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Abstract

Purpose –An appropriate equivalent model is the key to the effective analysis of the system and structure in
which permanent magnet takes part. At present, there are several equivalent models for calculating the
interacting magnetic force between permanent magnets including magnetizing current, magnetic charge and
magnetic dipole–dipole model. How to choose the most appropriate and efficient model still needs further
discussion.
Design/methodology/approach –This paper chooses cuboid, cylindrical and spherical permanent magnets
as calculating objects to investigate the detailed calculation procedures based on three equivalent models,
magnetizing current, magnetic charge andmagnetic dipole–dipolemodel. By comparing the accuracies of those
models with experiment measurement, the applicability of three equivalent models for describing permanent
magnets with different shapes is analyzed.
Findings – Similar calculation accuracies of the equivalent magnetizing current model and magnetic charge
model are verified by comparison between simulation and experiment results. However, the magnetic dipole–
dipole model can only accurately calculate for spherical magnet instead of other nonellipsoid magnets, because
dipole model cannot describe the specific characteristics of magnet’s shape, only sphere can be treated as the
topological form of a dipole, namely a filled dot.
Originality/value – This work provides reference basis for choosing a proper model to calculate magnetic
force in the design of electromechanical structures with permanent magnets. The applicability of different
equivalent models describing permanent magnets with different shapes is discussed and the equivalence
between the models is also analyzed.
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1. Introduction
Interaction between permanent magnets is popularly used in many fields such as
electromechanical system, industrial robots, magnetic machineries, vibration energy
harvesters and some other frontier researches, because of its special character such as
nonlinearity and noncontact (Gysen et al., 2010; Zhang et al., 2017a; Kim et al., 2016; Teyber
et al., 2017). An increasing number of researchers has devoted themselves in the
characteristics of interaction between permanent magnets (Wang et al., 2012; Liu et al.,
2009; Hutterer et al., 2017; Kim and Choi, 2016). Therefore, accuratemagnetic force calculation
is the key to effectively design and analyze the performance and property of a system in
which permanent magnet takes part.

At present, there are several calculation methods of interacting magnetic force between
permanent magnets. Magnetic force calculation based on equivalent models is more
understandable and acceptable, used in the design and analysis of mechanical
engineering. Equivalent model describing magnet is a classical hot research topic (Choi
et al., 2006; Liang et al., 2016; Li, 2018; Janssen et al., 2010; Zhao et al., 2015; Sun et al., 2016;
Liu et al., 2006). Among several equivalent models proposed before such as magnetic
charge, magnetizing current and magnetic dipole model, how to choose the most
appropriate and efficient equivalent model for different permanent magnets still requires
further discussion.

The most common shapes of permanent magnet used in mechanical structures are
cuboid, cylinder and sphere (Wang, 2007; Zhao, 2003). Permanent magnet with excessive
complicated shape is not liable to be utilized and controlled, especially in active control,
vibration energy harvesting system. In this paper, we fully calculate the interacting
magnetic force based on equivalent magnetic dipole, charge and magnetizing current
model, respectively. We set up the experiment using cuboid, cylindrical and spherical
permanent magnets as measuring objects to verify the accuracies of each model. The
mathematical modeling processes of interacting magnetic force are demonstrated in detail.
Besides, we analyze the applicability of each model and equivalency among these models
by comparison.

2. Magnetic force calculation
2.1 Equivalent magnetizing current model
In modern electromagnetic theory, the equivalent magnetization current model believes that
each magnetic moment can be equivalently regarded as a small circular current, namely
molecular current. An unmagnetized permanent magnet does not show external magnetism
due to the chaotic distribution of internal magnetic moments. Whereas the internal micro-
current rings of permanent magnet turn in one direction due to the external magnetized
magnetic field, as shown in Figure 1 (Zhao and Chen, 2011). In the case of a uniformly
magnetized spherical permanent magnet whose magnetization intensity M is constant, the
internal adjacent magnetizing ring currents have inverse tangential directions and are offset
by each other. Thus, only the outmost surface of the permanent magnet has magnetic
currents around it.

The internal magnetizing current density is J m ¼ ∇3M ¼ 0, and the surface
magnetizing current density is Km ¼ M3bn, where bn is surface normal unit vector.

Therefore, the interaction between permanent magnets is equivalent to the interaction
between current loops. Magnetic induction intensity generated by a permanent magnet in
space can be calculated according to Biot–Savart’s law. The magnetic induction intensity
generated by a section of current element at arbitrary point P in space can be
expressed as:
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B ¼
Z
L

μ0I
4π

dl3r

r3
; (1)

where I ¼ R
t
Kmdt, t represents the width of the current, L is the integral path of the current, dl

represents the unit current element, r is the vector pointing to the P from the current element
and μ0 is the space permeability.

