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Abstract

Purpose – At airport security checkpoints, baggage screening is aimed to prevent transportation of
prohibited and potentially dangerous items. Observing the projection images generated by X-rays scanner is
a critical method. However, whenmultiple objects are stacked on top of each other, distinguishing objects only
by a two-dimensional picture is difficult, which prompts the demand for more precise imaging technology to
be investigated for use. Reconstructing from 2D X-ray images to 3D-computed tomography (CT) volumes is a
reliable solution.
Design/methodology/approach –Tomore accurately distinguish the specific contour shape of items when
stacked, multi-information fusion network (MFCT-GAN) based on generative adversarial network (GAN) and
U-like network (U-NET) is proposed to reconstruct from two biplanar orthogonal X-ray projections into 3D CT
volumes. The authors use three modules to enhance the reconstruction qualitative and quantitative effects,
compared with the original network. The skip connection modification (SCM) and multi-channels residual
dense block (MRDB) enable the network to extract more feature information and learn deeper with high
efficiency; the introduction of subjective loss enables the network to focus on the structural similarity (SSIM) of
images during training.
Findings – On account of the fusion of multiple information, MFCT-GAN can significantly improve the value
of quantitative indexes and distinguish contour explicitly between different targets. In particular, SCM enables
features more reasonable and accurate when expanded into three dimensions. The appliance of MRDB can
alleviate problem of slow optimization during the late training period, as well as reduce the computational cost.
The introduction of subjective loss guides network to retainmore high-frequency information, whichmakes the
rendered CT volumes clearer in details.
Originality/value – The authors’ proposed MFCT-GAN is able to restore the 3D shapes of different objects
greatly based on biplanar projections. This is helpful in security check places, where X-ray images of stacked
objects need to be distinguished from the presence of prohibited objects. The authors adopt three newmodules,
SCM, MRDB and subjective loss, as well as analyze the role the modules play in 3D reconstruction. Results
show a significant improvement on the reconstruction both in objective and subjective effects.
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Paper type Research paper

1. Introduction
Baggage screening is a vital procedure in security domain. It’s common to use X-rays in two
or three orthogonal views for security checking on the metro station or airport. Normally,
the security needs to verify whether prohibited items included in luggage or container
(Benjamin, 1995), according to X-Rays pictures. The explicit contours and textures of items
are important to their judgment. However, X-rays projections are inaccurate to reflect the
three-dimensional information of the object, which requires security personnel with
sufficient experience to distinguish the true shape of the object. CT is capable of generating
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a set of 2D pictures that accurately reflect their 3D information, but it is expensive and not
suitable for use in security screening occasion (World Health Organization, 2011). Thereby,
we propose a 3D reconstruction method based on GAN, which can restore two orthogonal
X-ray projections to CT volumes as realistically as possible.

Studies have shown that some aerospace accidents are caused by smuggling of
explosives into checked baggage, as well as subway accidents. Therefore, a set of accurate
college baggage check-in security system design, which can effectively prevent the
recurrence of unsafe events (Shi et al., 2021). Based on 3DX-ray CT images, it’s awildly used
method to detect the thread items with X-ray scanners in aviation security (Wang et al.,
2020). For some items under potential danger, such as firearms, sharp objects, sharp edges,
etc., they have a significant physical appearance (such as shape, volume, texture, etc.)
(Mouton et al., 2014). Hence, with the two-dimensional images obtained by the X-ray
scanner and further reconstruction, security personnel are able to identify potentially
prohibited items from the passenger’s baggage, without need to manual search (Mouton
and Breckon, 2015), which greatly improves the operational efficiency.

Currently, item-screening through 2D X-ray images is still a manual inspection process.
This workflow is cumbersome and requires security personnel with mature relevant
experience and training (Shanks and Bradley, 2004), which inevitably raises the operational
threshold and tends to produce inaccurate judgments when the operator is immaturely
experienced, thus reducing screening efficiency. In particular, in some cases where objects
overlap exist, image interpretation becomes a challenging task because the projection map
generated by X-rays does not reflect whether the objects produce overlap and simple visual
inspection cannot detect whether the prohibited items are obscured by other objects
(Megherbi et al., 2013). Therefore, if the image can be reconstructed into a three-dimensional
form, the image of the object into the real shape so that the operator can obtain the
information masked in the two-dimensional X-ray, so as to obtain a clearer observation and
judgment, which will greatly improve the efficiency of the security screening task.

