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Abstract

Purpose – The flexibility of batch process enables its wide application in fine-chemical, pharmaceutical and
semi-conductor industries, whilst its complexity necessitates control performance monitoring to ensure high
operation efficiency. This paper proposes a data-driven approach to carry out controller performance
monitoring within batch based on linear quadratic Gaussian (LQG) method.
Design/methodology/approach – A linear time-varying LQG method is proposed to obtain the joint
covariance benchmark for the stochastic part of batch process input/output. From historical golden operation
batch, linear time-varying (LTV) system and noisemodels are identified based on generalized observerMarkov
parameters realization.
Findings – Open/closed loop input and output data are applied to identify the process model as well as the
disturbance model, both in Markov parameter form. Then the optimal covariance of joint input and output
can be obtained by the LQG method. The Hotelling’s T^2 control chart can be established to monitor the
controller.
Originality/value – (1) An observer Markov parameter approach to identify the time-varying process and
noise models from both open and closed loop data, (2) a linear time-varying LQG optimal control law to obtain
the optimal benchmark covariance of joint input and output and (3) a joint input and outputmultivariate control
chart based on Hotelling’s T2 statistic for controller performance monitoring.

Keywords Controller performance monitoring, Data driven, LTV, LQG, Hotelling’s T2,

Observer Markov parameters

Paper type Research paper

1. Introduction
Batch chemical processes are widely used in the production of fine chemicals,
pharmaceutical products, semiconductor, polymers and many other materials (Caccavale
et al., 2010). In contrast to continuous process, the operation of batch process often contains
multiple stages and cannot be regarded as a linear time invariant (LTI) case. In addition,
batch chemical reactionmechanism is typically complex (Aumi et al., 2013); the control of its
dynamic process and thermal conduction speed is characterized by nonlinear dynamics,
whose effects are further emphasized by intrinsically unsteady operating conditions
(Mhaskar et al., 2019).
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The complex nonlinear dynamics of batch process are often difficult to obtain and can be
approximated with a moderate set of local LTI models (Garg, 2018). Each model corresponds
to a characteristic operation region and is usually described by a set of constraints. To operate
a batch process in an optimal fashion, such local approximations are not always sufficient
since the transitions between them are missing to provide a complete description.
Furthermore, even if one specific set of constraints holds true for a long period, local LTI
models still cannot describe the time variation due to change of hold-ups or compositions (Yin
et al., 2013). Therefore, multiple LTI models fail to describe the batch process adequately, and
the corresponding control strategy often leads to poor performance. To tackle the above
deficiencies, linear time varying (LTV) model (Xu et al., 2013) is employed to provide more
accurate description of batch process with restricted complexity (Liu and Alleyne, 2015).

Due to the increasing competition in chemical industry, control performance assessment and
monitoring (CPA/CPM) has received much attention to ensure high efficiency of process
operations. Several techniques usingminimumvariance control (MVC) (Harris et al., 1996; Harris,
1989; Fu et al., 2012; Ko and Edgar, 2004) have been proven useful in prioritizing the LTI control
loop maintenance activities since it only requires process time delay and routine operating data
to evaluate controlled variable variance. ToperformCPA/CPMof batch processwhich consists a
sequence of operations impacting the final product yield and quality, Xu and Huang (2006)
extended theMVCbenchmark to the LTVprocess based on the assumption that the disturbance
is time varying and piece-wise. For the case of both LTV process and disturbancemodels, recent
studies (Huang, 2002; Wang et al., 2017; Li and Evans, 1997) supposed the LTV system satisfies
the condition of pseudo-commutation, then established LTV-MVC benchmark and LTV-GMVC
(generalized minimum variance control) benchmark, respectively. On the other hand, the batch
process can be characterized by its frequent repetition of batch runs, and a high degree of
reproducibility is necessary to obtain successful batch production. Taking this into account,
Chen and Kong (2009) developed an optimal iterative learning control (ILC) algorithm to
establish the MVC tracking and regulating achievable benchmark bounds. More recently,
Farasat and Huang (2013) elaborate the optimal MVC solution to make a trade-off between
stochastic and deterministic CPA/CPM (Ge, 2017) of batch processes.

In real practice, many types of restrictions, for example, process input/output constraints,
render theMVCbenchmark too ideal to achieve, and itmay give rise to conservative performance
assessment conclusions. One more practical technique, data-driven CPA/CPM, determines
satisfactory control performance from the historical golden operation period (Yu and Joe Qin,
2008). Control performance index can be identified by comparing the statistical property of real-
time data with that of benchmark data. Another deficiency of MVC benchmark relates to its
preference in the variation of system output. More precisely, MVC does not take the input
variability (such as valve movement) into account, which may accelerate the equipment wear. In
contrast, linear quadratic Gaussian (LQG) benchmark is more appropriate to balance the output/
input variance. Kadali andHuang (2002) proposed a subspacematrix-basedmethod to obtain the
LQG benchmark variances from closed loop data for the LTI process. But for the batch process,
little has been done regarding making a trade-off between both variance of input and output.

In this paper, a linear time-varying LQGmethod is proposed to obtain the joint covariance
benchmark for the stochastic part of batch process input/output. From historical golden
operation batch, the LTV system and noise models are identified based on generalized
observer Markov parameters realization (Majji et al., 2010a; Majji and Junkinst, 2008). In such
models, the process output at each step depends on the linear convolution of the impulse
response and the inputs applied until that instant. Based on the LTVmodels and benchmark
covariance of joint input and output, the control charts based on Hotelling’s T2 statistics are
built up to carry out CPA/CPM for batch process.

