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Abstract

Purpose – In order to improve the robustness to noise in point cloud plane fitting, a combined model of
improved Cook’s distance (ICOOK) andWTLS is proposed by setting amodified Cook’s increment, which could
help adaptively remove the noise points that exceeds the threshold.
Design/methodology/approach – This paper proposes a robust point cloud plane fitting method based on
ICOOK and WTLS to improve the robustness to noise in point cloud fitting. The ICOOK to denoise the initial
point cloud was set and verified with experiments. In the meanwhile, weighted total least squares method
(WTLS) was adopted to perform plane fitting on the denoised point cloud set to obtain the plane equation.
Findings – (a) A threshold-adaptive Cook’s distance method is designed, which can automatically match a
suitable threshold. (b) The ICOOK is fusedwith theWTLSmethod, and the simulation experiments and the actual
fitting of the surface of the DDmotor are carried out to verify the actual application. (c) The results shows that the
plane fitting accuracy and unit weight variance of the algorithm in this paper are substantially enhanced.
Originality/value – The existing point cloud plane fitting methods are not robust to noise, so a robust point
cloud plane fitting method based on a combined model of ICOOK and WTLS is proposed. The existing point
cloud plane fitting methods are not robust to noise, so a robust point cloud plane fitting method based on a
combined model of ICOOK and WTLS is proposed.
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Paper type Research paper

1. Introduction
Efficient point cloud data processing could help to improve the plane matching andmodeling
quality. Point cloud plane fitting is the basis of the scattered point cloud fitting algorithm,
which has been a hot research topic in recent years (Xu et al., 2019; Guo et al., 2021; Chithra
and Christoper, 2018). This technology was first used in 3D laser scanning on the ground,
such as road data fitting (Narksri et al., 2018; Oude Elberink and Vosselman, 2009), wall
flatness detection (Wang et al., 2021a; Li et al., 2020), etc. Moreover, the technology is also used
in industrial scenarios, such as parts flatness detection (He et al., 2016; Meng et al., 2016) and
measurement of workpiece parts (Wang et al., 2021b; Sun et al., 2022; Li et al., 2022), etc.
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However, the robust denoising method has always been a prerequisite for high-quality point
cloud plane matching, which still needs extensive exploration.

In order to improve the robustness to noise, lots of researchers have conducted extensive
research work. Li et al. (2016) proposed an eigenvalue method by comprehensively
considering the errors in the three directions of X, Y and Z, and the fitting accuracy shows a
substantial improvement. In addition, Pitk€anen et al. (2019) added the accidental errors of the
observation vector and coefficient matrix into the fitting model, and proposed the total least
squares (TLS) method. The above traditional methods were based on the fact that point cloud
observation was carried out under the condition of equal precision. However, in the actual
data acquisition process, the entire observation process is absolutely at an unequal precision
limited by factors such as equipment and environment difference, which could lead to
different contribution weight for acquired point.

Considering the effect of equipment and environment differences, Wang et al. (2021c)
proposed the weighted total least squares (WTLS) method. According to different weighting
criteria, such as distance weighting and incident angle weighting, different weights to each
point are generally assigned in the point cloud for plane fitting. The plane fitted by this
method is more linear to the actual situation and can effectively improve the fitting accuracy,
while the robustness to noise is not satisfying. Li et al. (2017) proposed the random sample
consensus (RANSAC)–TLS fitting method by using RANSAC to remove rough points, and
then adopting TLS to fit the model. The fitting effect of this method depended on the
threshold selection of RANSAC, and each fitting result was different due to the randomness
of RANSAC. Therefore, lots of researchers consider Cook’s distance a good choice to
eliminate noise data. Dhakal (2017) used Cook’s distance to remove outliers before performing
multiple regression on rice yield data in Nepal. Wang et al. (2018) combined the Cook’s
distance with the half-mean resampling method and proposed an outlier detection method
based on the near-infrared spectral analysis data of soybean straw.

This paper proposes a robust point cloud plane fitting method based on improved Cook’s
distance (ICOOK) and WTLS to improve the robustness to noise in point cloud fitting. The
ICOOK to denoise the initial point cloud was set and verified with experiments. In the
meanwhile, WTLS method was adopted to perform plane fitting on the denoised point cloud
set to obtain the plane equation. Finally, the point cloud plane data of the surface of the DD
motor was collected, by applying the proposed method to fit the plane, verifying the
applicability of our method in the real environment.