Among most cases in the aviation security infrastructure, explosive detection systems
(EDS) are now the only one CT’s application approved (Singh, 2003). Based on EDS, the dual-
energy CT (DECT) is the technique to distinguish different materials. The principle consists
in using two different X-ray spectra to deduce the chemical composition of the investigated
material based on its reaction under these spectral conditions (Jin, 2011). TheDECT is divided
in three categories: post-reconstruction techniques (Graser et al., 2009), pre-reconstruction
techniques (Alvarez and Macovski, 1976) and iterative reconstruction techniques (Semerci
and Miller, 2012). Although the technique has improved the reconstruction performance,
increasing computational demand becomes a significant problem. It’s necessary to rotate
swiftly to collect enough X-ray apparatus around the items, which is a high-cost and time-
wasting process. Hence, we need to find a low computation cost method to reconstruct from
2D to 3D with less data acquisition.

For most CT reconstruction algorithms, numbers of X-ray images are required for input,
which requires a certain amount of machine computational performance. Some typical
principles, such as maximum likelihood (Shepp and Vardi, 1982) and sparsity (Lustig et al.,
2007), are used to improve the quality of tomographic reconstruction. Thosemethods are very
time consuming, which is not suitable for the needs of fast inspection in security scenarios. In
fact, the vast majority of security machines only obtain 1–3 projection images of objects
mutually orthogonal to each other for screening by security personnel, so the question of how
to reconstruct 3D information using as few images as possible is significant.

Traditional CT reconstruction methods, which are based on mathematical and theoretical
knowledge, often require the creation of fairly accurate models. For instance, filtered back
projection and iterative reconstruction (Herman, 2009), which is the one-dimensional Fourier
transform of the projection is equivalent to the two-dimensional Fourier transform of the
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original image. The introduction of a priori knowledge is also a typical method, such as
statistical shapemodels (Lamecker et al., 2006) or anatomical structures knowledge (Serradell
et al., 2011). However, these reconstruction methods based on mathematical knowledge
require the construction of corresponding mathematical models for different objects,
which means that the generalizability of the methods is not enough. Deep learning has a
natural advantage in some scenarios, such as modeling of invisible parts, where traditional
algorithms have difficulty estimating the depth of objects with a priori knowledge. Eigen et al.
use a two-staged convolutional neural networks (CNN) to generate a 2D depth map from a 2D
image (Eigen et al., 2014). Philipp Henzler et al. apply U-NET network to get a better
performance (Henzler et al., 2017). Ying et al. (2019) propose X2CT-GAN,which perform better
than traditional CNNs in terms of subjective effect of reconstruction. In addition, the format of
the input data is also an important issue. Wurfl et al. (2016) work on X-ray sinogram as input,
which is not readable for human. Magnor et al. reconstruct the 3D model with single X-ray
image. Because a single two-dimensional picture lacks much three-dimensional information
(Magnor et al., 2004), the effect of three-dimensional reconstruction with only one picture is
very blurred. Therefore, if two or more images are used as input, the output reconstruction
will be better. Thus, inspired by previous work, we apply GAN to reconstruct CT from two X-
ray images.

To sum up, our contributions include the following four main points.

(1) We propose SCM module, which introduces the second image as weight map for
correctionwhen expanding from 2D to 3D after single-channel feature extraction. The
numerical and physical information are combined to enhance the reconstruction
effect.

(2) We apply MRDB connection for feature extraction, which reduces the number of
model parameters while alleviating the problem of model instability.

(3) We propose subjective loss function for training to improve the generated subjective
effect.

(4) Compared with other reconstruction algorithms, our method improves both
quantitative and qualitative indicators; especially for the restoration of internal
details, the effect is significantly improved.

2. Network framework
In general, similar to X2CT-GAN (Peng et al., 2020), the overall framework of our network
combines GANandU-like network (U-NET). The input is two 2DX-ray projection images and
the output is 3D CT volumes. After encoder-decoder, the features of two networks are fused
together and put into a new upsampling decoder to generate the final result. An overview of
our network is shown in Figure 1. Here are the details of the MFCT-GAN.

2.1 Generator
The role of the generator is to produce a set of 3D CT volumes from two mutually orthogonal
2D X-ray images (vertical plane, horizontal plane or width plane). The network consists of
three main components: feature extraction using MRDB connectivity, 3D decoder with
upscaling module and features fusion with SCM.