Similarly, the force acting on the permanent magnet in external magnetic field is
equivalent to the ampere force on the surface magnetizing current:

F ¼
ZZ
S

Km3Bds; (2)

where S represents the area of the surface where the current flows (Agashe et al., 2008; Bobbio
and Delfino, 2000).

2.1.1 Cuboid permanent magnet.The Cartesian coordinate system is established as shown
in Figure 2 on the account of the flat surfaces and straight lines of cuboid permanent magnet.
The current flows in the negative direction along the x-axis,R represents the vector pointing
to arbitrary point Pðx; y; zÞ in the space from the origin of coordinates. We have the following
relations:

R ¼ xi þ yj þ zk (3)

l ¼ wi; dl ¼ −dwi (4)

r ¼ R � l ¼ ðx� wÞi þ yj þ zk (5)

Unmagntized:

Magnetized:

M

Figure 1.
Schematic drawing of

equivalent
magnetizing current
model of permanent
magnet (Zhao and

Chen, 2011)

Figure 2.
Coordinate system of

magnetic field
produced by a current
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dl3r ¼
������

i j k

�dw 0 0
x� w y z

������ ¼ zdwj � ydwk (6)

r ¼ �ðx� wÞ2 þ y2 þ z2
�1=2

(7)

For the convenient calculation, the geometric center of the cuboid permanent magnet is
selected as the origin point of coordinate system. After simple coordinate transformation, the
coordinate system is established as shown in Figure 3, where the magnetization direction of
the permanent magnet A is alone the z axis. The equivalent magnetization current
distribution can be determined according to the right-hand screw rule and the surface current

is expressed as I ¼ R KmAdt ¼
R lB=2
−lB=2

M A3bndt.
lA, wA and hA marked in Figure 3 represent the length, width and height of permanent

magnetA, respectively. The surfacemagnetizing current of cuboid permanent magnet can be
divided into four parts, and the magnetic induction intensity is the sum of the action of top,
bottom, front and back surface magnetizing current of permanent magnet. Thus, the
magnetic induction intensities produced by cuboid magnet A in x, y and z directions
respectively are:

Biðx; y; zÞ ¼ μ0MA

4π

ZlA2
−
lA
2

dz1

8>>>>>><>>>>>>:
ZwA2

−
wA
2

ðz� z1Þdw1"�
x� hA

2

�2

þ ðy� w1Þ2 þ ðz� z1Þ2
#3

2

þ
ZwB2

−
wB
2

−ðz� z1Þdw1"�
xþ hA

2

�2

þ ðy� w1Þ2 þ ðz� z1Þ2
#3

2

9>>>>>>=>>>>>>;
(8)

Figure 3.
Schematic diagram of
magnet A’s
magnetizing currents
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Bjðx; y; zÞ ¼ μ0MA

4π

ZlA2
−
lA
2

dz1

8>>>>><>>>>>:
ZwA2

−
wA
2

ðz� z1Þdh1�
ðx� h1Þ2 þ

�
y� wA

2

	2
þ ðz� z1Þ2


3
2

þ
ZwB2

−
wB
2

−ðz� z1Þdh1�
ðx� h1Þ2 þ

�
yþ wA

2

	2
þ ðz� z1Þ2


3
2

9>>>>>=>>>>>;
(9)

Bkðx; y; zÞ ¼ μ0MA

4π

ZlA2
−
lA
2

dz1

8>>>>><>>>>>:
ZhA2
−
hA
2

−

�
y� wA

2

	
dh1�

ðx� h1Þ2 þ
�
y� wA

2

	2
þ ðz� z1Þ2


3
2

þ
ZhA2
−
hA
2

�
yþ wA

2

	
dh1�

ðx� h1Þ2 þ
�
yþ wA

2

	2
þ ðz� z1Þ2


3
2

þ
ZwA2

−
wA
2

�
xþ hA

2

�
dw1"�

xþ hA
2

�2

þ ðy� w1Þ2 þ ðz� z1Þ2
#3

2

þ
ZwA2

−
wA
2

−

�
x� hA

2

�
dw1"�

x� hA
2

�2

þ ðy� w1Þ2 þ ðz� z1Þ2
#3

2

9>>>>>>=>>>>>>;
(10)

If another same permanent magnet B is placed in such an external field B ¼ ½Bi Bj Bk� we
achieved, the acted magnetic force is equivalent to the ampere force acted on the surface
magnetizing current of magnet B. The length, width and height of permanent magnets B are
respectively expressed as lB,wB and hB, as shown in Figure 4. Here, the likemagnetic poles are
arranged face to face, which means the axial repulsive magnetic forces exist between the
magnet pair in our case.

