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Abstract

Purpose – Surface roughness has a serious impact on the fatigue strength, wear resistance and life of
mechanical products. Realizing the evolution of surface quality through theoretical modeling takes a lot of
effort. To predict the surface roughness of milling processing, this paper aims to construct a neural network
based on deep learning and data augmentation.
Design/methodology/approach – This study proposes a method consisting of three steps. Firstly, the
machine tool multisource data acquisition platform is established, which combines sensor monitoring with
machine tool communication to collect processing signals. Secondly, the feature parameters are extracted to
reduce the interference and improve the model generalization ability. Thirdly, for different expectations, the
parameters of the deep belief network (DBN) model are optimized by the tent-SSA algorithm to achieve more
accurate roughness classification and regression prediction.
Findings – The adaptive synthetic sampling (ADASYN) algorithm can improve the classification prediction
accuracy of DBN from 80.67% to 94.23%. After the DBN parameters were optimized by Tent-SSA,
the roughness prediction accuracy was significantly improved. For the classification model, the prediction
accuracy is improved by 5.77% based on ADASYN optimization. For regression models, different objective
functions can be set according to production requirements, such as root-mean-square error (RMSE) or MaxAE,
and the error is reduced by more than 40% compared to the original model.
Originality/value – A roughness prediction model based on multiple monitoring signals is proposed, which
reduces the dependence on the acquisition of environmental variables and enhances the model’s applicability.
Furthermore, with the ADASYN algorithm, the Tent-SSA intelligent optimization algorithm is introduced to
optimize the hyperparameters of the DBN model and improve the optimization performance.

Keywords Multi-sensor fusion, Surface quality, Digital signal processing, Feature engineering,

Neural network, Parameter optimization

Paper type Research paper

1. Introduction
The machinery manufacturing industry is undergoing a digital and intelligent revolution as
the Internet and artificial intelligence become more prevalent. Traditional computer
numerical control (CNC) machining is transforming into intelligent CNC machining.
The fundamental premise of intelligent CNC machining is to produce an efficient,
completely automatic system, which can be tackled in two steps: the first is infrastructure
monitoring, which involves real-time tracking of the CNC system’s core components, and the
second is quality diagnostics utilizing machine learning (ML) technology.
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Simultaneously, the quality standards of mechanical products are increasing, particularly
in high-end complicated areas such as aerospace, precision manufacturing and precision
medical equipment. In rare circumstances, the quality of mechanical items has a significant
impact on product service life. Surface roughness has a significant impact on the fatigue
strength, wear resistance and surface hardness of mechanical products (He et al., 2015), hence
it is frequently used to assess product quality. Surface roughness is caused by a complex
mechanism dependent on specific manufacturing procedures, and the analytical expression
cannot be simply determined (Benardos and Vosniakos, 2002). As a result, many academics
are dedicated to the monitoring and prediction of workpiece roughness during the machining
process, and numerous technologies are employed to establish the relationship between
physical phenomena and surface roughness during the cutting process.

Surface roughness estimation is classified into two categories: classic theory-based
modeling and machine-learning-based prediction. The theoretical modeling method
establishes a statistical regression or classification model of surface roughness through
response surface analysis of experimental data by analyzing the relationship between the
surface roughness generation mechanism and process parameters. The MLmethod achieves
real-time roughness prediction by building a one-to-one relationship between data and
surface roughness.

Many researchers have done pertinent research in the area of predicting roughness with
ML. Agrawal et al. (2015) established a surface roughness prediction model by using turning
parameters, random forest and multiple regression methods. Abu-Mahfouz et al. (2017) used
linear and polynomial kernels to introduce fast Fourier transform (FFT) and continuous
wavelet transform (CWT) features, as well as statistical features, into support vector machine
(SVM) to predict surface roughness classification and compare with K-nearest neighbor,
decision tree and random forest classifiers. Zhou et al. (2019) predicted surface roughness
using a Gradient-boosting regression tree (GBRT) to fit the relationship between process
parameters and surface roughness. Lu et al. (2019) optimized the internal parameters of the
SVM model using the artificial bee colony algorithm (ABC) and matched the surface
roughness prediction model based on the SVM model with machining process parameters
and tool tip radius.

