; Mission loads and
environmental monitoring; Life
prediction and extension, etc.

Improve
safety and
reliability

Gockel et al. (2012) Flight profile, CFD; FEM Reasonable computational effort;
Discretization of flight profile;
Data storage; Interpolation of
loads and stress/strain results;
Mapping; Analysis of discretized
points

Generate
history of
flight loads

Reifsnider and
Majumdar (2013)

Interpolation of the principle of
microdefect initiation,
accumulation, interaction and
coalescence in composite
materials

Dielectric spectroscopy for
detecting micro defects

Prognosis of
composite
structure

Hochhalter et al.
(2014)

Acoustic emission (AE) for
tensile test; Combination of
geometry and over-the-counter
software to improve prediction

AE sensing technology; Digital
image correlation (DIC)

Crack
detection

Bielefeldt et al.
(2015)

NDEmethod for crack detection;
Computational demonstration
by FEM of aircraft wing; High
sensitivity

Shape memory alloys (SMA)
embedding

Crack
detection

R�ıos et al. (2016) Based on a commercial software
system to accelerate the creation
of aircraft digital counterpart

Computer-aided tools (CAX);
Product lifecycle management
(PLM); Enterprise resource
planning (ERP); MES

Aircraft
industrial
design

Seshadri and
Krishnamurthy
(2017)

Damage characterization using
a wave propagation method at
multiple sensor locations;

Wave propagation analysis Accurate
damage
detection

Li et al. (2017) Using Dynamic Bayesian
Network for diagnosis and
prognosis

Particle filter; Degeneracy,
sample impoverishment, and
resampling

Diagnosis and
prognosis

Table 6.
DT references in
aerospace engineering
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(NBTs) lifespan prediction where gyro sensors were implemented to analyze the change of
physical component’s behavior and a simple numerical method was utilized for fast lifespan
prediction. TheNeanexBIMportal contains a “twin” representation of the real physical tunnel,
which can be navigated in 3D and displays all the necessary information for the highlighted
individual asset (Neanex, 2020). The software uses graphics technology (NoSQL) to process
large amounts of data, is completely based on cloud computing, and provides ready-to-use
additional components for Autodesk (CAD) applications, system engineering tools, and the
related data platform Laces, for sharing across supply chains under open standards data.
Research on the DT in underground engineering equipment to date is summarized in Table 7
including their characteristic and key technologies, where year informationmay bemissing as
some of the research results come from company websites.

There are plenty of researches about the mechanism of how underground equipment
influences the environment. Liao et al. (2009) summarized and elaborated the ground
movement prediction based on field measurements and site investigations of actual projects
in Shanghai soft ground. Chen et al. (1999) estimated free-soil movement based on analytical
method and imposed these movements on the pile to compute the pile response. Finno and
Clough (1985) used FEM and field observation to gain an understanding of ground behavior
around Earth pressure balance (EPB) shields. However, these mechanisms and models have
not been considered during the construction of underground DT, leading to the
incompleteness of DT model and unguaranteed DT simulation confidence level. Thus,
problems such as the simulation-based optimization design coupled with complex service
environment and precise prediction andmatching of the state of construction operations with
the geological environment during O&Mphase still remains to be solved. The construction of
environmental in digital form, the mapping between geological environment and equipment
operational status and AI-based technology for geo-environmental prediction and fault
prediction need to be researched.
4.2.3 DT for wind engineering.As complicated equipment, a wind turbine (WT) is designed to
work in a complex environment for a long time. Thus, the PHM has an important role. By
implementing DT, a real-time model of the equipment is visualized, where the usage
condition, such as wear, cracks and remaining service life, etc., can be predicted (Gao et al.,
2015). Tao et al. (2018d) established a seven-step DT approach to implement DT in PHM (as
shown in Figure 10) and employed it on the WT as a case study. SAP’s DT for wind power
monitoring (Erikstad, 2017) enables operators to implement adaptive control strategies and
improved predictivemaintenance tactics based on the physical condition of the system at any
time, using a digital representation of the real asset. This DT solution supports maintenance
operations and structural capability utilization. Bazilevs et al. (2015) developed a dynamic
data-driven application system (DDDAS) for fatigue-damage modeling in large-scale
laminated composite materials and applied it in the full-scale fatigue test of CX-100 blade.