Since it’s a dual input, there are two parallel coder-decoder networks in generator.
Features fusion component aims to integrate the double channels’ 3D features, generating the
final reconstructed 3D CT volumes. Given that input is dual-view X-ray images, how to
extract the two images features independently and fuse them properly will directly affect the
quality of reconstruction. Thereby, some modifications will be applied to raw network.
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(1) Features extraction: In order to extract sufficient feature information from input and
reduce image pixel size, feature extraction is usually performed with dense block (DB)
at beginning.

MRDB Dense Net reduces gradient to a certain extent by directly linking features among
layers, which makes great use of global features (Huang et al., 2017). However, as the
number of DBs increases and network layers deepen, Dense Net suffers from the problem of
gradient disappearance. The introduction of residual learning can alleviate this problem to
some extent, which is called residual dense block (RDB) (Zhang et al., 2018). However, Peng
et al. (2020) found that multiple residual connections can sufficiently enhance the flow of
information, as well as reduce the number of model parameters. Taking the network depth
and efficiency of training into consideration, we propose a modified multi-residual dense

Figure 1.
The architecture of the
MFCT-GAN contains
two parallel encoder-
decoder network
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network in downsampling network, which is shown in Equation (1). The relationship
between input and output can be expressed as follows:

xl ¼ Hl ½x0; x1; :::; xl−1� þ xl−1; (1)

where the x0; x1; :::; xl−1 denotes the l � th layers’ DB output and Hl ½ � denotes DB, which
produces growth rate of feature maps. Different layers’ output is converted as Hl ½ � input.
For the last layer, we introduce the first input as residual learning.

As for other details of MRDB, due to the connection of multiple residuals, the input and
output share the same number of channels and image size. This is because each DB is
followed by a 13 1 kernel filter to increase the number of channels and thus connecting the
residuals with the previous layer. Each MRDB is followed by a transition block to change
the number of input channels for the next MRDB. Hence, the feature extraction capability of
the network will be increased effectively.

(2) 3D decoder: When the process of feature extraction for the biplanar input image is
completed, one dimension needs to be augmented for subsequent decoding. Inspired
by previous work (Isola et al., 2017), we add a depth channel to the input data with the
same number of width and length channels, in other words, expanding the two-
dimensional to three-dimensional by duplicating the feature maps.

After bridging the 2D encoder and 3D decoder, we apply the classical upsample method to
decode, which consists of two main modules: one is Conv3d-Norm-ReLU for generating more
details of reconstruction and the other is Deconv3d-Norm-ReLU for restoring the size of 3D
CT volumes.

SCM Combining the long- and short-skip connections is beneficial for deep neural
networks (Drozdzal et al., 2016). It is very common to employ skip connections to link
encoders and decoders. The situation becomes slightly different when cope with 2D-to-3D
task. Since it is necessary to expand the features in encoder from two dimensions to three
dimensions and then deliver them to following decoder, how to ascend dimension becomes a
critical problem. Usually, duplicating the feature map in the depth channel is a common
operation, which is inaccurate and rough (Ying et al., 2019; Peng et al., 2020; Ratul et al., 2021).
To better utilize the biplanar information, we propose a novel skip connection module (SCM),
shown in Figure 2, to transmit low-level features to high-level features.

In summary, when the first image is encoded and need to expand one dimension, the second
image is introduced as weight map and the 3D features of the first input are corrected. Finally,
the rectified features are fed into decoder. Specifically, the value pixels in the second image are

Figure 2.
The details of SCM
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normalized to a weight map with the shape ðH ; W Þ. The shape of the 3D feature of the first
image is ðD;H ;W Þ. In particular, the values ofD,H andW are equal.After that, 3D features are
corrected by multiplying the factor in weight map. Specifically, all the pixels in row H of the
feature maps are productized by the weight factor in column H of D row in the weight map.

In order to make the weight map consistent with the shape of feature maps, a similar
averaging pooling operation is introduced to reduce the size of the weight map. The
modification from weight map makes the feature maps work better when expanding from
two-dimensional to three-dimensional. The dual-view input information are also fully utilized.