The neural network can improve the roughness prediction because of its outstanding
performance in high dimensional data feature learning efficiency and accuracy. Chen et al.
(2017) proposed a nested artificial neural network to predict the surface roughness of the
turning process. Lin et al. (2019) processed vibration signals based on three methods: FFT
deep neural network (FFT-DNN), FFT long short-term memory (FFT-LSTM) network and
one-dimensional convolutional neural network (1-D CNN), and established three prediction
models of surface roughness respectively. Based on the idea of deep learning, Pan et al. (2022)
discretizes surface roughness and transforms the fitting problem into a classification problem
and the relationship between vibration signal and surface roughness is established. Kong et al.
(2020) found that Standard sparse Bayesian linear regression (SBLR) had the best predictive
performance among the four Bayesian linear regression (BLR) models when dimensionality
reduction was based on integrated radial basis function based kernel principal component
analysis (KPCA_IRBF). Guo et al. (2021) propose a hybrid feature selectionmethod that selects
features based on their correlation to surface roughness, as well as hardware and time costs.
Lv et al. (2021) propose an end-to-end deep learning prediction model using a sequential deep
learning framework and a LSTM network. Cooper et al. (2023) developed a conditional
generative adversarial network (CGAN) to synthesize power signals associated with different
combinations of process parameters, and the synthesized signal is then used to enhance the
measurement signal and develop CNNs to predict machined surface roughness.

Although the previous research has obtained predictions of surface roughness in some
specific cases, it is difficult to accurately reflect the surface roughness for the limited sample
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data set, and the neural network model needs to be optimized. To improve the accuracy and
reliability of surface roughness prediction, a neural network prediction method based on
multisensor fusion and intelligent optimization was proposed. By applying deep learning and
data enhancement, raw data is collated and trained to produce models that are more
applicable and more accurate than the previous ML models.

2. Methodology
In this study, applying variational modal decomposition (VMD), the real-time signals were
first processed to extract relevant features of the workpiece surface roughness information.
Then, the adaptive synthetic sampling (ADASYN) oversampling algorithm is applied, to
balance the data distribution and improve the performance of the prediction model. Deep
belief network (DBN) is selected as the prediction model, which consists of multiple layers of
interconnected neurons, and the sparrow search method based on the Tent chaotic mapping
algorithm is used to train the DBN model. This optimization technique aims to find the
optimal weights and biases of the DBN model to improve its predictive ability.

2.1 Feature extraction
To provide candidate features with enough feature selection information to build an accurate
workpiece surface roughnessmonitoringmodel, this paper extracted 17 time-domain features, 5
frequency-domain features, and 4 time-frequency-domain features from milling force signals
and vibration signals in each direction (Guo et al., 2023), resulting in a total of 263 6 ¼ 156
features (Table 1). There are four other MATLAB properties of spectral kurtosis in addition to
these: the mean of the spectral kurtosis, the standard deviation of the spectral kurtosis, the
skewness of the spectral kurtosis and the magnitude of the spectral kurtosis.

2.2 Signal processing
By changing the constrained problem into an unconstrained problem, the VMD model
(Dragomiretskiy and Zosso, 2014) obtains the optimal solution of the model, including the
finite bandwidth of each center frequency and modality. The VMD approach is used to
decompose the cut signal, and the energy entropy of each modal component resulting from
the decomposition can quantify the change in roughness at different scales.

For the one-dimensional VMD decomposition of M IMFs (i5 1, 2, . .M) of one-dimensional
VMD decompositions, the respective energy and full intensity can be found according to the
following equation.

Energy: denotes themagnitude of the signal strength of these IMFs, which ismeasured by
the variance of the data (Var(.)) to measure it:

Ei ¼ VarðIMFiÞ (1)

Entropy: indicates the signal complexity of the intrinsic mode function (IMF), measured by
the information content of the signal (H(.)) to measure:

Si ¼ HðIMFiÞ (2)

where the signal entropy is calculated as:

HðSÞ ¼ −
XN
i¼1

PðSiÞlog2ðPðSiÞÞ (3)

where PðSiÞ denotes the probability of the ith signal in the signal S.
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The sum of the energy of each component will change dramatically depending on the value of
the parameter K. In this study, the best K value of the VMD is determined by comparing the
total energy difference.