2. Denoising and fitting method
2.1 Point cloud plane processing
Traditional robust fitting methods, such as RANSAC, are a combined method for denoising
and fitting, with a high efficiency but low accuracy. In this paper, denoising and fitting are
separated and processed by an ICOOK and WTLS. This combined method not only has
strong robustness to noise, but also fit the point cloud plane effectively in the noisy
environment. The frames of the whole method are shown in Figure 1, which is divided into
two parts. In the first filter part, an ICOOK to denoise the initial point cloud is designed, and
the denoised result is the input of the second part. Then followed by the second part of fitting,
aweighted total least square (WTLS)method is used to fit the denoised point clouds, and thus
obtain the plane equation. The detailed ICOOK method andWTLS method will be described
in detail in sections 2.2 and 2.3.

2.2 Improved Cook’s distance(ICOOK) model
In this section, the filter part of proposed method is described. Section 2.2.1 mainly describes
the original Cook’s distance method and its existing problems, which is the inadaptive
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threshold selection and the low accuracy. Section 2.2.2 mainly describes the ICOOK, which is
to adaptively select the Cook’s distance threshold by designing an index.

2.2.1 Original Cook’s distancemodel. In the actual situation, the collected plane point cloud
will inevitably produce noise due to factors such as equipment and environment differences.
How to design a criterion to identify the noise in the plane point cloud is the key process to
improve the robustness of the algorithm (Peng et al., 2020). The flat point cloud is assumed to
be a set p, assuming that there is a threshold t, the set p can be split into two subsets: the valid
point set p1 and the noise point set p2. The relationship is shown in formula (1).

p1 \ p2 ¼ ∅

p1 [ p2 ¼ p
(1)

In this equation, the problem is transformed to find the threshold t to divide the point set p into
valid point set and noise point set. In view of the fact that the plane fitting problem is a linear
regression problem, the Cook’s distance can be used for statistical diagnosis of the linear
model, and the abnormal points can be eliminated. This paper completes the elimination of
point cloud noise by calculating the Cook’s distance of each point in the point set, and
selecting the appropriate distance value as the threshold t. Cook’s distance is a statistic
parameter for statistical diagnosis of linear models. It could be given as:

Y ¼ Xβ þ ε (2)

where Y is the observation vector of n 3 1, X is the coefficient matrix of n 3 p, β is the
parameter vector of p 3 1, and ε is the error vector of n 3 1.

The core principle of Cook’s distance is to extract the i-th data from the data set when
considering the influence of the i-th data on the entire model, establish a linear regression
model for the remaining group data and conduct the least squares estimation (Yildiz et al.,
2017). Here, a quantitative function is adopted to quantify the impact of the i-th data on the
entire model, which is given in formula (3).

Figure 1.
Combined process of
ICOOK and WTLS
method
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Di;1ðM ;CÞ ¼ ðbβ � bβðiÞÞTMðbβ � bβðiÞÞ=Cbβ ¼ ðXTXÞ−1XTY
(3)

In the formula,M is a positive definite matrix, and C is a given constant, bβ is the initial least
squares estimate andbβðiÞ is the least squares estimate after extracting the i-th data.Di;1ðM ;CÞ
measures the size of the influence of the regression coefficient estimates of β. The larger the
value of Di;1ðM ;CÞ is, the greater the change of β after the i-th group of data is removed (Ck
and Hy, 2019). Obviously, the size of Di;1ðM ;CÞ depends on the choice of M and C. Take

M ¼ XTX ;C ¼ pbσ2 (p is the number of unknowns in the parameter vector, bσ2 is the unit
weight variance calculated using the complete data), then the Cook’s distance can be
obtained:

Di;1ðXTX ; pbσ2Þ ¼ ðbβ � bβðiÞÞTXTXðbβ � bβðiÞÞ
pbσ2 (4)

The larger the Cook’s distance is, the greater the parameter change after excluding the first
group of data would be (Hidalgo et al., 2018). For the plane fitting problem in this paper, both
the simulated experimental data and the measured experimental data contain some gross
error values. The points with larger Cook’s distance calculated in this paper are actually
rough points. The larger the Cook’s distance is, the more the corresponding point deviates
from the fitting model is. In the meanwhile, the smaller the Cook’s distance is, the closer the
point is to the overall trend of the point cloud, which is a plane fitted strong influence points
for plane fitting (Roberts et al., 2015).

The key for plane fitting is how to set a reasonable threshold, which can not only reduce
the number of misjudged noises, but also remove the real noises as much as possible. In
response to this problem, two empirical criteria are adopted. The first criterion takes three
times the mean value of Cook’s distance as the threshold (Cook, 2000). The second criterion
sets t ¼ 4=ðn − k − 1Þ, where n is the number of samples and k is the number of variables in
the model to be fitted (Kim, 2017). Both of these criteria are qualitative empirical guidelines
and could not be applied in some situations. To solve this problem, this paper improves the
Cook’s distance and designs a Cook’s distance method with higher accuracy and adaptive
threshold adjustment.