Figure 4 shows the position of the surface equivalent magnetizing currents of permanent
magnet B in the coordinate system. The coordinates of the center points on the top,

bottom, front and back surfaces of permanent magnet B are respectively:Km1

�
xþ hB

2 ; y; z

�
,

Km2

�
x− hB

2 ; y; z

�
,Km3

�
x; yþ wB

2 ; z
	
andKm4

�
x; y− wB

2 ; z
	
, where ðx; y; zÞ is the coordinate
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of the geometric center point of magnetB, which represents the relative position of permanent

magnetB in themagnetic field generated by permanentmagnetA. The relation z ¼ d þ lA
2 þ lB

2
can be obtained, where d is the axial interval between two magnets.

Based on the definition of the equivalent surface magnetization current density
Km ¼ M3bn, the magnetization current density on each side of permanent magnet B can
be written as: 2664

Km1

Km2

Km3

Km4

3775 ¼

2664
�MBj

MBj

MBi

�MBi

3775: (11)

Therefore, the interaction magnetic force between two cuboid permanent magnets A and B
can be derived from Eqn (2):

F ðx; y; zÞ ¼
Zl2=2

−l2=2

"
−

ZwB2
−
wB
2

MBBk

�
xþ hB

2
; yþ w2; zþ z2

�
dw2

þ
ZwB2

−
wB
2

MBBk

�
x� hB

2
; yþ w2; zþ z2

�
dw2

#
dz2i

þ
Zl2=2

−l2=2

"
−

ZhB2
−
hB
2

MBBk

�
xþ h2; yþ wB

2
; zþ z2

	
dh2

þ
ZhB2
−
hB
2

MBBk

�
xþ h2; y� wB

2
; zþ z2

	
dh2

#
dz2j

þ
Zl2=2

−l2=2

"
þ
ZwB2

−
wB
2

MBBi

�
xþ hB

2
; yþ w2; zþ z2

�
dw2

�
ZwB2

−
wB
2

MBBi

�
x� hB

2
; yþ w2; zþ z2

�
dw2

þ
ZhB2
−
hB
2

MBBj

�
xþ h2; yþ wB

2
; zþ z2

	
dh2

�
ZhB2
−
hB
2

MBBj

�
xþ h2; y� wB

2
; zþ z2

	
dh2

#
dz2k

(12)

2.1.2 Cylindrical permanent magnet. For an axially magnetized cylindrical permanent
magnet, the distribution of surface equivalent magnetization current is circular around
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magnetization axis. Therefore, we need to first analyze the magnetic induction intensity
generated by a circular current. Referring to the calculation method of the straight line
current in Section 2.1.1, the coordinate system is established taking the center of the circle
current as the original point shown in Figure 5. The following relations can be achieved:

R ¼ xi þ yj þ zk; (13)

l ¼ lcosθi þ lsinθj; dl ¼ −lsinθ dθi þ lcosθ dθj; (14)

r ¼ R � l ¼ ðx� lcosθÞi þ ðy� lsinθÞj þ zk; (15)

dl3r ¼ zlcosθ dθi þ zlsinθ dθj þ lðl � xcosθ � ysinθÞdθk: (16)

Subsequently, we move the origin of coordinate system to the geometric center of cylindrical
magnet A. The magnetic induction intensity at arbitrary point Pðx; y; zÞ produced by
cylindrical magnet A can be derived as:

B ¼ μ0MA

4π

ZlA=2
−lA=2

dz1

Z2π
0

�ðz� z1ÞrAcosθ
r3

dθi þ ðz� z1ÞrAsinθ
r3

dθj

þ rAðrA � xcosθ � ysinθÞ
r3

dθkÞ; (17)

where r ¼ ððx− rAcosθÞ2 þ ðy− rAsinθÞ2 þ ðz− z1Þ2Þ1=2, lA and rA denote the thickness and
radius of cylindrical magnet A, respectively.