References Characteristic Key technologies Specific applications

Tunnelware
(2020)

Intelligent Connection,
Segment management

Building Information Model (BIM),
Cloud solution, Data analytics and
visualization, Sensor data
management

Tunnel construction
operation and
management

Kim and Kim
(2020)

Basis research to combine
DT with noise barrier
tunnel (NBT)

Sensor data process, data
correlation, numerical model
analysis

NBT life analysis

Neanex (2020) Integrates requirements,
design and asset
management information

Graphics technology, Cloud
computing

Tunnel virtual model
construction

Table 7.
DT references in

tunneling and
underground
engineering
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Numerous DT platforms and wind power companies, such as GE (Ge, 2020a, b) and DNV GL
(Ghobadi, 2017), employed DT models to monitor WTs in wind farms. These models are
supplied with real data from sensors and can serve as virtual sensors to simulate different
scenarios, such as observing the influences of changes in the wind flow. A 5MW NREL
numerical turbine (Sivalingam et al., 2018) was developed for power converter RUL prediction
under medium- or short-term thermal cyclic loads. Combining the IGBT and diode junction
temperature prediction for the next 5 h, the RUL estimation algorithm will demonstrate the
damage accumulation based on the rain flow counting algorithm, which can be employed for
quick and optimal decision-making. The DT frameworks related toWT conditionmonitoring
is shown in Table 8, including its components and key technologies.

In terms of environmental coupling, high-relative-speed objects such as raindrop,
atmosphere particles and sand, wind speed and other environment factors need to be
considered. Hu et al. (2021) proposed a new smoothed particle hydrodynamic approach
which described the erosion effect of raindrops on WT blades from the perspective of the
raindrop size, impact speed, impact angle and raindrop shape on the impact stress. Fiore
and Selig (2014) presented a numerical method to analyze the impact of collision of insects
and sand grains where a two-dimensional inviscid flow field solver coupled with a particle
position predictor code was used. Noda and Flay (1999) described a simulation model to
examine the effect of mean wind speed, wind shear and vertical wind component. Also, the
weather change in response to the operation of wind turbine may be taken into consider.

Model simulation and interaction

Identification and prediction

of fault cause

Consistency judgement

DT modelling and calibration

Inconsistent

Maintenance strategies

Inconsistency caused

judgement

Model defect

Disturbance

Degradation detection

No degradation

Consistent

Degradation

Source(s): Tao et al. (2018d)

Figure 10.
Framework of DT in
wind turbine condition
monitoring
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Barrie and Kirk-Davidoff (2010) surveyed the impact of wind turbine installation on
atmosphere circulation, which would in turn influence the fatigue load of wind turbine blade.

4.2.4 DT for IoT applications. The IoT is a system of interrelated computing devices,
mechanical and digital machines, objects, animals or people that have unique identifiers
(UIDs) and the ability to transfer data over a network without requiring human-to-human or
human-to-computer interaction (Wikipedia, 2020). The IoT adds data that can be employed in
manufacturing, health care, automotive, urban management and other industries. DT is the
ability to take a virtual representation of the elements and the dynamics of how an IoT device
operates and lives throughout its lifecycle. By implementing DT, seamless integration
between IoT and data analytics can be solved (Fuller et al., 2019) and visualized. A virtual
environment is created for a developer to monitor the condition of devices or test new
solutions without building a real physical environment. In this section, the use of DT for
supporting IoT applications in smart cities, healthcare and manufacturing is discussed.
Table 9 categorizes applications of DT in the IoT in different industries.

TheDTcity conceptmodel is shown in Figure 11.Avariety of sensors are distributed in every
corner of the city. For example, mobile phones provide the locations of individuals and cameras
upload image information of street conditions. Data are transmitted to the IoT platform to
perform different smart city services and then are transmitted to a virtual city to keep pace with
the real city (Mohammadi and Taylor, 2017; Ruohom€aki et al., 2018; Castelli et al., 2019).