2.2.2 Improved cook distance model. For a linear model to be fitted, the noise points are
generally less than the effective points. The Cook’s distance of the valid point basically
oscillates around a certain value, and only the Cook’s distance values of those noise pointswill
increase suddenly, which is similar to a wave crest. In order to apply this model in the actual
situation, this paper makes the following two assumptions:

(1) In the linear model to be fitted, the proportion of noise does not exceed 30%.With the
development of technology, the accuracy of point cloud acquisition equipment is
getting higher and higher. It is rare that the proportion of noise in point cloud
collected by equipment exceeds 30%. Therefore, the case that the noise ratio exceeds
30% is not considered.

(2) The Cook’s distance values of valid points are all oscillating around a certain value.
This is because that when calculating the Cook’s distance of a point set by formula (4),
the Cook’s distance of valid points will be distributedwithin a small interval v, and the
difference between the Cook’s distance of valid points and the Cook’s distance of noise
points will be relatively large.
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Based on the above two assumptions, only if the Cook’s distance value changes drastically
relative to the value of the valid point, the point is considered to be a noise point. In this model,
we only need to find the point with the smallest Cook’s distance and set as the threshold point.
Therefore, this paper re-arranges the Cook’s distance values in ascending order, whichmakes
it easier to find the threshold point.

Figure 2 is the Cook’s distance calculation before and after the ascending order of point
cloud planes containing 10% noise scale. As can be seen from the figure, the Cook’s distance
before the ascending order is irregular. However, after sorting in ascending order, it can be
seen that there is a sudden change in the Cook’s distance, and the reason for the sudden

Figure 2.
Comparison of Cook’s
distance ascending
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change is that the Cook’s distance of the valid point and the Cook’s distance of the noise point
are quite different. Therefore, we only need to find the first point where the Cook’s distance
changes significantly, and set the Cook’s value of this point as our threshold. In order to
measure the degree of this change, an indicator as Cook’s increment is designed. Thus, we
need first to calculate the median value of the Cook’s distance in ascending order, then
subtract each Cook’s distance from themedian value and divide by themedian value to obtain
the measurement index, and finally normalize the calculated value to obtain the Cook’s
increment. The detailed formula is given in formula (5).

θ ¼ abs

�
cook�m

m

�
norm ¼ θ �minðθÞ

maxðθÞ �minðθÞ

(5)

The Cook’s increment actually reflects a degree of change between the Cook distance of each
point and themedian value. The reasonwhy themedian value is used as the reference value is
that the median value is not easily affected by the extreme value, and can better represent the
value that oscillates at the effective point in the hypothesis B. In order to eliminate the
influence of dimensions between different data, it is also necessary to normalize the Cook’s
increment to the [0,1] interval. Thus, the Cook’s increment can be applied to measure the
degree of change of the Cook’s value at each point. Through experiments in section 3.2, it is
believed that the point where the Cook increment exceeds 3% as the threshold point is highly
suitable.

2.3 Weighted total least squares (WTLS)
This section mainly describes the fitting part of our method. After the original data is
denoised by ICOOK, a point cloud set that basically does not contain coarse noise will be
obtained. Then, the WTLS method will be used to fit the denoised point cloud set.

2.3.1 WTLS fitting model. WTLS is a linear optimization method. Compared with the
ordinary least squares method, this method considers both of the errors from the observation
vector and the coefficient matrix. In this paper, it is assumed that the weights of each point on
the model are different considering the actual situation (Wurm, 2021).

The plane equation to be fitted is as follows:

zi ¼ axi þ byi þ c; ði ¼ 1; 2; . . . ; nÞ (6)

In this formula, a, b and c are the plane fitting parameters. Consider the coefficient matrix
error and the observation vector error into the model to establish an EIV (errors-in-
variable) model:

Z � ez ¼ ðA� EAÞ3 ξ (7)
where Z is the n 3 1 observation vector with random error ez, A is the n 3m coefficient
matrix with random error EA, ξ is the parameter to be estimated. These parameters could be
given as:

Z ¼

26664
z1
z2

..

.

zn

37775;A ¼

x1 y1 1

x2 y2 1

..

. ..
. ..

.

xn yn 1

2666664

3777775; ξ ¼
24 a

b

c

35 (8)
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Moreover, the statistical properties of random errors are as follows:�
ez
eA

�
¼

�
ez

vecðEAÞ
�
∼

��
0
0

�
; σ20

�
Qz 0
0 QA

��
(9)

In this formula, vecmeans that thematrix is straightened by column, and the order is from left
to right; eA ¼ vecðEAÞ; σ20 is the pre-test unit weight variance;QZ ;QA is the co-factor matrix of
ez and eA, and the correlations are given as:

QZ ¼ PZ
−1

QXY ¼ PXY
−1

Q0 ¼ P0
−1

QA ¼ Q0 ⊗QXY ¼ PA
−1

(10)

In this formula, PZ is the observation vector weight matrix, PA is the weight matrix of the
coefficient matrix A, P0 and PXY are the column vector weight matrix and the row vector
weight matrix of the coefficient matrix A respectively, and ⊗ is the Kronecker product.