(3) Features fusion: The shortcoming of using a single 2D image to reconstruct into 3D CT
volumes is the weak generalization of model. It is rarely enough to learn useful 3D
features only by relying on the recurrent training of the deep network, especially for
the applicationwhere there aremany different kinds of objects. That is the reasonwhy
we use two mutually orthogonal X-ray images as model input. The complementary
information enables the network to generate more accurate reconstruction results.
Naturally, after parallel dual-channel encoder-decoder network, we need to fuse those
features information.

We apply the third decoder network with the same structure as the 3D decoder mentioned
before. Given that in reality, two X-ray images are captured at almost the same time, which
means there is no motion occlusion in images. Therefore, we consider that outputs of both
decoders share the same information importance. On account of this, the third decoder’s input
is the average of the outputs from the dual-parallel decoders. As result, the output of third
decoder network is final reconstructed 3D CT volumes.

2.2 Discriminator
Based on PatchGANs (Ledig et al., 2017; Zhu et al., 2017), which perform great generalization
property and is frequently applied in generating images, we use the modified
PatchDiscriminator (Isola et al., 2017) to work on our network. The vanilla discriminator
of PatchGAN is a matrix of N *N rather than a scalar value. By discriminating each patch,
local image features can be extracted and characterized, which is more conducive to high-
resolution-image-generation task.

We replace the original conv2d module with conv3d module. Conv3d-Norm-ReLU with
kernel size5 3 are used three times, followed by same architecture with kernel size5 1 and
end with a conv3d layer.

3. Loss functions
In order to balance the quantitative metrics values and qualitative subjective evaluation after
3D reconstruction, we apply four loss functions to constrain the generative model.

3.1 Adversarial loss
GAN is a significant architecture to generate photorealistic images, which is well studied in
recent research (Goodfellow et al., 2014). Typically, the classical GAN use sigmoid cross-
entropy as objective function, which is usually suitable for logical classification. Gradient
dispersion inevitably becomes a potential problem. Least squares GAN (LSGAN) replace the
original loss function with least squares loss function (Mao et al., 2017). The new object
function penalizes samples which are in discriminative truth away from the decision
boundary and drags the false samples back into the boundary. In the end, the problem of
disappearing gradients is alleviated, which result in improvement on the generated images.
The LSGAN loss is defined as follows:
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‘LSGANðDÞ ¼ 1

2

h
Ex;yðDðyjxÞ � 1Þ2 þ ExðDðGðxÞjxÞ � 0Þ2

i
;

‘LSGANðGÞ ¼ 1

2

h
ExðDðGðxÞjxÞ � 1Þ2

i
;

(2)

where G denotes the generator, D denotes the discriminator, x denotes the input of two
orthogonal X-ray projection images and the y denotes the corresponding CT volumes
ground truth.

3.2 Projection loss
Since the loss function of LSGAN put the same importance on each pixel point, the generated
image effect is close to the true value in the whole aspect. However, it cannot keep similar to
the true value in the structure. And in real life, due to a prior knowledge, even if there is only a
two-dimensional picture, people can easily imagine its original three-dimensional appearance
(Jiang et al., 2018). Thus, we use projection loss as prior knowledge to constrain the geometric
shape in network, which is defined as (Ying et al., 2019) follows:

‘pro ¼ 1

2

h
Ex;y

��PvðyÞ−PvðGðxÞÞ
��2

2

þEx;y

��PhðyÞ−PhðGðxÞÞ
��2

2

þEx;y

��PwðyÞ−PwðGðxÞÞ
��2

2

i
;

(3)

where Pv denotes the projection in the vertical plane, Ph denotes the projection in the
horizontal plane and Pw denotes the projection in the width plane.

3.3 Reconstruction loss
The binarization calculation is done in least squares function for the generated image and
the ground truth, which can make it difficult for model to focus on the regions with larger
pixel values on images during training. Therefore, in the final generated CT volumes after
rendered, the blurring will occur in reconstruction and the information is seriously lost.
Therefore, another pixel-level loss function needs to be introduced. Inspired by previous
work (Johnson et al., 2016), we apply volume reconstruction loss to constrain the model in
pixel, which is defined as follows:

‘rec ¼ Ex;yky−GðxÞk22: (4)

3.4 Subjective loss
Both projection loss and reconstruction loss are biased toward pixel-level operation, which
lead to high peak signal-to-noise radio (PSNR) calculation. However, the high PSNR metric
does not have a completely positive correlationwith the subjective effect seen by the human
eyes. Rouditchenko et al. (2019) proposed a novel, differentiable error function, combined
with l1-norm and SSIM, showing great improvement on image restoration ( ). SSIM is the
function to compute similarity between two images, which is related to subjective
evaluation of images. Based on previous study, we propose subjective loss, which is defined
as follows:

‘subj ¼ Ex;yω$‘SSIM þ Ex;yð1� ωÞ$smooth‘1; (5)
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where ‘SSIM represents the SSIM loss function and smooth‘1 represents the smooth ‘1 loss,
which aims to avoid the gradient no longer changing when the learning rate is too small in
the late training period (Yu et al., 2016).