Because the K value is too small to completely decompose a series of components with
orthogonal relationships in the actual machining process, the modal number K value is set to

Index Feature name Calculation formula

1 Maximum value xmax

2 Minimum value xmin

3 Mean value
xmean ¼ 1

N

PN
i¼1

xi

4 Median value xmed

5 Peak-to-peak xp−p ¼ xmax − xmin

6 Average absolute value
xav ¼ 1

N

PN
i¼1

jxij
7 Variance

xvar ¼ 1
N

PN
i¼1

ðxi − xÞ
8 Standard deviation

xstd ¼
�

1
N

PN

i¼1ðxi − xÞ
�1=2

9 Root mean square
xrms ¼

�
1
N

PN

i¼1xi
2
�1=2

10 Mean square value xms ¼ 1
N

PN

i¼1xi
2

11 Root mean square amplitude
xrmsa ¼

�
1
N

PN
i− 1

���xij12
�2

12 Skewness

xsk ¼ 1
n− 1

PN
i¼1

ðxi − xÞ3

xstd
3

13 Kurtosis

xku ¼ 1
n− 1

PN
i¼1

ðxi − xÞ4

xstd
4

14 Form factor Sf ¼ xrms

1
N

PN
i¼1

jxi j

15 Peak factor C ¼ xp−p
xrms

16 Impulse factor S ¼ xp−p

1
N

PN
i¼1

jxi j

17 Clearance factor L ¼ xp−p�
1
N

PN
i− 1

��xi j12
�2

18 Center of gravity frequency

fc ¼
PN
i¼1

fi piPN
i¼1

pi

19 Frequency variance

vf ¼
PN
i− 1

ðfi − fcÞ2piPN
i¼1

pi

20 Frequency standard deviation vs ¼ ffiffiffiffi
vf

p
21 Mean square frequency

msf ¼
PN
i¼1

fi
2piPN

i¼1

pi

22 Root mean square frequency rmsf ¼ ffiffiffiffiffiffiffiffi
msf

p
Source(s): Authors’ own work

Table 1.
List of signal features
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be increased from 4 to 10, and the energy sum of different K values is shown in Table 2.
The milling force signal has the greatest difference in energy values at K 5 8, and the
vibration signal has the greatest difference at K5 6, so the modal number of the milling force
signal is 8 and the modal number of the vibration signal is 6.

For the X-direction milling force signal original data, as shown in the first row of data in
Figure 1, the VMD is carried out with K 5 8 and α 5 3,600, and the IMF component time
domain and frequency domain plots are shown in Figure 1.

For the X-direction vibration signal original data, the VMD is carried out with K5 6 and
α5 3,600, and the IMF component time domain and frequency domain diagrams are shown
in Figure 2.

2.3 Expansion of dataset
The data set obtained from the experiment must be enlarged for classification prediction, as
the low number of samples may not be sufficient to meet the training needs of the deeper
network. The synthetic minority over-sampling technique (SMOTE) algorithm is used to

Preset resolution Vibration signal Milling force signal

4 0.032 0.004
5 0.031 0.011
6 0.605 0.015
7 0.048 0.021
8 0.027 0.094
9 0.041 0.035
10 0.025 0.032

Source(s): Authors’ own work

Table 2.
The sum of the

energies at different
values of K

Figure 1.
Time domain diagram
and frequency domain

diagram of IMF
component of VMD
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generate new samples by intentionally adding additional data points to the dataset
depending on the distribution of the original samples (Fernandez et al., 2018), which increases
the number of resettable samples to some extent.

The ADASYN method analyzes the density distribution of a small number of sample
categories to generate numerous new composite samples (Ahmed et al., 2022), intending to
balance the data. The ADASYN algorithm’s specific steps are as follows: (1) Determine the
distance between samples; (2) Determine the density of neighboring samples for each sample;
(3) Create new synthetic samples and (4) Include the synthetic sample in the original data set.

2.4 Deep Belief Network
The DBN (Hinton and Salakhutdinov, 2006) trains and repeatedly updates the weighting
parameters between neurons so that the model corresponds to the maximum probability of
the DBN network (Scarpiniti et al., 2021). Stacking the two results in the network, DBN’s
architecture is influenced by deep structures in neuroscience, to simulate how the human
brain processes information.

DBN may gradually learn several levels of abstract feature representation of data by
stacking successive restricted Boltzmannmachine (RBM) layers. Each RBM layer is made up
of a set of visible and hidden units that are trained by maximizing the relevant logarithmic
likelihood function. During the pretraining phase, the output of each layer is used as the input
to the next layer, allowing the feature representation to be learned layer by layer. The
complete network is connected for supervised learning via backpropagation techniques
during the fine-tuning phase to further improve network parameters. Figure 3 shows a
commonDBN networkmodel, which consists of a stack of two RBMs and a back propagation
(BP) network stack, with each RBM being a two-layer structure.