Figure 5.
Coordinate system of

magnetic field
produced by a circular

current loop

Figure 4.
The positions of

magnetizing currents
on the surfaces of

interacting magnets in
the coordinate system
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Similarly, the force on a cylindrical permanent magnet B in the external magnetic field is
calculated by using the Ampere’s law. The interacting magnetic force between two same
cylindrical permanent magnets is as follows:

F ¼
ZZ

S

KmB3BdS ¼
ZZ

S

������
i j k

�MBsinw MBcosw 0
Bi Bj Bk

������dz2rBdw; (18)

where

24 Bi

Bj

Bk

35 ¼
24 Biðxþ rBcosw; yþ rBsinw; zþ z2Þ
Bjðxþ rBcosw; yþ rBsinw; zþ z2Þ
Bkðxþ rBcosw; yþ rBsinw; zþ z2Þ

35. Hence, the interacting magnetic

force between two cylindrical permanent magnets is derived:

F ¼

264MB

ZlB=2
−lB=2

dz2

Z2π
0

Bkðxþ rBcosw; yþ rBsinw; zþ z2ÞcoswrBdw

375i
þ

264MB

ZlB=2
−lB=2

dz2

Z2π
0

Bkðxþ rBcosw; yþ rBsinw; zþ z2ÞsinwrBdw

375j
�

264MB

ZlB=2
−lB=2

dz2

Z2π
0

Biðxþ rBcosw; yþ rBsinw; zþ z2ÞcoswrBdw

þMB

ZlB=2
−lB=2

dz2

Z2π
0

Bjðxþ rBcosw; yþ rBsinw; zþ z2ÞsinwrBdw

375k

(19)

where z ¼ d þ lA
2
þ lB

2
, lB and rB are thickness and radius of cylindrical magnetB, respectively.

Coordinates ðx; y; zÞ represent the center position of cylindrical magnet B, as shown in
Figure 6.

2.1.3 Spherical permanentmagnet. For spherical permanentmagnetmagnetized along one
diameter direction, the surface equivalent magnetization current is still circular. However,
due to 3D curved surface of sphere in every direction, diameters of the current loops change
with different positions, interaction of spherical permanent magnet is also calculated by
summing interactions of the magnetizing current loops.

Figure 6.
The positions of
magnetizing currents
on the surface of
cylindrical magnets in
the coordinate system
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The calculation process of spherical permanent magnet is similar to that of other shapes. For
convenience, the center of the sphere is taken as the origin of coordinates, Cartesian
coordinate system is established taking the direction of magnetization as the z-axis, as shown
in Figure 7(a). It is noteworthy that the distribution of surface magnetizing current of spherical
permanent magnets is not uniform, which is different from that of cuboid and cylindrical
permanent magnets. According to the definition of equivalent magnetizing surface current
density Km ¼ M3bn ¼ Msinw, the current at different positions on the surface is respect to
the angle w. Based on the calculation method of magnetic induction intensity generated by
circular current as shown in Figure 5 in Section 2.1.2, the magnetic induction intensity
generated by spherical permanent magnet A at arbitrary point in space is achieved:

B ¼ μ0MA

4π

Zπ
0

RAsinwdw

Z2π
0

�ðz� RAcoswÞRAsinwcosα
r3

dαi

þðz� RAcoswÞRAsinwsinα
r3

dαj � RAsinwðRAsinw � xcosα� ysinαÞ
r3

dαk
�
;

(20)

where r ¼
0@ ðx−RAsinwcosαÞ2

þðy−RAsinwsinαÞ2
þðz−RAcoswÞ2

1A1=2

, RA is the radius of spherical magnet A.

Another spherical permanent magnet B is acted in given external magnetic field
½Bi Bj Bk �, as shown in Figure 7(b). The acted force can be derived as:

F ¼
ZZ

S

KmB3BdS ¼
ZZ

S

ðM B3bnÞ3BdS

¼
ZZ

S

������
i j k

MBRBsinθsinβdβ �MBRBsinθcosβdβ 0
Biðx0

; y
0
; z

0 Þ Bjðx0
; y

0
; z

0 Þ Bkðx0
; y

0
; z

0 Þ

������RBsinθdθ; (21)

where

24 x
0

y
0

z
0

35 ¼
24 xþ RBsinθcosβ
yþ RBsinθsinβ
zþ RBcosθ

35 represents coordinate of each current element, ðx; y; zÞ is

the coordinate of center of sphere B. RA and RB denotes radiuses of spherical magnet,MA and
MB represent intensities of magnetization.

Figure 7.
The positions of

surface magnetizing
currents on spherical
permanent magnet in
coordinate system. (a)
producing magnetic

field, (b) acted
magnetic force
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2.2 Magnetic charge model
The equivalent magnetic charge theory is based on the magnetic dipole model as its micro
model. One magnetic moment is equivalent to one magnetic dipole composed of a pair of
opposite (one positive and one negative) magnetic charges. For permanentmagnetwithmacro
volume, it states that the magnetic charges gather in the surfaces of magnetic poles. An
unmagnetized permanent magnet has no magnetism at macro scale, because the magnetic
dipolarmolecules are random in themagnet. For amagnetized permanentmagnet, the internal
magnetic moments are arranged along the direction of the external magnetic field, where the
positive and negative charges are orderly linked. It means that positive and negativemagnetic
charges only distribute on the surfaces ofmagnetic north and south poles, the internal charges
are offset by each other, as shown in Figure 8 (Zan, 2008). The interaction between permanent
magnets can be equivalent to the interaction of these magnetic charges on the surfaces.