3.5 Total loss
After introducing four loss functions mentioned above, our final objective function is as
follows:

D ¼ argmin
D

α1$‘LSGANðDÞ;
G ¼ argmin

G
½α1$‘LSGANðGÞ þ α2$‘pro þ α3$‘rec þ α4$‘subj�; (6)

where the α is the weight of different loss function, representing the importance of four loss
terms. Given that in a realistic security check place, we put more attention on subjective
similarity. Therefore, we will appropriately increase the weight of subjective loss. The final
weight is set as follows: α1 ¼ 0:1; α2 ¼ 8; α3 ¼ 8; α4 ¼ 2;ω ¼ 9.

4. Experiment details
4.1 Datasets
In order to better train the model, we need the X-ray projection maps obtained from the
security scanner and the corresponding CT volumes. However, due to the high cost, and
the fact that the corresponding available datasets do not exist online, therefore, we use the
available chest CT scan dataset on public: the lung image database consortium (LIDC-IDRI)
(Armato et al., 2011). To obtain the corresponding 2D orthogonal projection images, the
corresponding X-rays are synthesized by using the digitally reconstructed radiographs
(DRR) (Milickovic et al., 2000) technique with CycleGAN (Zhu et al., 2017) in reference to the
work of Ying et al. (2019). In summary, there are 920 paired datasets for training and 98 paired
datasets for testing. Each paired dataset contains two X-rays images with resized shape of
128 3 128 and a CT volume set with resized shape of 128 3 128 3 128.

4.2 Metrics
We use two typical metrics as our quantitate results: PSNR and SSIM. PSNR is calculated
based on the mean square error and reflects the relationship between the maximum signal
and the background noise (Hor�e and Ziou, 2010). In a word, it’s an objective index for
evaluating images. SSIM is calculated based on the brightness and contrast of local patterns
(Wang et al., 2004). This index is close to the real-human perception situation, so SSIM is an
image-quality-evaluation standard in line with human intuition.

5. Results
5.1 Qualitative analysis
As shown in Figure 3, the first row shows the CT ground truth and the second row shows the
generated effect of the baseline X2CT-GANþBwhile the third row shows our proposedmodel
MFCT-GAN reconstruction effect. We compare the subjective quality of them. It can be
seen that our model produces higher-quality reconstruction compared to the baseline. In
particular, (1) our model can produce more explicit contour boundaries, which can clearly
distinguish between cavities and solids; (2) for different internal organs, we can see clearer
anatomical structures, such as the shape of the spine and spinal cord and (3) for consecutive
CT images, our model can capture structural changes of organs fast, so as to adjust the
generation effect of the next CT image in time.
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Figure 3.
Comparison of the

reconstruction results
of the two methods
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We visualize the CT sequence by volume rendering (Brian et al., 1996) as shown in
Figure 4. From left to right, this is the reconstruction effect, including ground truth, X2CT-
GANþB and MFCT-GAN (ours). As we can see, the baseline method is prone to useless

Model PSNR (dB) SSIM

2DCNN (Henzler et al., 2017) 23.1 0.461
X2CT-GAN-S (Ying et al., 2019) 22.3 0.525
X2CT-GAN-B (Ying et al., 2019) 26.19 0.656
MFCT-GAN-B (ours) 31.01 0.676

Note(s): 2DCNN generate CT volumes from single input. “-S” indicates the single-view X-ray input and “-B”
represents the biplanar X-ray input. The best results are shown in italics

Method Parameters (M) Iteration time per step (s)

DB 61.74 4.02
RDB (Zhang et al., 2018) 51.63 3.99
MRDB (ours) 48.12 2.99

Note(s): RDB represents residual dense block, which is well applied in neural network’s backbone. The best
results are highlighted in italics