Figure 4 shows the two primary components of the DBN network model training process:
unsupervised learning that trains from the bottom to the top layer and supervised learning
that trains from the top layer back to the bottom layer.

Figure 2.
Time domain and
frequency domain of
IMF component

JIMSE



In the unsupervised learning process, the RBMuses the greedy algorithm to learn the implicit
information of the original data. The DBN network model generally uses the
backpropagation algorithm, inputs the final high-level data features obtained from the
highest level of the RBM into the BP network, and fine-tunes the entire DBN parameters to
achieve the optimal conditions of the network.

DBN has shown exceptional performance in a variety of domains. However, DBN training
is a somewhat difficult and computationally intensive procedure that requires layer-by-layer
training and fine-tuning of various model parameters. This can lead to lengthier training
times and the need for greater computational resources. Furthermore, the model structure,
number of layers, number of hidden nodes, and other hyperparameters influence DBN
performance. To optimize parameter selection, DBN can be paired with an intelligent
optimization method.

Figure 3.
Structure of
DBN model

Figure 4.
Training process

of DBN
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2.5 Sparrow search algorithm
The sparrow search algorithm (SSA) is a new swarm intelligence system suggested by Xue
and Shen (2020) that is based on the foraging behavior of sparrows. The SSA and other
algorithms are comparable, and they are constantly optimized by position updates. The
finder location update formula is given by:

Xtþ1
i;j ¼

8><
>:

Xt
i;j$exp

�
� i

α$itermax

�
R2 < ST

Xt
i;j þ Q$L R2 ≥ST

(4)

In the formula, t is the current iteration value, an itermax represents the maximum number of
iterations. Represents the position information of the ith sparrow in the jth dimension,
j ¼ 1; 2; . . . ; c. α is a random number in the range (0,1]. R2 is the alert value in the range [0,1].
ST is the security threshold; Q is a random number with normal distribution. L is the matrix
with the ones in it. When R2 ≥ST, the finder is in the dangerous area and will fly to the safe
area. When R2 <ST, the finder foraged in the safe area (Gai et al., 2021).

The follower always follows the finder, and when the finder starts foraging, the follower
position update formula is:

Xtþ1
i;j ¼

8>>><
>>>:

Q$exp

 
Xworst � Xt

i;j

i2

!
i >

n

2

Xtþ1
P þ

���Xt
i;j � Xtþ1

P

���$Aþ$L i≤
n

2

(5)

In the formula, XP is the best position of the producer, Xworst represents the global worst
position in the current iteration, and A represents the matrix of dimension C whose elements
are 1 or �1 and satisfies Aþ 5 AT(AAT)�1. When i > n=2, it indicates that the follower is
hungry and will fly to other locations, and the other followers will forage near the finder’s
optimal location.

Sparrows that detect early warning are mainly used to protect the population from
foraging. The initial position of the reconnaissance warning is randomly generated in the
population and the specific position update formula is as follows:

Xtþ1
i;j ¼

8>><
>>:

Xt
best þ λ

���Xt
i;j � Xt

best

��� fi ≠ fg

X t
i;j þ K

 ���Xt
i;j � Xt

worst

���
ðfi � fwÞ þ ε

!
fi ¼ fg

(6)

In the formula,Xt
best is the global optimal position; Both β and K are random numbers, but β is

normally distributed. fi is the fitness value of the current sparrow; fg is the global best fitness;
fw is the global worst fitness value; ε is a very small constant; When fi >, it means that the
current sparrow is threatened and will update to the current optimal position; when fi ¼ fg, it
means that the sparrow in the optimal position is threatened and needs to update its position.

2.6 Tent chaotic mapping
Many algorithm researchers will employ randomly generated variables during population
initialization to ensure themethod’s optimization efficiency. Because of the features of chaotic
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mapping variables, they can distribute variables equally in the search space during algorithm
setup, which greatly improves the algorithm’s optimization efficiency and accuracy. Logistic
mapping is the most popular chaotic mapping in the literature, yet the chance of variables in
this mapping being on both sides of [0,1] is higher, resulting in an uneven distribution of
variables and low optimization effectiveness.