The contribution of the paper is composed of three parts. The first one is the initial
identification of LTV process for either open loops or closed systems. The Markov parameters
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of state space are obtained from operation dataset which performed well, and the parameters
are necessary for next calculation for LQGbenchmark.The second is to compute the covariance
of input and output variables. It is difficult to capture the real operating models under data
driven method in LTV loops. If the system is time-varying, the time-invariant covariance
benchmark might be not proper for monitoring. Hence, LQG optimal control law using
identification to combine bothmodels anddataset together is adopted to complete this task. The
parameters to calculate LQG benchmark are from the first identification. After that, the
covariance is used to get the Hotelling’sT2 statistic for further assessment. And the third one is
to adopt the dynamic Hotelling’s T2 statistic to the process monitoring.

The rest of this article is arranged as follows: Section 2 derives the LQGmethod for the LTV
batch process and establishesmultivariate control charts based onHotelling’sT2 index. Section
3 and 4 present the approach to obtain the systemmodel Markov parameter matrices required
for LQG analysis from historical open loop data and closed loop data, respectively. Section 5
summarizes the whole CPM procedure for batch process. Section 6 shows the application
results from an industrial batch reactor process, which is followed by conclusions in Section 7.

2. LQG design and CPM for LTV system
2.1 LQG design for LTV system
Consider the following system with r inputs and m outputs represented by a LTV process
with additive noise at the output in transfer function form:

yt ¼
Xt

i¼1

Ht;iui þ
Xt

i¼1

Nt;iai (1)

whereHt,i andNt,i are system Markov parameter matrices of the LTV process and the noise,
respectively, ai represents an uncorrelated random noise vector at discrete time i with zero-
mean and covariance matrix Σa. Both yi and ui are expressed as deviation variables. We can
first consider the influence of a single noise a1 introduced at t5 1 and then apply the principle
of superposition for the all noise case.

When a single random noise a1 is introduced at t5 1, the whole tf step output evolution
equations for the LTV batch process can be expressed as follows:

y1

y2

y3

..

.

ytf

26666666664

37777777775
�

N1;1

N2;1

N3;1

..

.

Ntf ;1

26666666664

37777777775
a1 ¼

H1;1 0 0 � � � 0

H2;1 H2;2 0 � � � 0

H3;1 H3;2 H3;3 � � � 0

..

. ..
. ..

.
1 ..

.

Htf ;1 Htf ;2 Htf ;3 � � � Htf ;tf

26666666664

37777777775
:

u1

u2

u3

..

.

utf

26666666664

37777777775

(2)
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In order to match the state space form for convenient identification computations (details are in
Section 3), some changes are introduced into the noise part in Equation (2). By defining

e1 ¼ N1;1a1 (3)

Ni;1e1 ¼ Ni;1a1ði ¼ 2; 3; � � � tf Þ (4)

Equation (2) can be transformed into

y1

y2

y3

..

.

ytf

26666666664

37777777775
|fflfflffl{zfflfflffl}

y1jtf

�

Im

N2;1

N3;1

..

.

Ntf ;1

26666666664

37777777775
|fflfflfflfflffl{zfflfflfflfflffl}

Le1jtf ;1

e1 ¼

H1;1 0 0 � � � 0

H2;1 H2;2 0 � � � 0

H3;1 H3;2 H3;3 � � � 0

..

. ..
. ..

.
1 ..

.

Htf ;1 Htf ;2 Htf ;3 � � � Htf ;tf

26666666664

37777777775
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Lu1jtf

:

u1

u2

u3

..

.

utf

26666666664

37777777775
|fflfflffl{zfflfflffl}

u1jtf

(5)

and in compact form,

y1jtf ¼ Lu1jtfu1jtf þ Le1jtf ;1e1 (6)

with e1 represents an uncorrelated zero-mean random noise vector with covariance
matrix Σe ¼ N1;1ΣaN

T
1;1 ∈Rm3m.

For batch process, the variable ui, yi can be separated into two parts, ui ¼ usp
i þ ue

i ,

yi ¼ ysp
i þ ye

i , respectively. ysp
t stands for the output deviation influenced by the

deterministic setpoint while ye
i stands for that influenced by the stochastic noise. usp

i is

designed to track ysp
t while ue

i is designed to counteract the effect of y
e
i , so Equation (6) can be

divided into two parts:

ysp
1jtf ¼ Lu1jtfu

sp
1jtf (7)

ye
1jtf ¼ Lu1jtfu

e
1jtf þ Le1jtf ;1e1 (8)

From Equation (7), the ideal setpoint input part busp
1jtf ¼ ðLu1jtf Þyysp

1jtf can be designed to

counteract the effect of ysp
1jtf .

In order to acquire optimal control law for the whole batch process, we consider the
regulatory finite-horizon LQG control objective function for the stochastic noise effect in
Equation (8) as follows:

J ¼
Xtf
i¼1

�
yi � ysp

i

�T
yi � ysp

i

� �þ ðui−busp

i Þ
TðλIÞðui � busp

i Þ
h �

¼
Xtf
i¼1

h�
ye
i

�T
ye
i þ

�
ue
i

�TðλIÞue
i

i
¼ ðye

1jtf ÞTye
1jtf þ ðue

1jtf ÞTðλIÞue
1jtf

(9)
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where tf is the final instant of the whole batch and λ is the user-defined nonnegative input
weighting parameter. Partial differentiation of J and considering the model in Equation (8)
yield the LQG optimal control law:

uopt
1jtf ¼ −

�
LuT

1jtfLu1jtf þ λI
�−1

LuT
1jtfLe1jtf ;1e1 (10)

Substituting it in Equation (8) gives the corresponding optimal output as follows:

yopt
1jtf ¼ I� Lu1jtf ðLuT

1jtfLu1jtf þ λIÞ−1LuT
1jtf

h i
Le1jtf ;1e1 (11)

Define the following two matrices:

Φ1ð1Þ
Φ2ð1Þ

..