The equivalent magnetic charge model of permanent magnet is obtained in comparison
with Coulomb interaction of electrical charges. The interacting magnetic force between a pair
of magnetic charges is similar to that of electric charges F ¼ K q1q2

r2
br, where q1 and q2

represent the elementary pointmagnetization charges, r
_
is a unit vector of the vector r linking

two charges and K is a coefficient K ¼ 1
4πμ0

, where μ0 is permeability of vacuum (Li, 2015).

2.2.1 Cuboid permanent magnet. Before we calculate the interaction between permanent
magnets, we first need to analyze the interaction between two magnetic pole faces, where
magnetic charges uniformly distribute.We use a coordinate system as shown in Figure 9with
its origin located at themiddle point of pole face 1, belonging to one cuboidmagnet’s north pole,
on which positive magnetic charges distribute uniformly. The interacting magnetic force
between these two square planes can be calculated by using twice surface integrals:

Unmagntized:

magntized:

M

Figure 8.
Schematic drawing of
equivalent magnetic
charge model of
permanent magnet

Figure 9.
Coordinate system of
the interaction between
two unlike magnetic
pole faces where
magnetic charges
distribute

JIMSE
1,1

52



F ðx; y; zÞ ¼
Z
S1

Z
S2

pm1pm2

4πμ0r3
r; (22)

where pm1 ¼ σsAdh1dw1, and pm2 ¼ σsBdh2dw2. A permanent magnet, equivalent to a model of
accumulated magnetic charges, is composed of a volume charge density σv ¼ −μ0divM and a
surface charge density σs ¼ μ0ðn$M Þ. The volume charge density is zero for a magnet
magnetized uniformly with a constant M and the surface charge densities are given by
σsA ¼ μ0MA and σsB ¼ μ0MB (Sadowski et al., 1992). The detailed expression of interacting
force between two square magnetic pole faces covered with positive or negative magnetic
charges shown in Figure 9 has the following form:

Fmnðx; y; zÞ ¼±
σsAσsB
4πμ0

ZhA2
−
hA
2

ZwA2
−
wA
2

ZhB2
−
hB
2

ZwB2
−
wB
2

ðxþ h2 � h1Þdw1dh1dw2dh2�ðxþ h2 � h1Þ2 þ ðyþ w2 � w1Þ2 þ z2Þ3=2
i

±
σsAσsB
4πμ0

ZhA2
−
hA
2

ZwA2
−
wA
2

ZhB2
−
hB
2

ZwB2
−
wB
2

ðyþ w2 � w1Þdw1dh1dw2dh2�ðxþ h2 � h1Þ2 þ ðyþ w2 � w1Þ2 þ z2Þ3=2
j

±
σsAσsB
4πμ0

ZhA2
−
hA
2

ZwA2
−
wA
2

ZhB2
−
hB
2

ZwB2
−
wB
2

zdw1dh1dw2dh2�ðxþ h2 � h1Þ2 þ ðyþ w2 � w1Þ2 þ z2Þ3=2
k

(23)

where hA, hB, wA and wB in Eqn (2) denote the heights and widths of two square magnetic pole
faces; d is the interval between the magnets; lA and lB denote the thicknesses of magnets, as
shown in Figure 10. The magnets are placed in the way that their poles are faced to each other.
Hence, the interacting force between cuboid magnets is a sum of the contribution from both
magnetic poles faces of two permanent magnets.

F ¼ F 23ðx; y; dÞ þ F 14ðx; y; d þ lA þ lBÞ � F 13ðx; y; d þ lBÞ � F 24ðx; y; d þ lAÞ: (24)

2.2.2 Cylindrical permanent magnet. For a pair of cylindrical magnets, the basic theory of
equivalent magnetic charge is the same as that of aforementioned cuboid magnets.