The estimation criterion for WTLS is as follows:

eTz QZ
−1
ez þ eTAQA

−1
eA ¼ min (11)

The most important step in the WTLS algorithm is the definition of the weight function.
At present, there are a variety of weighting methods, such as intensity value weighting,
incident angle weighting and distance weighting (Wang and Xu, 2020). Different
weighting methods have different characteristics. Since the point cloud data has no
intensity value and incident angle information in this paper, the distance value weighting
method is adopted.

The weighted distance method assumes that the point-to-plane distance reflects the
correlation between the point and the plane. The further the distance is, the lower the
correlation, and the smaller the weight of the point in the fitting process, and vice versa. From
this point, the weight of the point can be determined according to the distance from the point
to the plane (Li et al., 2015).

This paper first uses the TLS algorithm to fit an initial plane model, then calculates the
distance from each point to the initial plane, and then converts the reciprocal of the distance
value to a value between [0, 1] according to equation (12). In the subsequent process, the initial
value of each point weight in the iterative solution process is set to be Pi0 ¼ di

0:

di ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jaxi þ byi � zi þ cj

a2 þ b2 þ 1

s

di
0 ¼ jdi � ðminðdiÞ þ λÞj

maxðdiÞ �minðdiÞ

(12)

In this formula, di is the distance from the point to the plane, minðdiÞ is the minimum distance
from the point to the plane, maxðdiÞ is the maximum distance from the point to the plane, λ is
the minimum value and λ ¼ 10−6mm in this paper.

2.3.2 The solution to the WTLS model. For the solution of the WTLS model, considering
the speed and accuracy effect on the algorithm, we adopt an iterative method to solve the
numerical solution of the model. The solution steps are given in Figure 3, which also
represents the overall flow chart of ICOOK–WTLS method.
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(1) In order to facilitate the iterative solution, rewriting equation (7) into the following
form:

Z � ez ¼ Aξi þ Aiδξ� EAξi (13)

In this formula, Ai ¼ A − eEAi
, δξ ¼ ξiþ1 − ξi, i represents the i-th iteration. Construct the

Lagrangian function according to formula (14):

Φðez; eA; λ; ξÞ ¼ eTz QZ
−1
ez þ eTAQA

−1
eA þ 2λT

ðZ � Aξi � Aiδξ� ez þ ðξTi ⊗ ImÞeAÞ
(14)

In this formula, λ is the n 3 1 Lagrangian coefficient.

(2) To solve Equation (14), the TLS method is applied to estimate the initial value of the
model, and then calculate the distance from each point to the plane, convert the
reciprocal of the distance value to the value of [0,1] according to Equation (12). Then,
according to Equation (15), set the column vector weight matrix P0 of A and the row

Begin

Input point cloud with a 
total number of n

Extract point i from point 
cloud

Yes

Remove
the point i

No

Calculate Cook’s distance
D(i) of the i-th point

i++

Merge into valid point set

Calculate threshold t 
based on ICOOK

i < = n

D(i) > t

Extract point i from point 
cloud

i < = n

Yes

No

Yes No

Point set after remove
outlier

TLS estimation plane
initial model

Calculate distance from 
each point to the plane

Convert distance to 
weight according to 

equation (12)

Find initial value of the
parameters according to 

formula (16)

Iteratively solve
according to equations

(17) and (18)

Get the fitted plane

End

i++
Figure 3.

Flow chart of
ICOOK–WTLS
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vector weightmatrixPXY ð0Þ ofA, and the initial weightmatrix PZð0Þ of the observation
value.

P0 ¼ diag½ 1 1 0 �

PXY ð0Þ ¼ PZ ð0Þ ¼ diag

�
1 1 � � � 1
zfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflffl{n � (15)

(3) Solve the iterative initial value of parameter ξ ¼ ½a; b; c�T for subsequent iterations:

v0 ¼ 0bξ0 ¼ ðAT
QZ ð0ÞAÞ−1AT

QZ ð0ÞZ

μ0 ¼ ðQZ ð0Þ þ ððbξ0ÞTQ0
bξ0ÞQXY ð0ÞÞ−1bξ1 ¼ ððμ0AÞ−1ATμ0ÞZ

(16)

In this formula, Q0 is the generalized inverse of P0.

(4) Calculate μi, λi, vi:

μi ¼ ðQZ ði�1Þ þ ððbξiÞTQ0
bξiÞQXY ði−1ÞÞ−1

λi ¼ μiðZ � AbξiÞ
vi ¼ ðλiÞTQXY ði−1Þλibξiþ1 ¼ ðATμiA� viQ0Þ−1ðATμiZÞ

(17)

(5) According to the value calculated in step (4), calculate bξiþ1:

bξiþ1 ¼ ðATμiA� viQ0Þ−1ðATμiZÞ (18)

(6) Repeat steps (4) to (5) until kbξiþ1 −bξik < δ and δ are given threshold.