.

Φtf ð1Þ

26664
37775 ¼ −ðLuT

1jtfLu1jtf þ λIÞ−1LuT
1jtfLe1jtf ;1 (12)

Γ1ð1Þ
Γ2ð1Þ
..
.

Γtf ð1Þ

26664
37775 ¼ I� Lu1jtf ðLuT

1jtfLu1jtf þ λIÞ−1LuT
1jtf

h i
Le1jtf ;1 (13)

The coefficientmatrixΦi(j) (j≤ i) can be regarded as the impulse response coefficient from the
jth step noise ej to the ith step optimal input, so as the coefficient Γi(j) for the output. When all
the random from t 5 1 to tf are taken into account, we have

ΦtðtÞ
Φtþ1ðtÞ

..

.

Φtf ðtÞ

266664
377775 ¼ −ðLuT

tjtfLutjtf þ λIÞ−1LuT
tjtfLetjtf ;1

ðk ¼ 1; 2; 3; � � � tf Þ

(14)

Applying the principle of superposition obtains the optimal sequence of control inputs as
follows:

uopt
1 ¼ Φ1ð1Þe1

uopt
2 ¼ Φ2ð2Þe2 þΦ2ð1Þe1

uopt
3 ¼ Φ3ð3Þe3 þΦ3ð2Þe2 þΦ3ð1Þe1

..

.

uopt
t ¼

Xt

i¼1

ΦtðiÞei

..

.

uopt
tf ¼ Φtf ðtf Þetf þΦtf ðtf � 1Þetf−1 þ � � � þΦtf ð1Þe1

(15)

JIMSE
4,1

28



Equation (15) describes the relationship between uopt
t and all the noise occurred before the

time instant of t. Similarly, the sequence of the corresponding optimal outputs is

yopt
t ¼

Xt

i¼1

ΓtðiÞei (16)

From the above equations, it can be seen that the optimal input and output at instant t under LQG
control are both related to the noise before instant t. FromEquation (15) and (16), the optimal input
and output for the stochastic noise effect part is determined by coefficientsΦt(i) andΓt(i). Section 3
and 4 will elaborate how to obtain these coefficients from historical golden batch data.

2.2 Hotelling’s T2 CPM index for LTV system
Based on the optimal sequence of inputs and outputs, a benchmark can be set up to monitor
the control performance of the whole batch. First, the covariance between the optimal input
and output are calculated as follows:

Cov
�
uopt
j ;uopt

k

�
¼

Xminðj;kÞ

i¼1

ΦjðiÞRΦT
k ðiÞ (17)

Cov
�
yopt
j ;yopt

k

�
¼

Xminðj;kÞ

i¼1

ΓjðiÞRΓT
k ðiÞ (18)

Cov
�
uopt
j ;yopt

k

�
¼

Xminðj;kÞ

i¼1

ΦjðiÞRΓT
k ðiÞ (19)

Since the optimal inputs and outputs are dependent with each other, they are put

together to formulate an augmented vector, soptt ¼ ððuopt
1 ÞT ; ðyopt

1 ÞT ; � � � ðuopt
t ÞT ; ðyopt

t ÞTÞ
T

ðt ¼ 1; 2; . . . ; tf Þwith covariance defined as follows:

Cov
�
soptt ; soptt

� ¼
Cov

�
uopt
1 ;uopt

1

� � � � Cov
�
uopt
1 ;yopt

t

�
Cov

�
yopt
1 ;uopt

1

� � � � Cov
�
yopt
1 ;yopt

t

�
Cov

�
uopt
2 ;uopt

1

� � � � Cov
�
uopt
2 ;yopt

t

�
Cov

�
yopt
t ;uopt

1

� � � � Cov
�
yopt
t ;yopt

t

�

266664
377775

∈RtðrþmÞ3 tðrþmÞ

(20)

Since the covariance of soptt may be poorly conditioned, its Singular Value Decomposition
(SVD) decomposition is performed first to obtain a reliable monitoring statistic:

Cov
�
soptt ; soptt

� ¼ Vopt
t Dopt

t

�
Vopt

t

�T
(21)

where Dopt
t ∈Rdt 3 dt is a diagonal matrix storing the first dt dominant eigenvalues of

Covðsoptt ; soptt Þ and the corresponding eigenvectors are in Vopt
t ∈RtðrþmÞ3 d.

When the a new batch data obtained in closed loop, the data sequences

set ¼ ðue
1
T ;ye

1
T ;ue

2
T . . . . . .ue

t
T ;ye

t
TÞT until time instant t are obtained by subtracting the

deterministic part, the following Hotelling’s T2 CPM index can be established,
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T2
t ¼ set

TVopt
t

�
Dopt

t

�−1�
Vopt

t

�T
set (22)

The index T2
t quantifies the comparison between the new batch data and benchmark data.

And the batch operation is considered to have good performance for a given significance level
α if

T2
t ≤T2

α ¼
�
N 2 � 1

�
dt

NðN � dtÞFαðdt;N � dtÞ (23)

where N is the total number of golden batches and Fα(dt, N�dt) is the critic value of the
Fisher–Snedecor distribution with N and N�dt degrees of freedom.

It should be noted that Hotelling’s T2 index for CPM in this paper is different from that
often used for fault detection and diagnosis (FDD) in definition and sense. In definition, T2

index for CPM in this paper comes from choosing all the components that have nonzero
eigenvalues in the covariance of joint input and output because any covariance information
on all input and output should not be left out, while T2 index for FDD comes from choosing
part of the principle components with the purpose of dimensionality reduction. In the sense,
T2 index for CPM in this paper reflects whether the real-time data are optimal under control or
not, whileT2 index for FDD reflects whether the real-time data are normal or not, soT2 index
in CPM and in FDD have different meaning.