SCM
√ (Layer

1)
√ (Layer

1–2)
√ (Layer

1–3)
√ (Layer

1–4)
√ (Layer

1–4)
√ (Layer

1–4)

MRDB √ √ √
Subjective
loss

√ (ω5 0.8) √ (ω5 0.9)

PSNR (dB) 27.15 29.3772 30.1684 30.2057 30.5508 30.7102 31.0051
SSIM 0.638 0.6107 0.6541 0.6302 0.6491 0.6588 0.6761

Note(s): “Layer 1” represents modification on the first multi-res dense, “Layer 1–2” denotes modification on
the first and secondmulti-res dense and “Layer 1–4” denotes modification on the overall multi-res dense. “ω” is
the weight of SSIM loss in subjective loss. The best results are bold for viewing

Figure 4.
Volume rendering of
bones from CT
volumes

Table 1.
Quantitative results of
2DCNN, X2CT-GAN and
MFCT-GAN

Table 2.
Comparison of
computational
performance results of
different feature
extraction networks

Table 3.
Evaluation of different
proposed modules
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redundant data in the thoracic body and the internal real vascular restoration is not as
detailed and accurate as our proposed method.

In the realistic security scenario, the 3D restoration of the object overlay needs to be solved
at first. Therefore, the accurate distinction between internal objects becomes the main
indicator of the quality of our reconstruction. According to Figure 4, we are confident that the
MFCT-GAN model can achieve it greatly.

5.2 Quantitate analysis
In this section, we discuss the metric enhancement of our proposed method. 2DCNN is a CT
reconstructionmethod that appeared very early, only for single-view input (Henzler et al., 2017);
X2CT-GAN is the baseline method, where “S” denotes single-view X-ray input and “B” denotes
biplanar X-rays input.

We use PSNR and SSIM as evaluation metrics, and the results are shown in Table 1. It can
be clearly seen that the 3D reconstruction using GAN network works better than the
traditional CNN. The dual-view input can contain more 3D information, so the reconstruction
accuracy is higher. And specifically comparing the baseline with MFCT-GAN, our proposed
method has a significant improvement in PSNR up to 4.82 dB (18.4%). Meanwhile, the SSIM
metric improvement increases slightly by 0.02 (3.05%). When the PSNR value exceeds 30, we
can consider the image quality as good. On account of introduction of subjective loss function,
although the index increase is limited, the subjective effect does improve greatly.

Analysis of the calculated performance changes is shown in Table 2. It is easy to conclude
that the use of residual learning can effectively reduce the number of model parameters and
training speed; theMRDBapplied in ourmethod can further reduce the number of parameters
and achieve faster computational speed, which effectively saves training time.

5.3 Ablation study
To investigate the effectiveness of the three improved modules, an ablation study was
conducted and the results are shown in Table 3.

(1) The SCM part has the most obvious improvement on PSNR, which is due to the
correction of another orthogonal view picture when the dimensionality expansion is
performed before the feature jump connection. And the introduction of subjective loss
function has the most obvious improvement on SSIM; this is because the subjective
loss includes calculation of SSIM, so the training process on the network switches the
importance on pixel-level alignment to the SSIM instead.

(2) SCM gradually improves the reconstruction effect as the encoder network deepens. It
is reasonable to assume that the smaller the input size to the decoder, the more
obvious the alignment effect will be.

(3) ω in subjective loss indicates the weight of SSIM, and SSIM can retain high-frequency
information better. However, smooth L1 will pay more attention to low-frequency
information. Since we concentrate on the accuracy of object internal reconstruction,
the reconstruction effect can be improved by appropriately increasing the weight of
w. In addition, the optimal value of w can be further investigated.

6. Conclusion
In this paper, we propose a multi-information fusion network, named MFCT GAN, to
reconstruct 3D CT volumes from biplanar X-ray projection images. In order to cope with the
security check scenario that requires fast restoration of object 3D information, we propose
two modules and a loss function, for SCM, MRDB and subjective loss function, which are
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used to improve the reconstruction quality of the vanilla network. Through qualitative and
quantitative results analysis, it can be proved that our proposed network can restore the
contours of different parts inside the object well and the model training speed is faster. Due to
the limited dataset, we will use the actual X-ray images generated by security scanner with
corresponding CT volumes for training in the future. Also, we want to design a better volume
rendering method to achieve end-to-end reconstruction, which aims to improve the screening
efficiency of security personnel to serve more scenarios.
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