We transform the Cartesian coordinate system to a cylindrical coordinate system as
shown in Figure 11. Similar to cuboidmagnet’s force, the axial and lateral interactedmagnetic
forces FZmn and FLmn between two circular magnetic pole faces covered with positive or
negative magnetic charges are also obtained by using twice surface integrals,

FZmnðz; LÞ ¼ ±
ZrB
0

Z2π
0

ZrA
0

Z2π
0

σS1σS2r1r2

4πμ0

z ðLþ r2cosβ � r1cosαÞ2

þðr2sinβ � r1sinαÞ2 þ z2

!3=2
dβdr1dαdr2

FLmnðz; LÞ ¼ ±
ZrB
0

Z2π
0

ZrA
0

Z2π
0

σS1σS2r1r2
4πμ0

ðLþ r2cosβ � r1cosαÞ ðLþ r2cosβ � r1cosαÞ2

þðr2sinβ � r1sinαÞ2 þ z2

!3=2
dβdr1dαdr2

(25)
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where the indications of parameters r1, α, r2 and β are shown in Figure 11. The interacting
magnetic force between two cylindrical permanent magnets is the sum of the contribution
from both circular magnetic pole faces, that is,

FZ ¼ FZ23ðd; rÞ þ FZ14ðd þ lA þ lB; rÞ � FZ13ðd þ lB; rÞ � FZ24ðd þ lA; rÞ
FL ¼ FL23ðd; rÞ þ FL14ðd þ lA þ lB; rÞ � FL13ðd þ lB; rÞ � FL24ðd þ lA; rÞ; (26)

where d is the interval between magnets; lA and lB denote the thicknesses of magnets, as
shown in Figure 12. FZ and FL represent the axial and lateral magnet forces between
permanent cylindrical magnets, respectively.

2.2.3 Spherical permanent magnet. Since the surface of the spherical permanent magnet is
continuous spherical surface, it is necessary to transform the plane integral into the spherical
integral by using trigonometric relations.

We define the serial number for every hemispherical surface in Figure 13, the interacting
force between two spherical permanent magnets is a summation of the contribution of both
hemispherical magnetic pole surfaces of two permanent magnets:

F ¼
X2
m¼1

X4
n¼3

Fmn (27)

Figure 10.
Schematic diagram of
geometric dimensions
and interval between
two cuboid magnets

Figure 11.
Coordinate system of
interacting circular
magnetic pole faces
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where Fmn represents the interacting magnetic force between two hemispherical surfaces,
which belongs to different magnet:

Fmn ¼
Zπ=2
0

Z2π
0

Zπ=2
0

Z2π
0

R2
AR

2
Bsinwsinθcoswcosθdwdθdαdβðxþ RAsinθcosβ � RBsinwcosαÞ

r3=2
i

þ
Zπ=2
0

Z2π
0

Zπ=2
0

Z2π
0

R2
AR

2
Bsinwsinθcoswcosθdwdθdαdβzmn

r3=2
k;

(28)

where r ¼ ½ðxþ RAsinθcosβ−RBsinwcosαÞ2 þ ðRAsinθsinβ−RBsinwsinαÞ2 þ zmn�.
The parameters α, β, w and θ are shown in Figure 13, R is the radius of spherical magnet.

The zmn in this equation is used to distinguish the interaction between different pairs of
hemispherical surfaces numbered in Figure 13 and these are:

z23 ¼ d þ RBð1� coswÞ þ RAð1� cosθÞ; (29)

z13 ¼ d þ RBð1� coswÞ þ RAð1þ cosθÞ; (30)

z24 ¼ d þ RBð1þ coswÞ þ RAð1� cosθÞ; (31)

z14 ¼ d þ RBð1þ coswÞ þ RAð1þ cosθÞ: (32)

For z13 and z24, the signs in the front of Eqn (28) are minus, for z14 and z23, the signs are plus
similar to the definition in electric charge model.

Figure 12.
Schematic diagram of
geometric dimensions
and interval between

two cylindrical
magnets

Figure 13.
The positions of
surface magnetic

charges of spherical
permanent magnets in

coordinate system
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2.3 Magnetic dipole–dipole model
The theory of magnetic dipole–dipole treats two interacting permanent magnets as a pair of
magnetic dipoles with directional magnetic moments m ¼ MV , where M is the
magnetization intensity of permanent magnet and V represents the volume of magnet. The
magnetic induction intensity produced by one magnetic momentm on an arbitrary point P is

B ¼ −
μ0
4π

∇
m$r

krk32
(33)

where r represents the vector pointing to P from the center point of magnetic moment, μ0 is the
permeability of vacuum.

The interactingmagnetic force between twomagnetic moments is obtained by solving the
Maxwell equations with the introduction of a scalar magnetic potentialUm ¼ −B$m2 (Yung
et al., 1998):

F ¼ −∇Um

¼ −
μ0
4π

∇

h�
∇
m1$r

r3

	
$m2

i (34)

where m1 and m2 represent magnetic moments of two interacting magnetic dipoles.
For different shapes of permanent magnets, we just change the volume of magnet to

calculate the interacting force (Stanton et al., 2012; Neubauer et al., 2012). Here taking cuboid
magnets, for example, the related positions of two moments are parallel and opposite shown
as Figure 14. Subsequently, the interacting magnetic force expression can be derived as:

F ¼ ∇ðm$BÞ

¼ −
3μ0mAmB

4πr4AB

��
1� 5

z2

r2AB

�
x

rAB
i þ

�
1� 5

z2

r2AB

�
y

rAB
j þ

�
3

z

rAB
� 5

z3

r3AB

�
k



;

(35)

where rAB ¼ ðx2 þ y2 þ z2Þ1=2，mA ¼ MAVA andmB ¼ MBVB are magnetic moment of two
dipoles.