3. Computation of Markov parameter matrix from open loop data
This section elaborates how to compute the LTV process model Markov parameter matrix
from open loop data. Unlike the LTI case, the identification of LTV model is not
straightforward. For example, for the model in the state space form, the subspace
identification regression analysis approach (Corbett and Mhaskar, 2016) directly from the
Hankel matrix of process inputs and outputs for LTI case cannot be applied to the LTV case
because of the variability of systemparameters. On the other hand, althoughwe canmake full
use of input–output data to identify the process model Markov parameterHt,i in Equation (1)
with classic least-square method, the noise model Markov parameter cannot be identified
from input–output data directly.

An effective and simple method for LTV process model identification was developed by
Majji (Majji et al., 2010b), using generalized observer Markov parameters which link the
process model Markov parameter with noise model Markov parameter. In this section, the
transfer function system model is transformed into state space form in order to obtain
the generalized observer Markov parameters from open loop data. Then the relationship
between the generalized observer/system Markov parameters is derived.

3.1 Input–output representation: observer Markov parameters
The system described by Equation (1) can be reformulated as

xkþ1 ¼ Akxk þ Bkuk þKkek (24)

yk ¼ Ckxk þDkuk þ ek (25)

with the state, output, input and noise dimensions xk ∈Rn, yk ∈Rm, uk ∈Rr, ek ∈Rm and the
system matrices Ak ∈Rn3 n, Bk ∈Rn3 r, Ck ∈Rm3 n, Dk ∈Rm3 r, Kk ∈Rn3m, respectively,
where n is the state order, Kk is the Kalman filter gain at time k and ek represents an
uncorrelated zero-mean random noise vector with covariance matrix R∈Rm3m.
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The whole tf step output evolution equations for the LTV batch process can be expressed
as follows:

y1

y2

y3

..

.

ytf

26666666664

37777777775
¼

C1

C2A1

C3A2A1

..

.

CtfAtf−1 � � �A1

26666666664

37777777775
x1þ

D1 0 � � � 0

C2B1 D2 � � � 0

C3A2B1 C3B2 � � � 0

..

. ..
. � � � ..

.

CtfAtf−1 � � �B1 CtfAtf−1 � � �B2 � � � Dtf

26666666664

37777777775
:

u1

u2

u3

..

.

utf

26666666664

37777777775
þ

Im 0 � � � 0

C2K1 D2 � � � 0

C3A2K1 C3K2 � � � 0

..

. ..
. � � � ..

.

CtfAtf−1 � � �K1 CtfAtf−1 � � �K2 � � � Im

26666666664

37777777775
:

e1

e2

e3

..

.

etf

26666666664

37777777775

(26)

The transfer function form can be transformed into different state space form by choosing
different state variablexk, but the input–output relationship holds the same. By setting initial
state x1 5 0 and consider the same single noise case as Section 2, Equation (26) becomes

y1

y2

y3

..

.

ytf

26666666664

37777777775
�

Im

C2K1

C3A2K1

..

.

CtfAtf−1 � � �K1

26666666664

37777777775
e1 ¼

D1 0 � � � 0

C2B1 D2 � � � 0

C3A2B1 C3B2 � � � 0

..

. ..
. � � � ..

.

CtfAtf−1 � � �B1 CtfAtf−1 � � �B2 � � � Dtf

26666666664

37777777775
:

u1

u2

u3

..

.

utf

26666666664

37777777775

(27)
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From Equation (27) and (28), the relationship between the system parameter matrices
Ak,Bk,Ck,Dk,Kk and the process model system Markov parameters Hi,k can be derived as

Hi;k ¼
CiAi−1 � � �Akþ1Bk; ∀i > kþ 1

Ckþ1Bk; i ¼ kþ 1
Dk; i ¼ k

0; ∀i < k

8>><>>: (28)

And the noise model system Markov parameters as

Ni;k ¼
CiAi−1 � � �Akþ1Kk; ∀i > kþ 1

Ckþ1Kk; i ¼ kþ 1
Im; i ¼ k

0; ∀i < k

8>><>>: (29)

Further, the system described by Equation (24) and (25) can also be represented in the
following forms:

xkþ1 ¼ Akxk þ Bkvk (30)

yk ¼ Ckxk þDkuk þ ek (31)

where

Ak ¼ Ak �KkCk

Bk ¼ Bk �KkDk Kk½ �

vk ¼
uk

yk

" # (32)

Starting from the initial time step t 5 1 and taking x1 5 0, the input/output relation can be
written as

y1 ¼ D1u1 þ e1
y2 ¼ D2u2 þ C2B1v1 þ e2
y3 ¼ D3u3 þ C3B2v2 þ C3A2B1v1 þ e3

..

.

ytf ¼ Dtfutf þ
Xtf−1
j¼1

Htf ;jvj þ etf

(33)

where the process model observer Markov parameters Hi;k is being defined as

Hi;k ¼
CiAi−1 � � �Akþ1Bk; ∀i > kþ 1

Ckþ1Bk; i ¼ kþ 1
Dk; i ¼ k

0; ∀i < k

8>><>>: (34)

In order to identify Hi;k, the datasets are collected from N(N > tf) batches, and the least-
squares method is employed. Displaying Equation (33) in a vector matrix form for any time of
k without loss of generality, we have
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yk ¼ Dk Hk;k−1 � � � Hk;1

� �
uk

vk−1

vk−2

..

.

v1

2666664

3777775þ ek (35)

Repeating Equation (35) with N batches of recorded data yields

Yk ¼ y
ð1Þ
k y

ð2Þ
k y

ð3Þ
k � � � y

ðNÞ
k

h i
þ Ek

¼ MkVk þ Ek

Mk ¼ Dk Hk;k−1 Hk;k−2 � � � Hk;1

� �

Vk ¼

u
ð1Þ
k

v
ð1Þ
k−1

v
ð1Þ
k−2

..