The above process is the full theoretical analysis of our method. Our method incorporates the
ICOOK and WTLS, which corresponds the denoising and fitting process.

3. Simulation and discussion
3.1 Simulation experiment
In order to verify the accuracy and robustness of the method under different noise ratios, this
paper conducted extensive experiments through MATLAB2017b (64bit) platform on a
personal computer, with Intel(R) Core (TM) i5-5257U CPU @ 2.70GHz. In this simulation,
plane data containing 500 points are randomly generated, the plane equation is
Z ¼ −0:5 *X þ 0:6 *Y þ 0:7, X and Y are random numbers in the [�1,1] interval, and a
normal distribution random error with mean 0 and standard deviation 0.05 is added. The
reason for choosing 0.05 for the standard deviation is that the error for the simulation is an
inevitable systematic error in the experiment, and this type of error is generally small. The
coordinate range of the simulated data is between [�1, 1], so the added normal error cannot be
too large, thus the standard deviation is set to 0.05. In order to verify the superiority of Cook’s
distance in denoising with different noise ratios, 5%, 10%, 15% and 30% gross error data
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were added to the plane data, respectively. The gross data follow a normal distribution with a
mean of 0 and a standard deviation of 0.5. In order to facilitate verification, the number of
noise points added is at the end. For example, in data with 5%noise, there are 25 noise points,
and the point number is within 475–500.

The simulation results are depicted in Figure 4, which is mainly focused on the
performance of the proposed method from two aspects. This is first to verify that our method
on adaptive performance of the Cook’s distance threshold and the corresponding denoising
performance. Moreover, another advantage is to verify that the point cloud plane fitted by our
method is more accurate and robust. It could be seen from Figure 4 that the point cloud is
more scattered with the increase of noise ratio.

3.2 Evaluating denoising results of ICOOK
The threshold points are obtained by applying the ICOOK algorithm in the data of the above
four different proportions of noise, and the results are shown in Figure 5. Figure 5 is the
calculated Cook’s increment graph with a threshold line of 3%, which has been discussed in
section 2.3. The threshold points of the four different noise ratios are the intersection points of
the threshold line and the polyline. The corresponding Cook’s distance value is obtained by
the serial number of the intersection point, and this value is the final Cook’s distance

Figure 4.
Simulated point cloud
planes with different

noise scales
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threshold. The thresholds obtained by the ICOOK algorithm and the thresholds of the two
empirical criteria are shown in Table 1.

In order to achieve a better threshold, all three thresholds are plotted on the corresponding
Cook’s distance map, and the results are shown in Figure 6. In this figure, the abscissa is the
serial number of the point, the ordinate is the Cook’s distance value, the blue line is the
standard 2 threshold, that is t ¼ 4=ðn − k − 1Þ, the green line is the standard 1 threshold, that
is three times the mean value of the Cook’s distance, and the red line is the threshold in this
paper. Among the four noise ratios, the threshold in this paper is the smallest, and the
threshold of standard 2 is the highest. It can be seen that the threshold of standard 2 is set too
high, resulting in themostmissed detection noise.While the threshold of standard 1 is second,
which is especially obvious when the noise ratio increases, the threshold value of ICOOK
changes adaptively with the change of the noise ratio, and the missed detection noise is the
least among the three threshold values.

In order to quantitatively evaluate the denoising effect, the noise points are counted in this
paper. In terms of the denoising algorithms, two indicators are generally considered. First,
which kind of noise type is filtered. Second, howmuch non-noise is filtered as noise, which is a
misjudgment rate. This is essentially a classification evaluation problem, and this
paper draws on two classic evaluation metrics in machine learning: recall and precision

Noise ratio
(%)

Threshold point
number

Corresponding
threshold

Standard 1
threshold

Standard 2
threshold

5 468 0.0028 0.0048 0.0080
10 470 0.0048 0.0063 0.0080
15 451 0.0025 0.0054 0.0080
30 404 0.0015 0.0060 0.0080

Figure 5.
Cook’s increment

Table 1.
Different noise ratio
threshold
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(Berkel et al., 2018). The recall rate reflects the degree of true noise filtering, and the precision
rate reflects the degree of false detection by the algorithm. The definitions of the two
indicators are shown in Equation (19):

P ¼ TP

TP þ FP

R ¼ TP

TP þ FN

(19)

where P andR represents the precision rate and the recall rate.TP is the detection noise, FP is
the false detection noise, and FN is the missed detection noise. The F1 metric (Chicco and
Jurman, 2020) is introduced based on the influence of the recall rate and precision rate, and the
formula is as follows.