Regarding DT in healthcare, several studies address healthcare platforms or the
healthcare DT model. Saddik (2018) compared DT with the human body and proposed that
DT could be applied for illness prediction, well-being improvement and lifestyle decisions. Liu
et al. (2019b) proposed a cloud DT healthcare framework (CloudDTH) for real-time
supervision and accurate alerting of emergencies for the elderly in healthcare services.

Currently, most research on DT and IoT focuses on the manufacturing industry. With the
development of big data, cloud computing, machine learning and AI technology, a massive
amount of data generated during production can be processed, and the industrial IoT (IIoT)
advents specifically for the industrial field.

References Characteristic components Key technologies Specific applications

Bazilevs et al.
(2015)

Wind turbine blade and its iso-
geometric analysis (IGA) model;
Sensors; Test data

Iso-geometric analysis (IGA);
Structural Health
Management (SHM); Data-
driven simulation

Damage prediction

Erikstad
(2017)

Overview of operations; Wind
farm outline; Real-time
visualization of specific wind
turbine; Asset Component
Analytics & Model-Based User
Experience

Sensors; Data analytics;
Machine learning; AI

Comprehensive
management of WT
farm

Sivalingam
et al. (2018)

Risk assessment; Revenue loss
calculator; safe weather operation
window prediction; maintenance
records; Digital turbine with
SCADA integration with AI;
Physics-based models for RUL
prediction

Virtual sensors; Fast
modeling; Machine learning/
AI

Remaining Useful
Life prediction

Tao et al.
(2018d)

Physical entity (PE); Virtual
equipment model (VE); Services
model (Ss); DT data model (DD);
Connection model (CN)

Sensor; Modeling; Data
process; Connection

Fault cause
prediction Table 8.

DT platforms for WT
condition monitoring
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References Characteristic components Key technology
Specific
application

Mohammadi
and Taylor
(2017)

Real city; DT city; Spatiotemporal
flux; VR

Modeling; VR visualization Smart City

Ruohom€aki et al.
(2018)

Open standards; Helsinki
3D þ city model; DT; Energy and
climate Atlas; City as a platform;
IoT on urban platform; General
Data Protection Regulation
(GDPR) and privacy

Modeling; Semantic data
management

Castelli et al.
(2019)

City physical system; Data
collection; Data lake; City
knowledge and models; modeling
and simulation; City DT; City
governance

IoT networks; Data science and
modeling; High performance
computing; Advanced numerical
optimization

Saddik (2018) Representation; Intelligence;
Sensing/actuating; Tactile Internet

Augmented, virtual and MR;
Haptics; Robotics; 5G and tactile
Internet; Cloud computing;
Wearables; IoT; AI

Health care

Liu et al. (2019b) Physical object; Virtual object;
Health care DT data; Cloud health
care service platform

Health care resource access;
Health care information fusion
and sharing; Health care service
management; Model
management; Health care data
security; Data management and
analysis

Rosen et al.
(2015)

Part ID and type; Production order
number and priority; Production
workflow; Current states and
locations; NC program files;
Production history

/ Manufacturing

Schroeder et al.
(2016)

Physical components;
AutomationML; Middleware;
External systems

Data exchange

Alam and
Saddik (2017)

Physical things; Cyber thing;
hierarchy-based composition of
subsystems; Relationship
network; Integration of web
services

Cloud computation

Cheng et al.
(2018)

Enhance mobile broadband
(eMBB), massive machine type
communication (mMTC) and
ultrareliable and low latency
communication (URLLC)

VS modeling; Simulation and
verification; Health
management; Product quality
analysis; Shop-floor energy
consumption optimization and
prediction; Material cracking
and rationing; Collaborative
production process analysis

Chhetri et al.
(2019)

DT product parsing; Feature
extraction; Synchronize and
segment; Clustering algorithm;
Anomaly localization algorithm

Side-channel sensing; Data
clustering; Anomaly location

Table 9.
DT references in IoT
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TheDT framework employed in the IIoT is shown in Figure 12. The IoT has provided various
sensors for manufacturing equipment, such as a CNC lathe to percept the environment.
Additionally, Chhetri et al. (2019) utilized side channels (such as acoustic emission and
magnetic) for legacy manufacturing systems without built-in sensors to reveal the cyber-
physical relationship of the system. With the implementation of 5G technology, enhance
mobile broadband (eMBB), massive machine type communication (mMTC) and ultrareliable
and low latency communication (URLLC) can achieve high data rates, high reliability, high
coverage and low latency data transmission (Cheng et al., 2018). Schroeder et al. (2016)
proposed AutomationML as a data exchange format for different systems. For the IIoT
services, cloud-based computing is mentioned in Alam and Saddik (2017) and Zheng et al.
(2018) to ensure the scalability of storage, computation and cross-domain communication
capabilities.