.

v
ð1Þ
1

u
ð2Þ
k

v
ð2Þ
k−1

v
ð2Þ
k−2

..

.

v
ð2Þ
1

� � �

u
ðNÞ
k

v
ðNÞ
k−1

v
ðNÞ
k−2

..

.

v
ðNÞ
1

2666666664

3777777775

(36)

The least squares solution for the process model observer Markov parameters and the
estimated residual (innovation) bek at time of k are given bybMk ¼ YkV

y
k (37)

bEk ¼ beð1Þk beð2Þk beð3Þk � � � beðNÞ
k

h i
¼ Yk � bMkVk (38)

where (.)y denotes the pseudo inverse of a matrix. So the noise covariance matrix R can be
estimated as bR ¼ E bekbeTkh i

¼ Cov bET

k

� �
(39)

3.2 Computation of process model system Markov parameters from observer Markov
parameters
A recursive method can be developed to calculate the process model system Markov
parameters from the observer Markov parameters. From the definition of the observer
Markov parameters, we have

Hkþ1;k ¼ Ckþ1Bk

¼ Ckþ1 Bk �KkDk Kk½ �
¼ H

ð1Þ
kþ1;k H

ð2Þ
kþ1;k

h i (40)

So

H
ð1Þ
kþ1;k þH

ð2Þ
kþ1;kDk ¼ Ckþ1Bk ¼ Hkþ1;k (41)
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A similar expression for Markov parameters of Hkþ2;k can be obtained as follows:

Hkþ2;k ¼ Ckþ2Akþ1Bk

¼ Ckþ2Akþ1 Bk �KkDk Kk½ �
¼ H

ð1Þ
kþ2;k H

ð2Þ
kþ2;k

h i (42)

H
ð1Þ
kþ2;k þH

ð2Þ
kþ2;kDk ¼ Ckþ2Akþ1Bk

¼ Ckþ2ðAkþ1 �Kkþ1Ckþ1ÞBk

¼ Ckþ2Akþ1Bk �H
ð2Þ
kþ2;kþ1Ckþ1Bk

¼ Hkþ2;k �H
ð2Þ
kþ2;kþ1Hkþ1;k

(43)

In general formulation, we have

H
ð1Þ
kþp;k þH

ð2Þ
kþp;kDk ¼ CkþpAkþp−1Akþp−2 � � �Akþ1Bk

¼ CkþpAkþp−1 � � �Akþ2ðAkþ1 �Kkþ1Ckþ1ÞBk

¼ CkþpAkþp−1 � � �Akþ2Akþ1Bk �H
ð2Þ
kþp;kþ1Hkþ1;k

¼ CkþpAkþp−1 � � �Akþ3ðAkþ2 �Kkþ2Ckþ2ÞAkþ1Bk

�H
ð2Þ
kþp;kþ1Hkþ1;k

¼ CkþpAkþp−1 � � �Akþ3Akþ2Akþ1Bk

�H
ð2Þ
kþp;kþ2Hkþ2;k �H

ð2Þ
kþp;kþ1Hkþ1;k � � �

¼ CkþpAkþp−1 � � �Akþ1Bk

�H
ð2Þ
kþp;kþp−1Hkþp−1;k �H

ð2Þ
kþp;kþp−2Hkþp−2;k � � � �

¼ Hkþp;k �H
ð2Þ
kþp;kþp−1H

(44)

Writing the derived recursive relationships between Hi,k and Hi;k together yields a series of
equations as follows:

Hkþp;kþp−1 ¼ H
ð1Þ
kþp;kþp−1 þH

ð2Þ
kþp;kþp−1Dkþp−1

Hkþp;kþp−2 �H
ð2Þ
kþp;kþp−1Hkþp−1;kþp−2

¼ H
ð1Þ
kþp;kþp−2 þH

ð2Þ
kþp;kþp−2Dkþp−2

..

.

Hkþp;k �H
ð2Þ
kþp;kþp−1Hkþp−1;k �H

ð2Þ
kþp;kþp−2Hkþp−2;kþp

− � � � �H
ð2Þ
kþp;kþ1Hkþ1;k ¼ H

ð1Þ
kþp;k þH

ð2Þ
kþp;kDk

(45)

Denoting ~Hi;j ¼ H
ð1Þ
i;j þH

ð2Þ
i;j Dj, we obtain the matrix form description of linear equations

relating the process model system/observer Markov parameters as follows:
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Im 0 0 1 0

−H
ð2Þ
kþ2;kþ1 Im 0 1 0

..

. ..
.

1 1 ..
.

−H
ð2Þ
kþp−1;kþ1 −H

ð2Þ
kþp−1;kþ2 � � � Im 0

−H
ð2Þ
kþp;kþ1 −H

ð2Þ
kþp;kþ1 � � � −H

ð2Þ
kþp;kþp−1 Im

26666666664

37777777775

3

Hkþ1;k 0 � � � 0 0

Hkþ2;k Hkþ2;kþ1 � � � 0 0

..

. ..
.

1 ..
. ..

.

Hkþp−1;k Hkþp−1;kþ1 � � � Hkþp−1;kþp−2 0

Hkþp;k Hkþp;kþ1 � � � Hkþp;kþp−2 Hkþp;kþp−1

266666664

377777775

¼

~Hkþ1;k 0 � � � 0 0

~Hkþ2;k
~Hkþ2;kþ1 � � � 0 0

..

. ..
.

1 ..
. ..

.