F1 ¼ 23P3R

P þ R
(20)

The F1 measurement can synthesize the influence of the recall rate and the precision rate. In
the performance comparison, only the F1 indicator needs to be compared. The larger the F1 is,
the better the effect. The statistical results are shown in Table 2. In order to compare the

Figure 6.
Effect of different

thresholds on Cook’s
distance
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relationship between the data more clearly, the F1 index values in Table 2 are drawn into a
three-dimensional histogram, as shown in Figure 7.

As can be seen in Figure 7, the F1 value obtained from the threshold value of standard 2
generally shows a decreasing trend with the increase of the noise ratio, jumping between 0.6
and 0.8, and the fluctuation is large. The F1 value calculated by the threshold of standard 1
does not change much with the increase of the noise ratio, and the overall stability is around
0.7. The reason for this is that the threshold of standard 2 is only related to the number of
samples and variables, and has nothing to do with the noise ratio. In this paper, the threshold
of standard 2 is a fixed value. With the increase of the noise ratio, the Cook’s value is
changing, but the corresponding threshold does not change, so the noise that is missed is
more and more. And the threshold of standard 1 is related to the mean value of Cook’s
distance. As the noise ratio increases, the mean value of Cook’s distance will change, and the
corresponding threshold is also adjusted adaptively. Therefore, the result of standard 1 is not

Threshold
Noise

ratio (%)

Detected
noise
point

False
detection
noise pint

Missed
detection
noise point

Non-noise
point Recall Precision F1

Threshold
of standard
1

5 18 1 7 474 0.72 0.95 0.82
10 30 0 20 450 0.6 1 0.75
15 52 0 23 425 0.69 1 0.82
30 73 0 77 350 0.49 1 0.66

Threshold
of standard
2

5 13 0 12 475 0.52 1 0.68
10 34 0 16 450 0.68 1 0.81
15 40 0 35 425 0.53 1 0.69
30 61 0 89 350 0.41 1 0.58

Threshold
of ICOOK

5 23 4 5 468 0.82 0.85 0.83
10 40 0 10 450 0.80 1 0.89
15 63 2 12 423 0.84 0.97 0.90
30 108 3 42 347 0.72 0.97 0.83

Figure 7.
Three dimensional
histogram of denoising
results with different
thresholds

Table 2.
Comparison of
denoising results with
different thresholds
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sensitive to the change of noise adaptively. In contrast to the algorithm in this paper, it can be
found that the F1 value obtained by the algorithm in this paper does not fluctuate much, and
is basically stable at 0.86. It is not sensitive to the change of noise ratio and has strong
adaptability. Besides, in all noise ratios, the highest F1 value is the algorithm in this paper,
which shows that the algorithm in this paper is more adaptive and accurate.

3.3 Evaluating plane fitting results of WTLS
In Section 3.2, the denoising effect of the ICOOK algorithm is evaluated. Compared with the
other two threshold criteria, the denoising accuracy and robustness of the ICOOKmethod are
much better. In this section, the point cloud plane will be fitted. In order to evaluate the
accuracy after fitting, the LS and WTLS algorithms are adopted to compare with the
algorithm in this paper.

In the experiment, the fitting quality of the algorithm is evaluated by the two indicators of
plane fitting accuracy and unit weight variance. Among them, the plane fitting accuracy is
essentially the mean square error of the model. The smaller the fitting accuracy is, the higher
the fitting accuracy of the algorithm. This metric can evaluate the accuracy of the estimation
results (Ou et al., 2020). Another indicator, the unit weight variance, can directly analyze the
difference between the fittingmethods, and canbetter reflect the performance of the estimation
method itself. The smaller the variance in the unit weight, the better the fitting performance
(Gong and Li, 2014). The definitions of the two indicators are shown in equations (20) and (21).

σp ¼

ffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

d2i

n

vuuut
(21)

σ0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λTðZ � AξÞ

n� 3

s
(22)

In the formula, σp is the plane fitting accuracy, σ0 is unit weight variance, n is the total number
of point clouds and di is the distance from the point to the plane in formula (12).