It is demonstrated that Tent chaotic mapping has higher ergodic and convergence
efficiency than logistic mapping. This paper employs Tent chaotic mapping (Li et al., 2020),
with the following formula:

zkþ1 ¼

8>>><
>>>:

zk

β
; zk ∈ 0; βð Þ

ð1� zkÞ
ð1� βÞ ; zk ∈ β; 1Þð

(7)

The value of in the formula is between [0,1], and the appropriate value can be chosen based on
the unique situation, and the value of in this paper is 0.7. In general, the first value of the
sequence is still created by a random function and iterated by a mapping formula.

Tent chaotic sequence has small periods and is unstable. In order to prevent it from falling
into periodic points without affecting the three major characteristics of chaotic variables,
based on the random variable randð0; 1Þ∙ 1

NT
. Tent mapping expression is as follows:

zkþ1 ¼

8>>><
>>>:

zk

β
þ randð0; 1Þ∙ 1

NT

0≤ z≤ β

ð1� zkÞ
ð1� βÞ þ randð0; 1Þ∙ 1

NT

β < z≤ 1

(8)

In the formula, NT is the number of particles in the chaotic sequence; and (0,1) is a random
number.

The steps to produce a chaotic sequence are as follows:

(1) Randomly generate the initial value z in (0,1), denoting i5 0;

(2) Perform iteration to generate Z sequence, I increment by 1;

(3) If themaximum number of iterations is reached, the program stops running and the Z
sequence is saved.

Using Tent chaos mapped data as the initial population location information, the algorithm’s
search diversity is preserved and the individual’s ability to jump out of the local optimal in the
search process is improved, as is the algorithm’s convergence speed and global search
optimal ability. The process of applying Tent-SSA optimization algorithm to search DBN
hyperparameters is shown in Figure 5.

3. Experimental setup
This work created a multi-sensor fusion experiment platform powered by physical signals and
CNC machining parameters data, as shown in Figure 6. The Dashan EUP series D10 milling
cutter and 6,061 aluminum workpiece are applied on the high-speed direct-drive machining
center FGV1060L.Theworkpiece is installed on thedynamometer,which is fixed on themachine
table of FGV1060L. The FGV1060L has a maximum feed speed of 30m/min in all X/Y/Z
directions and amaximumspindle speed of 24,000RPM (revolutionsperminute), whichmakes it
suitable for high-speed machining.
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The signal data collected by the signal acquisition unit were analyzed and processed using
statistical and informatics methods, and the signal features that could reflect the dynamic
changes of the cutting process, and the cutting process monitoring was completed using the
neural network model. The testing included single-factor side milling, orthogonal side

Figure 5.
The optimization
process of chaotic
Tent-SSA-DBN neural
network

Figure 6.
Diagram of
experimental setup
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milling, single-factor face milling and orthogonal face milling. To establish an appropriate
parameter range, the experimental speed range of 3,000–15,000 (r/min), feed speed range of
1,000–22,000 (mm/min), cutting width and depth of cut by the features of face milling or side
milling.

4. Results and discussions
4.1 Data preprocessing

(1) Input data shape

The number of features that can be extracted from samples for force signals and vibration
signals respectively is shown inTable 3. Theworkpiece surface roughness predictionmodel’s
input comprises a total of 263 6þ 83 23 3þ 63 23 3 ¼ 240 feature dimensions.

(2) One-hot encoding

One-hot coding is a feature coding approach that is commonly used to convert discrete
variables to numerical variables. The original discrete variables are turned into a set of
numerical variables that are easier to deal with in data analysis and ML by using one-hot
coding.The concept of distancemeasures (such asEuclidean distance) is included in themethod
by one-hot encoding, allowing the model to better reflect the similarity between variables.

There are four roughness eigenvalues, and one-hot encoding is employed to transform
them to 0/1 numeric variables. For example, in the case of 2, 1, 4, the values after encoding are
[0, 1, 0, 0], [0, 1, 0, 0], and [0, 0, 0, 1].

(3) Data oversampling

There are certain machining criteria for component surface roughness in the actual
production process. As a result, this study combines the Ra values with the complementary
values of the Ra series and splits the Ra values (1–3.2 μm) into four parts referred to as stages
1–4. As illustrated in Figure 7, each stage is classified and the roughness grades are
determined using the DBN model. Using the model described in this study, it is simple to
assess whether a product’s surface roughness falls within the desired roughness class,
allowing for more efficient production of components that meet machining precision while
minimizing the time cost of repeated stops to measure surface roughness.