The volumes of cuboid, cylindrical and spherical magnets are expressed as V ¼ lhw,
V ¼ lπR2 and V ¼ 4

3 πR
3.

3. Experimental verification
3.1 Experiment details
In order to verify the accuracies of the equivalent models in calculating the interaction
between permanent magnets, it is necessary to design an experiment to measure the actual
interaction between permanent magnets. Because the dual permanent magnet interaction
system in several models is equivalent to the force of one permanent magnet (A) in the
magnetic field generated by the other permanent magnet (B), themagnetic interacting force is

Figure 14.
Single magnetic
dipole–dipole model
describes interaction
between cuboid
permanent magnets

JIMSE
1,1
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selected as the measurement object in this paper to verify the applicability of the equivalent
models.

The experimental setup for static magnetic force measurement consists of a weight-
bearing base, a 3D fine adjustment system, a dynamometer (HF-5) and a laser displacement
sensor (LK-FG001V), as shown in Figure 15. One magnet of each pair is attached to the
adjusted platform and the other one to the dynamometer. The like magnetic poles are
arranged face to face, which means the axial repulsive magnetic forces exist between the
magnet pairs in this experiment. We adjust the screws to simulate different relative
positions of the magnets, while recording the displacements and forces in the laser
displacement sensor and dynamometer, respectively, whose minimum resolutions are
0.001mm and 0.001N.

3.2 Measurement methods of interacting magnetic force
In order to conveniently and clearly compare the calculation accuracies of each equivalent
model, twomeasurement modes are defined in this paper, namely two relative movingmodes
of permanent magnet pairs:

(1) Keep the interval between magnets constant, adjust to make one of the permanent
magnets move along the x-axis, simultaneously measure the lateral and axial
magnetic forces between two permanent magnets at different displacements. In this
definition, the lateral magnetic direction is consistent with themoving direction of the
permanent magnet, namely the x-axis direction. (Since the permanent magnets
selected in this paper have square and circular pole surfaces, respectively, the same
result will be obtained if the moving direction of the permanent magnets and the
lateral force are defined as y-axis.) Besides, the displacement of the moving magnet is
defined as zero when the projections of the pair of magnets coincide. Finally, the
curves of axial and lateral magnetic forces with respect to lateral displacements
between permanent magnets are achieved. This measurement mode is shown in
Figure 16, where magnet B is a movable permanent magnet.

(2) The projection of two permanent magnets on the x�y plane remains coincident,
make one of them move along the z axis, that is, the interval between the two
permanent magnets is changed. At this time, the lateral magnetic force between
the permanent magnets is zero. Therefore, only the axial magnetic force in z-axis
needs to be measured. Finally, the curves of axial force with respect to interval
between permanent magnets are obtained. This measurement mode is shown in
Figure 17.

4. Simulation and comparison
According to the expressions of interacting magnetic force achieved in the previous section,
we use MATLAB to simulate the magnetic curves based on the two measurement modes
described earlier. By comparing the measured data with the simulation results, the
applicability and accuracies of different equivalent models can be verified and compared.

The cuboid permanent magnet is chosen as 10 mm 3 10 mm 3 2 mm N38H Nd2Fe14B
magnet. The cylindrical permanent magnet is chosen as f6 mm 3 2 mm N38H Nd2Fe14B
magnet. The spherical permanent magnet is chosen as f30 mm Y30BH ferrite magnet.
Simulation results comparing with experiment data of cuboid, cylindrical and spherical
permanent magnet pair are shown in Figures 1–3, respectively.

It is worth noting that in the expressions of the interacting magnetic force between
permanent magnets based on each aforementioned equivalent model, the magnetization
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Figure 15.
Magnetic force
measurement system.
(a) axial force between
cylindrical magnet
pair, (b) lateral force
between cylindrical
magnet pair, (c) axial
force between cuboid
magnet pair, (d) lateral
force between cuboid
magnet pair, (e) lateral
force between spherical
magnet pair, (f) axial
force between spherical
magnet pair
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intensityM does not participate in the integral, whichmeans that themagnetization intensity
M can be placed at the front or the last of themagnetic force expression as a coefficient for the
permanent magnets uniformly magnetized. The general shape of the curve is not affected by
the magnetization value of a single permanent magnet, except the magnitude of the entire
curve, whether with mode 1 or mode 2.