~Hkþp−1;k
~Hkþp−1;kþ1 � � � ~Hkþp−1;kþp−2 0

~Hkþp;k
~Hkþp;kþ1 � � � ~Hkþp;kþp−2

~Hkþp;kþp−1

2666666664

3777777775

(46)

From Equation (46), it can be seen that the lower triangular component of Lu1jtf in
Equation (6) can be identified directly from the process model observer Markov parameters.

3.3 Computation of noise model system Markov parameters from observer Markov
parameters
The last section describes themethod to identify the processmodel. This section considers how to

obtain noisemodel systemMarkovparametermatrixNi;k fromobserverMarkovparametersHi;k.
Note the definition of Lekjk þ p,1 as follows:

Lekjkþp;1 ¼

Im
Ckþ1Kk

Ckþ2Akþ1Kk

..

.

CkþpAkþp−1 � � �Kk

2666664

3777775 ¼ Im

O
ðpÞ
kþ1Kk

	 

(47)

where

O
ðpÞ
k ¼

Ck

Ckþ1Ak

..

.

Ckþp−1Akþp−2 � � �Ak

26664
37775 (48)
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O
ðpÞ
k is the system observability matrix, which can be obtained from the SVD decomposition

of the system Markov parameter Hankel matrix H
ðp;qÞ
k ,

Hk;k−1 Hk;k−2 � � � Hk;k−q

Hkþ1;k−1 Hkþ1;k−2 � � � Hk;k−q

..

. ..
. ..

. ..
.

Hkþp−1;k−1 Hkþp−1;k−2 � � � Hkþp−1;k−q

266664
377775

¼ H
ðp;qÞ
k ¼ bOðpÞ

k
bRðqÞ
k−1

¼

Ck

Ckþ1Ak

Ckþ2Akþ1Ak

..

.

Ckþp−1Akþp−2 � � �Ak

266666664

377777775

Bk�1

Ak�1Bk�2

Ak�1Ak�2Bk�3

..

.

Ak�1Ak�2 � � �Bk�q

266666664

377777775

T

¼ UkΣ
1=2
k

� �
Σ1=2
k Vk

� �

(49)

where the parameters q are chosen such that the system Hankel matrix retains the state
dimension n.

Equation (46) at consecutive time instants can be used to calculate the process model

system Markov parameters, from whichH
ðp;qÞ
k can be constructed. The observability matrix

O
ðpÞ
k can be obtained from the SVD decomposition as shown in Equation (49). Then the

parameter Ck can be identified from O
ðpÞ
k directly as follows:bCk ¼ bOðpÞ

k ð1 : m; :Þ (50)

where the notation 1:m denotes the firstm rows of the matrix. Then from Equation (40), the
following equation holds bKk ¼ bCkþ1

� �y
H

ð2Þ
kþ1;k (51)

And Lekjk þ p,1 can be estimated by

Lekjkþp;1 ¼
ImbOðpÞ
kþ1

bKk

" #

¼
ImbOðpÞ

kþ1
bOðpÞ

kþ1ð1 : m; :Þ
� �y

H
ð2Þ
kþ1;k

264
375 (52)

4. Computation of Markov parameter matrix from closed loop data
Open loop operation of the process may not always be possible for safety reasons and other
practical limitations. Estimation of the system model matrix from closed loop data is
desirable in such cases.
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Extend the processmodel Equation (5) to the case including all the noise effects as follows:

y1

y2

y3

..

.

ytf

26666666664

37777777775
|fflfflffl{zfflfflffl}

y1jtf

¼

H1;1 0 0 � � � 0

H2;1 H2;2 0 � � � 0

H3;1 H3;2 H3;3 � � � 0

..

. ..
. ..

.
1 ..

.

Htf ;1 Htf ;2 Htf ;3 � � � Htf ;tf

26666666664

37777777775
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Lu1jtf

u1

u2

u3

..

.

utf

26666666664

37777777775
|fflfflffl{zfflfflffl}

u1jtf

þ

Im 0 0 � � � 0

N2;1 Im 0 � � � 0

N3;1 N3;2 Im � � � 0

..

. ..
. ..

.
1 ..

.

Ntf ;1 Ntf ;2 Ntf ;3 � � � Im

26666666664

37777777775
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Le1jtf

e1

e2

e3

..

.

etf

26666666664

37777777775
|fflfflffl{zfflfflffl}

e1jtf

(53)

or in compact form,

y1jtf ¼ Lu1jtfu1jtf þ Le1jtfe1jtf (54)

Consider the process system described by Equation (54) under closed loop with an LTI
feedback controller LC, which is expressed in an impulse response matrix form as follows:

u1

u2

u3

..

.

utf

26666666664

37777777775
|fflfflffl{zfflfflffl}

u1jtf

¼

c1 0 0 � � � 0

c2 c1 0 � � � 0

c3 c2 c1 � � � 0

..

. ..
. ..

.
1 ..

.

ctf ctf�1 ctf�2 � � � c1

26666666664

37777777775
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

LC

:

r1 � y1

r2 � y2

r3 � y3

..