All surface roughness data sampleswere divided into four groups, eachwith 17, 30, 22 and
12 data samples.

The data’s 2D distribution is investigated for roughness-related characteristics, and it is
discovered that the distribution of the features is characterized by an uneven distribution and
a gap in the number of features. Table 4 shows the quantity of data in each class before and
after oversampling using the ADASYN and SMOTE algorithms on the original data. The
scatter plots of the different types of data obtained by using these two oversamplingmethods
are shown in Figure 8.

Signal
Time/Frequency/time-frequency domain

characteristics (per direction)
VMD decomposition features

(per direction)

Force signal (three
directions)

26 16

Vibration signal (three
directions)

26 12

Source(s): Authors’ own work

Table 3.
The number of features
that can be extracted

from a sample
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ADASYN expands the data more consistently and more for the regions with less data
distribution, On the contrary, the SMOTE algorithm’s data expansion ismore concentrated in
the regionwhere the data is spread,making it susceptible to overfitting for data classification.
This is due to the trained model’s difficulty distinguishing between the few samples in the

Level Ra/μm Original Smote ADASYN

1 <0.2 18 36 37
2 0.4∼0.8 56 112 111
3 0.8∼1.6 32 64 69
4 >1.6 22 44 43

Source(s): Authors’ own work

Figure 7.
Roughness and
classification obtained
by experiment

Table 4.
The number of data
samples for each
category of original
data and
oversampled data

Figure 8.
Comparison of data
sets with different
oversampling methods
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initial dataset, and it can help to address the imbalance issue in the network data and improve
the model’s generalizability. As a result, ADASYN oversampled data is used to build the
roughness prediction model.

(4) Normalization

Data standardization, a common data preprocessing method that transforms data into a
normal distribution with a mean of zero and a standard deviation of one, can be used to solve
problems caused by large gaps between feature data of different dimensions in a dataset,
such as slow model training and insignificant improvement in accuracy.

The data preprocessingmethodwas used to solve problems caused by large gaps between
feature data of different dimensions in a dataset. That normalization process transforms data
into a normal distribution with a mean of zero and a standard deviation of one, the
transformation formula for StandardScaler is as follows:

x0 ¼ x� μ
σ

(9)

Where x represents the original data, x0 represents the converted data, μ denotes the mean
value of the original data, σ denotes the standard deviation of the original data.

4.2 Classification prediction

(1) Prediction of baseline DBN categorization

Set the DBN model to have two hidden layers of 200 and 50 nodes, triggered with the ReLU
function and a random number seed of 7. Figure 9a depicts the training recognition results,
whereas Figure 9b depicts the confusion matrix. It is discovered that 49 of the 52 points in the
test set are right, resulting in an accuracy of 94.23%.

(2) Results comparison for other input data

To compare the findings, this work continues to fit the input data and roughness datawithout
changing the baseline DBN model parameters and simply adjusting the input feature
dimensions and sample size. The three input data dimensions in this section are:

� The input is 128 samples and 244 features with four-dimensional cutting parameters
(spindle speed, feed rate, width of cut, depth of cut) andwithout ADASYN oversampling.

Figure 9.
Baseline DBN
classification

prediction result
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� The input is 128 samples and 240 features without four-dimensional cutting settings
and ADASYN oversampling.

� The input is 260 samples and 244 features when using four-dimensional cutting
settings with ADASYN oversampling.

Figure 10 depicts the test set’s classification prediction results. ADASYN oversampling has a
greater performance improvement for the roughness classification prediction model than the
results of the input parameter model (the accuracy increases from 80.77% to 94.23%). Still,
the cutting parameter, which is highly correlated with roughness, does not significantly
improve the prediction model’s accuracy.

(3) Improvement of the DBN classification model with Tent-SSA

Tent-SSA is used to explore four parameters of the DBN classification model: node number of
two hidden layers, learning rate and random number seed while. The first hidden layer
number interval is [50,400], the second hidden layer number interval is [10,100], the learning

rate interval is [13 10−7,1], and the random number seed interval is [�10,000, 10,000].
The Tent-SSA intelligent optimization algorithm’s population number is set to 80. The
maximum number of iterations is set to 10, and the fitness function’s return value is the DBN
model’s error rate on the test set. Figure 11 indicates the optimization procedure. The final
optimization result is as follows: the first hidden layer has 261 nodes, the second hidden layer
has 61 nodes, the learning rate is 0.009174 and the random number seed is 0. Figure 12

Figure 10.
Prediction results for
three different input
dimensions
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indicates the model classification prediction results produced by training these DBN
parameters. All 52 classification predictions in the test set are correct.