5. Key challenges in constructing DT
Despite the relatively comprehensive five-dimensional DT model with its existing key
technologies and previously mentioned applications of DT, some technical issues (e.g.
computational effort and data transmission rate) still hinder the development of DT. The
main challenges in constructing DT can be summarized as the following five aspects:

Data processing:
Big data; Machine learning and AI

IIoT Services:
Visualization; Resource management; Fault

detection and alert…

Data acquired by sensors:
Built-in sensor; RFID; Camera

Physical Industrial System Virtual Industrial System

Simulation Data

IoT platform

Smart City Services
● Municipal Planning

● Traffic Control

● Ecological and environmental governance

Data
Sensor, Camera

Physical City Virtual City

Data
Space, Time

Figure 12.
DT in IIoT

Figure 11.
Smart city DT

framework
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(1) High-fidelity modeling. Due to the variability, uncertainty and fuzziness of physical
space, building models in virtual space to mirror entities with high fidelity is a
fundamental issue. Virtual models ought to be faithful replicas of physical entities,
which reproduce physical geometries, properties, behaviors and rules (Tao et al.,
2019). Current modeling is usually limited to geometric consistency, and much work
is needed at the other three levels. With the operation of equipment, the physical
entity will change or degrade to a certain extent, and the built model will be
inconsistent with the entity. When inconsistences between models and entities
appear, how to appropriately identify and update them is difficult. Current modeling
generally focuses on a specific life stage of a product. Building a virtual model of a
product throughout its entire life-cycle, including design, manufacturing, operation
and maintenance, and recycling, is valuable but challenging.

(2) Data acquisition and processing. Data comprise another key driver of DT, which
consists of multitemporal scale, multidimension, multisource and heterogeneous data.
The whole data lifecycle includes data collection, transmission, storage, processing,
fusion and visualization (Tao et al., 2018b). To solve these problems, we need to
integrate sensors, machine vision, Internet, IoT, database, data fusion and other
technologies. In the previous sections, some data processing approaches, such as
signature-based techniques, various neural networks, etc., were discussed. However,
some methods have low accuracy, are time-consuming, and consume an excessive
amount of computing resources. To ensure real-time and reliable simulation analysis
results, we need to develop some fast data analysis methods with high accuracy. In
addition, we have to address the problems of fleet data, considering both common
characteristics and individual differences of batch products.

(3) Real-time, two-way connection between the virtual space and the real space. The
virtual model obtains real-time data of physical entities, and the analysis results are
utilized to guide the physical entities in real time. Due to the large amount of data,
network transmission delays, model analysis time, etc., it is difficult for DT to achieve
a real-time, two-way connection.We also need to solve problems such as visualization
and human-equipment interaction.

(4) Unified development platform and tools. Due to different formats, protocols and
standards, current tools may not be simultaneously integrated and applied for a
particular objective (Tao et al., 2018b). Therefore, the development of a universal
design and development platforms and tools for DT are required in the future.

(5) Environmental coupling technologies. The current DT lacks association with
external environment. The mechanism explaining how physical object interacts with
environment has not been fully embodied in the virtual models. Lots of research
studies have explored the mechanism where physical entities interact with their
environment in reality. However, there is still an urgent need on their corresponding
digital expression method, which will lead to an efficient and accurate prediction in
the future DT.