The above point cloud data are fitted with LS, WTLS and ICOOK–WTLS (algorithm in
this paper) respectively. The calculated plane parameters and the accuracy evaluation
index are shown in Table 3, and the accuracy analysis diagram drawn from the analysis of
the data in the table is shown in Figure 8. It can be seen that when the gross error ratio is
5%, the obtained coefficient value is very close to the actual value. The fitting accuracy

Noise ratio (%) Algorithm a(–0.5) b(0.6) c(0.7) σ0/μm σp/μm

5 LS �0.498 0.595 0.702 0.0035 0.157
WTLS �0.498 0.596 0.703 0.0028 0.152
ICOOK–WTLS �0.500 0.595 0.703 0.0025 0.146

10 LS �0.511 0.609 0.697 0.0037 0.187
WTLS �0.502 0.607 0.695 0.0029 0.160
ICOOK–WTLS �0.502 0.605 0.696 0.0024 0.149

15 LS �0.475 0.587 0.708 0.0038 0.25
WTLS �0.491 0.594 0.705 0.0027 0.178
ICOOK–WTLS �0.492 0.596 0.705 0.0026 0.161

30 LS �0.518 0.586 0.715 0.0043 0.32
WTLS �0.500 0.595 0.708 0.0029 0.218
ICOOK–WTLS �0.499 0.592 0.709 0.0025 0.193

Table 3.
Data comparison of

simulation algorithms
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Plane fitting accuracy comparison under
different noise ratios

(a)

(b)

Unit weight variance comparison under
different noise ratios

Figure 8.
Algorithm accuracy in
simulation
experiments
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and unit weight variance of each algorithm are not much different, the maximum
difference of fitting precision is only 0.011, and the maximum difference of unit weight
variance is 0.001, which shows that the fitting effect of each method is good. Only due to a
small amount of noise, the fitting effect of each method has a small deviation. When the
gross error ratio gradually increases from 10% to 30%, it can be seen from Figure 8 that
both the fitting accuracy and the unit weight variance show an increasing trend, which
shows that the fitting effect of each algorithm deteriorates with the increase of the gross
error ratio.

Among them, with the increase of the gross error ratio, the fitting effect of the LS
algorithm decreases most obviously, indicating that the LS algorithm has poor robustness to
gross error data; WTLS uses the distance of each point relative to the initial fitting plane as a
weight matrix. The farther the distance is, the smaller the weight, which can reduce the
influence of noise to a certain extent. However, when the proportion of gross error increases
gradually, the difference between the two indicators of the plane fitting accuracy and the unit
weight variance of the WTLS algorithm is getting bigger, and the fitting effect is getting
worse. This shows that the robustness of WTLS to noise is not strong enough.

On the basis of WTLS, the algorithm in this paper combines Cook’s distance to remove
gross error values, and integrates the superior denoising performance of Cook’s distance into
WTLS. It can be seen from Table 3 and Figure 8 that ICOOK–WTLS has the best indicators
among the three algorithms, and with the increasing proportion of gross errors, compared to
LS and WTLS, ICOOK–WTLS algorithm can still guarantee a good fitting effect, and the
robustness to noise is greatly enhanced.

4. Experiment verification
Simulation experiments show that our method maintains good performance under different
noise ratios. To further verify the applicability of this method, the laser sensor is used to
collect the point cloud of the DD motor surface and the surface of the part with holes for
experimental verification. Since the DDmotor surface and the surface of the part with holes is
generally applied in high-precision positioning, their flatness accuracy is very high.
Hikvision’sMV-DP2305-01H 3D laser scanner is used to collect the point cloud. The scanner is
a micron scale scanner and the relevant parameters are shown in Table 4.

In order to verify the obtained plane equation, the scanner is placed horizontally, and the
DD motor and the part with holes are placed horizontally to the scanner. The heights of their
surfaces from the scanner are 6130 and 6345μm, respectively. From this, the plane equation of
the surface of the DD motor and the part with holes can be obtained as Z 5 6,130
and Z 5 6,345.

The experimental platform and scanned point cloud data are shown in Figure 9. The
experiment was carried out in an indoor environment with uniform illumination without
external light source. There are 3 main sources of the noise in the point cloud of DD motor.
First, there are many screw holes in the surface of the DD motor for installing parts. During
the acquisition process, when the laser is irradiated into the holes, the reflectivity will be
greatly reduced, which directly leads to many noise spots around the holes. These noises are
probably 20% of the total point cloud. Then, the edge of the scanned point cloud data also has
noise, which accounts for about 5%. Finally, due to uncontrollable factors such as the

Points of single contour
Near
field Far field

Measuring
range

Z-axis
resolution

Z-axis
repeatability

Scanning
frequency

2048 25.2 mm 34.4 mm 25 mm 1.8∼3.0 μm 0.4 μm 700 Hz

Table 4.
Parameters of linear

laser sensor

Point cloud
plane fitting

method
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environment and equipment, noise can also be generated, and this kind of noise accounts for
about 5% of the total point cloud.

In the point cloud of the part with holes, there are two main sources of noise. The
uncorrelated facets could make up 10% of the total point cloud. Moreover, the noise around
the hole accounts for 5%of the total point cloud. In order to correspond to the four noise ratios
set in the simulation experiment, the point cloud with 5 and 30% noise ratio is segmented
from the surface point cloud of the DDmotor, and the point cloudwith 10 and 15%noise ratio
is segmented from the point cloud of parts with holes. The results are shown in Figure 10.