.

rtf � ytf

26666666664

37777777775
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

r1jtf−y1jtf

(55)

In compact form,

u1jtf ¼ LC

�
r1jtf � y1jtf

�
(56)

where r1jtf is the setpoint trajectory for the process output. Assume that the controller does
not cancel any plant dynamics, substituting Equation (56) into Equation (54) yields

y1jtf ¼ Lyrr1jtf þ Lyee1jtf (57)
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u1jtf ¼ Lurr1jtf þ Luee1jtf (58)

where

Lyr ¼
�
Iþ Lu1jtfLC

�−1
Lu1jtfLC

Lye ¼
�
Iþ Lu1jtfLC

�−1
Le1jtf

Lur ¼ LC I� �
Iþ Lu1jtfLC

�−1
Lu1jtfLC

h i
Lue ¼ −LC

�
Iþ Lu1jtfLC

�−1
Le1jtf

(59)

From the above equations, and note that the setpoint is uncorrelated with the noise, least
squares method can be employed to estimate the related matrix from N batch sets of data as

y
ð1Þ
1jtf y

ð2Þ
1jtf � � � y

ðNÞ
1jtf

h i
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

YCL

¼ Lyr r
ð1Þ
1jtf r

ð2Þ
1jtf � � � r

ðNÞ
1jtf

h i
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

RCL

þ Lye e
ð1Þ
1jtf e

ð2Þ
1jtf � � � e

ðNÞ
1jtf

h i
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ECL

(60)

Lyr ¼ YCLRCL

YCL ¼ y
ð1Þ
1jtf y

ð2Þ
1jtf � � � y

ðNÞ
1jtf

h i
RCL ¼ r

ð1Þ
1jtf r

ð2Þ
1jtf � � � r

ðNÞ
1jtf

h i (61)

Lur is estimated in the same way. With the estimation of the subspace matrices, the

predictions bYCL; bUCL can be written asbYCLbUCL

� �
¼ Lyr

Lur

� �
RCL (62)

4.1 Estimation of the process model
From Equation (59)

Lur ¼ LCðI� LyrÞ (63)

Lu1jtfLC ¼ �
Iþ Lu1jtfLC

�
Lyr

¼ Lyr þ Lu1jtfLCLyr
(64)

So

Lyr ¼ Lu1jtfLCðI� LyrÞ ¼ Lu1jtfLur (65)

Thus, the process model is obtained as follows:

Lu1jtf ¼ LyrðLurÞ−1 (66)

4.2 Estimation of the noise model
Note that there is always at least one step delay in the real closed-loop process, that is to say,
Lu1jtf, LC, Le1jtf are all low triangle matrices and
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Lye ¼
�
Iþ Lu1jtfLC

�−1
Le1jtf

¼

Im 0 0 � � � 0

b2;1 Im 0 � � � 0

b3;1 b3;2 Im � � � 0

..

. ..
. ..

.
1 ..

.

btf ;1 btf ;2 btf ;3 � � � Im

26666666664

37777777775
(67)

where bi,j in Lye are coefficients to be identified. Considering Equation (60) and noting the
form of Lye in Equation (67), we can obtain

YCLð1 : m; :Þ � bYCLð1 : m; :Þ
¼ ECLð1 : m; :Þ ¼ e

ð1Þ
1 e

ð2Þ
1 � � � e

ðNÞ
1

h i (68)

And the following equation also holds

YCLðmþ 1 : 2m; :Þ � bYCLðmþ 1 : 2m; :Þ
¼ b2;1 e

ð1Þ
1 e

ð2Þ
1 � � � e

ðNÞ
1

h i
þ e

ð1Þ
2 e

ð2Þ
2 � � � e

ðNÞ
2

h i (69)

Substituting e
ð1Þ
1 e

ð2Þ
1 � � � e

ðNÞ
1

h i
obtained from Equation (68), the least square method

can be applied to Equation (69) to estimate b2,1 and residual e
ð1Þ
2 e

ð2Þ
2 � � � e

ðNÞ
2

h i
.

Repeat the above least squaremethod in every block row ½YCLðði− 1Þmþ 1 : im; :Þ− bYCL

ðði− 1Þmþ 1 : im; :Þ�ði ¼ 1; 2; � � � tf Þ by substituting e
ð1Þ
t e

ð2Þ
t � � � eðNÞ

t

h i
ðt ¼ 1; 2; � � �

i− 1Þ estimated from the previous steps, and we can get all the coefficients bi,j in Lye.
Then from Equations (57)–(59), note that

LC ¼ −
�
Luee1jtf

��
Lyee1jtf

�y
¼ −ðUCL � bUCLÞðYCL � bYCLÞ

y (70)

Finally we get

Le1jtf ¼
�
Iþ Lu1jtfLC

�
Lye

¼ I� LyrðLurÞ−1
�
UCL � bUCL

��
YCL � bYCL

�y" #
Lye

(71)

5. Procedures of CPM for the whole batch process
In order to carry out CPM for the whole batch process, the benchmark covariance of joint
input and output should be available for every instant k. The procedures of CPMconsist of the
following key steps:
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(1) Collect N(N > tf) historical batches with golden operation, which achieve satisfactory
control performance, as benchmark datasets and scale them for identifying the
observer Markov parameters.

(2) Compute process model Markov parameters Lutjtf and noise model Markov
parameters Letjtf at every instant t from observer Markov parameters.

(3) Compute Φt(k) and Γt(k) from Lutjtf and Letjtf to establish benchmark covariance

Covðsoptt ; soptt Þ of joint input and output under LQG control at every time instant t.

(4) Extract the data set ¼ ðue
1
T ;ye

1
T ;ue

2
T . . . . . .ue

t
T ;ye

t
TÞT of real-time batch at every

instant, scale it and calculate its T2
t index by Equation (22). Draw the Hotelling’s T2

control chart to check if the current T2
t exceeds the upper limit, from which we can

know whether the batch process at sampling time is in optimal condition.

6. Case study
In this section, the proposed framework is applied to a batch reactor example in Luyben
(Luyben, 1989) (Section 5.7) in which the differential equations and the parameter values
describing the reaction process are detailed.