Therefore, we assign the values of magnetization based on empirical criterions in the
former researches and literatures to make the most of measured values consistent with the
curves. Concretely, in this paper, by comparing the variance of the absolute error between
the simulated value and the experimental data under different magnetization values:

Var ¼
PN
i¼1

ðΔFiÞ2

N
; (36)

we confirm the final magnetization intensity’s value when the variance is minimum. TheΔFi

in Eqn. (36) represents the absolute error of every force’s value and is given by
ΔFi ¼ Fei −FsiðMÞ, where Fei, Fsi and N represent the measured value, simulated value
and the quantity of the values, which contains both axial and lateral forces of each equivalent
model. The minimum variance means the best agreement between experiment and
simulation with the achieved magnetization intensity. Finally, the magnetization value of
cuboid, cylinder and spherical permanentmagnets in the experiment in this paper is assigned
when the interaction magnetic force is calculated based on different equivalent models, as
shown in Table 1.

In order to compare the calculation accuracy of each equivalent model, this paper
calculates the average relative error of each calculation model:

Er ¼
PN
i¼1

����ΔFiFei

����
N

; (37)

Figure 16.
Measurement mode 1.
(a) Cuboid permanent

magnets, (b) cylindrical
permanent magnets, (c)

spherical permanent
magnets

Figure 17.
Measurement mode 2.
(a) Cuboid permanent

magnets, (b) cylindrical
permanent magnets, (c)

spherical permanent
magnets
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excluding values of magnetic force smaller than 0.05N, which cannot be measured because of
the zero-drift error of the dynamometer in the experiment. The average relative errors are
shown and compared in Table 2.

By observing the analysis of Figures 18–20, as well as Table 2, we find that the equivalent
magnetizing current model and themagnetic charge model have high accuracy in calculating
the interacting magnetic force of cuboid, cylindrical and spherical permanent magnets. The
equivalent magnetic dipole model only has a good advantage in describing spherical
permanent magnets and is not applicable to the calculation of nonspherical permanent
magnets.

Then, combining the data in Table 1 and Table 2, it can be found that for the same pair of
permanent magnets, the equivalent models with similar good accuracies also have similar
magnetization intensities. For example, for cuboid or cylindrical permanent magnets, the
magnetization intensity of equivalent magnetizing current and magnetic charge model is
similar. For spherical permanentmagnets,magnetization intensities of equivalentmagnetizing
current, equivalent magnetic charge and equivalent magnetic dipole model are similar.

In conclusion, the equivalent magnetization current model and the equivalent magnetic
chargemodel can be used to analyze the interaction of permanentmagnetswith any shape and
have equivalence. Magnetic dipole is unable to describe the specific shape of the permanent
magnet, just simply treating allmagnets as amagneticmoment (Zhang et al., 2017b). However,
because dipole as a dot can be treated as a sphere in topology, magnetic dipole model can be
only applied to calculation and analysis about spherical permanent magnet.

5. Conclusion
Takingmagnet pairs of three kinds of typical shapes for examples as calculation objects, this
paper detailedly demonstrates the procedures of interacting magnetic force calculations
between permanent magnets with three popular equivalent models, magnetizing current
model, magnetic charge model and magnetic dipole–dipole model. It is affirmed that the
equivalent magnetizing current model and magnetic charge model have similar high
accuracy and have equivalence when describing all three kinds of magnets, cuboid,

Magnetizing current Magnetic charge Magnetic dipole

Cuboid magnet 5.72 105 5.85 105 1.89 105

Cylindrical magnet 7.97 105 8.09 105 4.20 105

Spherical manget 2.77×105 2.91×105 2.83×105

 Magnetizing current Magnetic charge Magnetic dipole 

Cuboid magnet 6.34% 5.22% 75.94% 

Cylindrical magnet 2.48% 1.52% 44.49% 

Spherical magnet 7.09% 9.10% 9.93% 

Table 1.
Magnetization values
of different-shape
permanent magnets
based on each model

Table 2.
Average relative errors
of each models for
different-shape
permanent magnets
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cylindrical and spherical permanent magnets. However, magnetic dipole–dipole model is
only appropriate for spherical permanent magnet instead of the cubic or cylindrical magnet,
because dipole model cannot describe the specific shape of permanent magnet, only sphere is
the topological form of a dipole as a filled dot. Lots of applications could refer to our work,
which is valuable for choosing themost appropriate model to solve the problems onmagnetic
force calculation based on permanent magnets with different kinds of shapes.
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