4.3 Regression prediction

(1) Prediction of baseline DBN regression

Set the DBN model to include two hidden layers, 200 and 50 nodes, activated by the ReLU
function and a random number seed of 7. It is shown in Figure 13 that themean absolute error
(MAE) was 0.1701, the coefficient of determination (R2) was 0.9071 and the maximum
absolute error (MaxAE) was 0.5157.

(2) Improvement of the DBN regression model with Tent-SSA

� Using root-mean-square error (RMSE) as a fitness function

Tent-SSAwas used to explore four parameters of the DBN regression model: node number of
two hidden layers, learning rate and random number seed. The first hidden layer number
interval is [50,400], and the second hidden layer number interval is [10,100], the learning rate

interval is [13 10−7,1] and the random number seed interval is [�10,000, 10,000]. The tent-
SSA intelligent optimization algorithm’s population number is set to 80. The maximum

Figure 11.
Tent-SSA optimization

process

Figure 12.
Optimization of DBN

classification
prediction results
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number of iterations is set to ten, and the fitness function’s return value is the RMSE of the
DBN model on the test set. Figure 14 indicates the optimization procedure. The final
optimization result is that the first hidden layer has 78 nodes, the second hidden layer has 75
nodes, the learning rate is 0.025446 and the randomnumber seed is 443. Figure 15 is themodel
classification prediction results produced by training these DBN parameters. The calculated
RMSE for the regression prediction of 26 points in the test set is 0.1264, theMAE is 0.0934 and
the coefficient of determination (R^2) is 0.9682. The absolute MaxAE is 0.4149, the
optimization effect is favorable.

� Using MaxAE as a fitness function

When compared to root mean square (RMS) error, adopting maximum absolute error as the
fitness function MaxAE has several advantages, including:

� Robustness: Because MaxAE is unaffected by outliers, it is more robust than RMSE
for data sets that may contain outliers or noise.

� Simplicity: In contrast to the complex calculations required by RMSE, MaxAE is a
simple and understandable metric that directly estimates the biggest divergence
between predicted and true values.

� Interpretability: MaxAE has a clear physical meaning that is simple to explain and
grasp, signifying the greatest deviation that can occur during the prediction process
of the model.

Figure13.
Baseline DBN
regression prediction
result

Figure 14.
Tent-SSA optimization
process (base
on RMSE)

JIMSE



� Faster convergence: Because MAE is more sensitive to variations between predicted
and true values, it may result in faster convergence during training.

Figure 16 shows the optimization procedure, the first hidden layer has 328 nodes, the second
hidden layer has 47 nodes, the learning rate is 0.009279, and the random number seed is
�1,116. As the model classification prediction results produced by training these DBN
parameters in Figure 17, for the regression prediction of 26 points in the test set, the obtained

Figure 15.
Optimization of DBN
regression prediction

results (base on RMSE)

Figure 16.
Tent-SSA optimization

process (base
on MaxAE)

Figure 17.
Optimization of DBN
regression prediction

results (base
on MaxAE)
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RMSE is 0.1459, the MAE is 0.1228 and the coefficient of determination (R^2) is 0.9576. The
maximum absolute error MaxAE is 0.3013, the optimization obtains a good effect.

4.4 Optimized model parameters and results
The training settings and outcomes acquired in this paper are provided in Table 5, as can be
observed from the above training process description:

To summarize, themethod suggested in this research is viable and can effectively forecast
machining results by monitoring machining process information, that is, surface roughness
classification and regression. At the same time, the suggested method’s validity and
superiority are demonstrated by comparing it to the prediction results of the DBN model
without Tent-SSA optimization.