The reaction system involves two consecutive first-order reactions: A→ B→ C and two
stages are run in the system. In the first stage, the steam in the jacket initially heats up the
reactor content until the exothermic heat of reaction generated is significantly enough. In the
second stage, the cooling water in the jacket is used to remove the exothermic heats of
reaction. Two split-ranged control valves, i.e. a steam valve and a water valve, control the
reactor temperature. The instrumentation is all pneumatic and the controller output, Pc varies
from 3 to 15 psig. Feedback control is used to eliminate the disturbance effect on the
manipulated variables and keep the heat requirement with the batch run. The duration of
each batch is 80 min. The sampling time of each batch is 1 min. The process is affected by a
persistent disturbance (N (0, 1)) in the two control valves of the nominal upstream pressures.
The measured jacked and the measured reactor temperatures with noise (N (0, 0.01)) are

included. Also, the initial concentrationCAwith noise ðN ð0; 0:0032ÞÞ is introduced. To get the
desired qualities at the end of the batch run, the temperature reference profile or setpoint (Ts)
is shown in Figure 1.
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Figure 1.
Controlled outputs of
Operation I for batch
reactor
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The proportional plus integral controller (PI) is tuned for the above system and the control
parameters as chosen as [3, 0.1/s]. The controlled variable, temperature output (T), with the
corresponding controller output (Pc) of one typical batch are also illustrated in Figure 1. A
total of 50 batch runs of the data under golden operation condition (GOC) with above PI
controller parameters are collected as benchmark data to establish benchmark covariance
under LQG control at every time instant.

The controlled output consists of two parts, temperature and pressure, respectively. The
temperature is the setpoint variables and also belongs to the monitored outputs. The
temperature setpoint consists of four sections. The first one is a linear increase from 80 to 200
Fahrenheit degree, and the second is a maintaining process at the top degree. And the third
one is the decline section while the fourth one is a new balance in the top picture in Figure 1.

There are three lines in the chart, Ts for temperature setpoint trajectory in red as well as
the golden data (GOC) in blue and Case I in actual process in black. It is easy to find that the
temperature was tracked by and large and that the GOC data had a lower fluctuation than
Case I.

However, the condition of controlled pressure state is not as good as temperature in the
below chart in Figure 1. The golden data in blue color has a smaller variance or a kind of
much slighter fluctuation than that of real process in Case I. And the mean value of
pressure is around 8 psig. The blue line has an undulation between 6 to 10, which shows
that the maximum deviation of intensity of pressure is 2 psig. In the meantime, the upper
and lower bounds of black line are 15 and 5, respectively, which implies that the pressure
condition is not ideal. Therefore, Case I is in bad condition and should be monitored and
detected.

Two more methods including similar benchmark covariance are compared with the
proposed method (Method I). Method in reference (Kadali and Huang, 2002) (Method II)
considers only the autocovariance of input and that of output at the present moment,
respectively, and gives the benchmark covariance as

Cov
�
uopt
t ;uopt

t

�
0

0 Cov
�
yopt
t ;yopt

t

�" #

and does not include cross-covariance of input and output. Based onMethod II, we can define
the following benchmark covariance (Method III):

Cov
�
uopt
t ;uopt

t

�
Cov

�
uopt
t ;yopt

t

�
Cov

�
uopt
t ;yopt

t

�T
Cov

�
yopt
t ;yopt

t

�
:

" #
:

Both of them do not take past covariance information into consideration. The controller
performance assessment results of these three methods are compared in the following
two cases.

Figure 2 is the method we introduce for the batch process monitoring. The excess of
threshold from black points towards the red curve signifies that the condition is deteriorating
in data and some measure in next control should be considered.

But Figure 3 with Method II and Figure 4 with Method III only detected a slight difference
out of gauge. In other word, two more methods show an insensitive detection of a light
worsening condition.

6.1 Case II: scrap value impulse noise effect
In industrial environment, the scrap value impulse noise often occurs, resulting from temporary
failure of the sensor and data sampling system. It does not mean that the behavior of the batch
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operation itself is not good. Suppose the scrapvalue impulse noise affects thebatchprocess at the
instant 20 and 30, the controlled temperature output (noise effect) is plotted in Figure 5. The
correspondingHotelling’sT2 control charts of this batchbythreemethodsare plotted inFigure 6,
Figure 7 and Figure 8.

Figure 5 exhibits a normal correct condition for batch process no matter in temperature
tracking or in pressure fluctuations. The responses to the correct data in Figure 7 and
Figure 8 return two wrong assessment results. Method II in Figure 7 and Method III in
Figure 8 show two excess of the index line in red color by the black points. However, Method I
we proposed has no outstripping evaluation towards the red line.

Method II as well as Method III is formed at time “t-th”. Therefore, their covariance
benchmarks (in red) are fixed at that moment. Ourmethod to compute the covariance is based
on LQG,which adopts the vectors form time “1-st”(Group 1) to “t-th”(Group t) in Equation (20).
Therefore, our benchmark has a dynamic red curve to monitor the process, which is not as
rigid as the next two methods.

It can be seen that the Hotelling’s T2 of our method do not behave so sensitive because it
contains all past covariance information of input and output, and the inertia is much greater.
While the Hotelling’s T2 in Method I and II only focus on the input and output at the present
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instant. So it reacts at once, exceeds theT2 limit. But in fact, the batch process operation is still
normal after the impulse noise appears. SoMethod I and II aremuch sensitive to the noise and
trigger a false alarm which tells the process behavior is become worse. In summary, the
method of this paper is more adequate for the latent and slow variation and is not so sensitive
to the sudden impulse noise.

7. Conclusion
In this paper, a data-driven controller performance monitoring method based on LQG
approaches and Hotelling’s T2 index for LTV batch process is proposed. Open/closed loop
input and output data are applied to identify the process model as well as the disturbance
model, both in Markov parameter form. Then the optimal covariance of joint input and
output can be obtained by the LQG method. The Hotelling’s T2 control chart can be
established to monitor the controller performance of a new batch. An industrial batch
reactor example is studied and clearly demonstrated the effectiveness and merits of the
proposed method.
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