6. Conclusions
After the concept of DT was proposed in 2003, DT has attracted an increasing amount of
attention in both industry and academia. The DT model has also evolved from the
original three-dimensional DT model to a more sophisticated five-dimensional DT model
composed of a physical object, a virtual model, DT services, DT data and a connection.
The majority of DT literature focuses on the conceptual development of DT frameworks
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for a specific implementation area. Hence, this paper summarized the enabling
technologies to implement DT according to the different components in the DT model.
Based on these technologies, this paper provided a comprehensive survey from two
perspectives: (1) applications in four product-lifecycle phases, i.e. product design,
manufacturing, operation and maintenance, and recycling; and (2) applications in four
categorized engineering fields, including aerospace engineering, tunneling and
underground engineering, wind engineering, and the IoT. Key enabling technologies,
such as sensor technology, virtual modeling technologies, data processing technologies
and data transmission methods, in different application scenarios are also categorized. At
the same time, this paper has mentioned the shortcomings of the lack of environmental
factors in the DT model and discusses the six-dimensional DT model concerning
environment.

DT is an emerging technology with significant potential. However, the following
limitations hinder the thriving of DT: (1) Most DT models contain only geometric models.
Although some recent research considered physical models, there is still a lack of in
behavioral modeling and rule modeling. (2) Delay and distortions occur in data transmission.
Current data transmission methods fail to satisfy the demand of high accuracy and high
speed due to the large amount of data that need to be transmitted simultaneously. (3) Current
data analysis algorithms and methods need improvement in both accuracy and rapidity. (4)
There are various DT platforms for different applications, especially in complex equipment
monitoring and IoT fields. However, because of the diversity in communication protocols and
different service demands, the development period of these platforms is too long to form a
unified DT platform.

In response to these shortcomings, future research directions for DT should focus on the
following. (1) The development of a data format that contains all of the information and shows
uniformity with real-world data, including geometry, physical, behavioral and rules
information. (2) The implementation of the latest communication method, such as 5G, to
satisfy the demand of high accuracy and low latency. (3) The optimization of algorithms to
improve the speed and accuracy of the algorithms. (4) The development of methods for
integrating different communication protocols and data communication interfaces with
various services to develop a unified DT platform.

Abbreviations
ADT Airframe Digital Twin
AFMS Automated Flow-Shop Manufacturing System
BOL Beginning of life
BIM Building Information Model
BRM Behavior and Rule Model
CART Classification and Regression Trees
CFD Computational Fluid Dynamics
CPMS Cyber Physical Manufacturing System
CPPS Cyber Physical Production System
CPS Cyber Physical System
DBN Dynamic Bayesian Network
DD Digital-twin Data
DDDAS Dynamic Data-driven Application System
DFM Data Fusion Model
DM Digital Model
DS Digital Shadow
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DT Digital Twin
DTPD Digital Twin-driven Product Design
DTS Digital Twin Shop-floor
EEE Electrical and Electronic Equipment
FAL Final Assembly Line
FEM Finite Elements Model
GBR Gradient Boosting Regressor
GSM Geometric and Shape Model
HDFS Hadoop Distributed File System
HDTM Hierarchical Digital Twin Model
iDMU Industrial Digital Mock-Up
IoT Internet of Things
MAM Manufacturing Attribute Model
MCPS Manufacturing Cyber-physical System
MES Manufacturing Execution System
MOL Middle-of-life
NASA National Aeronautics and Space Administration
NBT Noise Barrier Tunnel
OM Operation & Maintenance
PCT Principal Component Transform
PDM Product Definition Model
PE Physical Entity
PHM Prognostics and Health Managementl
PLM Production Lifecycle Management
PMDT Product Manufacturing Digital Twin
PS Physical Shop Floor
PSO Particle Swarm Optimization
QR Quick Response
RDT Reconfigure Digital Twin
RDTMS Reconfigurable Digital Twin Manufacturing System
RFID Radio Frequency Identification
RFR Random Forest Regressor
RMS Reconfigurable Manufacturing System
RUL Remaining Useful Life
SDTD Shop-floor Digital Twin Data
SMA Shape Memory Alloy
SME Medium-sized Enterprises
SP Smart Production
Ss Services
SSS Shop-floor Service System
SVRS Support Vector Regressor
UHVCS Ultra-high-Voltage Converter Station
UIDs Unique Identifiers
UWB Ultra-wide Band
VE Virtual Equipment
VS Virtual Shop-floor
WEEE Waste Electrical and Electronic Equipment
WT Wind Turbine
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