5. Summary and prospects
5.1 Conclusion
The signals generated by the machine tool during the machining process contain a lot of
useful information, and the relevant features can be extracted by real-time monitoring and
processing of the signals, after which the DBN model can be trained to effectively predict
surface roughness classification and regression. A sparrow search technique based on Tent
chaotic mapping is utilized to achieve the optimal combination of DBN model parameters,
and different fitness functions are used in different applications. The modified model is then
applied to roughness prediction, which fully validates the suggested method’s effectiveness.
Finally, the following conclusions are reached:

(1) For real-time monitoring signals during machine tool machining, feature extraction,
time-frequency domain analysis and VMD decomposition can greatly reflect vital

Classification prediction model
Model Reference DBN Tent-SSA-DBN

Number of nodes in the 1st hidden layer 200 261
Number of nodes in the 2nd hidden layer 50 61
Learning rate 0.01 0.009174
Random seed 7 0
Accuracy 94.23% 99.99%

Regression forecasting model

Model
Reference
DBN

Tent-SSA-DBN (Based on
RMSE)

Tent-SSA-DBN (Based on
MaxAE)

Number of nodes in the 1st
hidden layer

200 78 328

Number of nodes in the 2nd
hidden layer

50 75 47

Learning rate 0.01 0.025446 0.009279
Random seed 7 443 �1,116
RMSE 0.2161 0.1264 0.1459
MAE 0.1701 0.0934 0.1228
R^2 0.9070 0.9682 0.9576
MaxAE 0.5157 0.4149 0.3013
Optimization effect - 41.51% 41.57%

Source(s): Authors’ own work

Table 5.
Optimum model
parameters and results

JIMSE



information, creating suitable conditions for neural network model training.
According to comparisons, cutting parameters, despite being highly connected
with roughness, do not greatly increase the accuracy of the prediction model in the
DBN model.

(2) The roughness dataset from the experiments was split into four classes, and the
original dataset was expanded using the ADASYN algorithm dataset to
approximately twice its original size for classification prediction. This resulted in a
significant increase in the classification accuracy for the baseline DBN model, which
went from 80.77% to 94.23%.

(3) A DBN model based on the Tent-improved SSA is proposed to classify and predict
surface roughness. Tent-SSA searches the optimal weight parameters of the DBN
model, reducing the uncertainty factors of the interference prediction model and
increasing the classification accuracy by 5.77% based on ADASYN optimization.

(4) When the baseline DBN model is used to directly forecast roughness, the RMSE and
maximum absolute error (MaxAE) are 0.2161 and 0.5157, respectively.When the goal
function is RMSE, using Tent-SSA to search for the optimal weight parameters of the
DBN model, the RMSE can be reduced to 0.1264 and the MaxAE can be reduced to
0.3013. When RMSE is the objective function, the RMSE can be decreased to 0.1264;
when MaxAE is the objective function, the MaxAE may be reduced to 0.3013.
The optimization effect reaches more than 40% based on the various practical
demands to optimize the model parameters.

In conclusion, this paper proposes an enhanced deep learning and data augmentation
approach for surface roughness prediction. This approach successfully increases the
accuracy of surface roughness prediction. It can be used for real-time quality prediction
during themachining process. Applying themethod, rapid process diagnosis, abnormal early
warning and dynamic control of cutting parameters can be realized, which makes a certain
contribution to the transformation of machine tool processing to intelligent systematization.

5.2 Prospects

(1) The roughness regression prediction model is optimized using two fitness functions.
These functions are based on the root mean square error and the greatest absolute
error. Each strategy has advantages and disadvantages and should be used based on
the circumstances. It could be conceivable to develop a new fitness function that takes
into account both RMS error and maximum absolute error. This new function might
be tailored to the user’s specific requirements by altering the coefficient.

(2) The addition of four cutting parameters did not significantly improve the model’s
prediction effect, indicating that the influence of cutting parameters on roughness is
reflected in the real-time monitoring signal. However, whether the roughness
differences induced by different material qualities and tool parameters may also be
properly reflected by the machine tool processing’s real-time monitoring signal
requires additional experimental research.

(3) It is certain that the model in this paper can be extended to the research of grinding,
turning, and other processing technologies, by establishing the evaluation criteria
based on a sufficient number of experimental samples.

(4) While the workpiece and tool materials used in this paper’s machining state
monitoring research are the same, future research should select a wide range of

Prediction of
surface

roughness



materials for numerous cutting experiments on the workpiece and tool to further
demonstrate the applicability of the monitoring technique described in this paper.

(5) The neural networkmodel is built on feature data which is easily interpreted and has a
straightforward structure, while the features only contained rudimentary information.
The subsequent research can take the original signal data or the two-dimensional
image data transformed by the original signal as the input of the neural networkmodel.
Adaptive feature extraction and prediction will be carried out in the deep neural
network model structure using 1D CNN, 2D CNN, recurrent neural network (RNN) and
other model structures.
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