Figure 9.
Experimental platform
and point cloud

Figure 10.
Point cloud with
different noise ratio
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Four algorithms are used to fit the above point cloud. The fitting results are shown in Table 5.
As can be seen from Table 5, the normal vectors of the plane equations solved by the three
methods under the two noise ratios are all (0, 0, 1), and the difference is mainly reflected in the
different fitting heights. The error between the theoretical value and the fitted value is plotted
as a line graph, as shown in Figure 11.

As can be seen from Figure 11 that the error of the LS algorithm is the highest under the
four noise ratios, which shows that the LS algorithm is not robust to noise. In the case of noise,
the effect of the LS algorithm is relatively poor. The WTLS algorithm and the RANSAC
algorithm are robust fitting algorithms, which are robust to noise. In the presence of noise, the
error values of the two algorithms can be kept at a relatively low level. However, when the

Noise ratio (%) Algorithm a b c Error σ0/μm σp/μm

5 LS 4.647e�6 3.967e�6 6121.64 1.36e�3 0.151 18.541
WTLS 5.156e�6 3.327e�6 6132.13 3.47e�4 0.142 17.956
RANSAC 5.079e�6 3.087e�6 6131.24 2.02e�4 0.138 17.916
ICOOK–WTLS 4.786e�6 2.658e�6 6130.34 5.55e�5 0.125 17.892

10 LS 3.148e�6 6.757e�6 6354.52 1.50e�3 0.159 18.967
WTLS 3.559e�6 6.047e�6 6346.11 1.75e�4 0.149 18.023
RANSAC 3.416e�6 5.921e�6 6345.94 1.48e�4 0.144 18.386
ICOOK–WTLS 3.466e�6 5.456e�6 6345.53 8.35e�5 0.128 17.916

15 LS 4.647e�6 7.127e�6 6357.21 1.92e�3 0.165 19.248
WTLS 4.976e�6 6.925e�6 6346.56 2.46e�4 0.156 18.169
RANSAC 4.906e�6 6.529e�6 6347.15 3.39e�4 0.163 19.159
ICOOK–WTLS 4.647e�6 6.018e�6 6345.67 1.06e�4 0.134 18.012

30 LS 7.387e�6 5.256e�6 6143.32 2.17e�3 0.173 19.765
WTLS 4.257e�6 4.586e�6 6134.78 7.80e�4 0.151 18.236
RANSAC 4.946e�6 4.829e�6 6133.51 5.73e�4 0.155 19.516
ICOOK–WTLS 5.134e�6 3.367e�6 6132.57 4.19e�4 0.138 18.132

Table 5.
Data comparison of

different algorithms in
practical experiments

Figure 11.
Error picture
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noise ratio exceeds 15%, the error values of the two algorithms increase significantly, and the
fitting effect becomes worse. This shows that the WTLS algorithm and the RANSAC
algorithm have a certain robustness to noise, but when the noise ratio exceeds 15%, the
robustness will decrease significantly. In the algorithm of this paper, the error value is the

Figure 12.
Algorithm accuracy in
real experiments
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smallest under the four noise ratios. Even if the noise ratio exceeds 15%, the error value of the
algorithm in this paper is still kept in a small range, and it is still very robust to noise.

The plane fitting precision and unit weight variance can reflect the fitting precision of the
algorithm. The lower the two values, the higher the fitting precision of the algorithm. Line
graphs of plane fit accuracy and unit weight variance are plotted in Figure 12. As can be seen
from Figure 12, with the increase of the noise ratio, the performance of the four methods
decreases, and the LS method is most affected by the noise change. When the noise ratio
increases to 30%, the two index values of the LS method increase sharply, and the algorithm
in this paper has the smallest change. This shows that in the measured data, the algorithm in
this paper has the highest accuracy, the LS algorithm performs the worst.

The accuracy ofWTLS algorithm is higher than LS algorithm, and it is not much different
from the accuracy of RANSAC algorithm. The accuracy of the RANSAC algorithm fluctuates
greatly, because the RANSAC algorithm needs to set different thresholds for different
proportions of noise, and the algorithm has a certain randomness, which causes the algorithm
accuracy to fluctuate greatly. The accuracy of this algorithm is the highest. Because the
algorithm incorporates the ICOOK, it can adaptively set the denoising threshold and remove
abnormal data from the point cloud, which improves the robustness of the algorithm to noise.
To sum up, under the four different noise ratios, the algorithm in this paper not only has the
smallest fitting error and highest fitting accuracy with a strong robustness to noise.

5. Conclusion
In order to improve the robustness to noise in point cloud plane fitting, a combined model of
ICOOK and WTLS is proposed by setting a modified Cook’s increment, which could help
adaptively remove the noise points that exceeds the threshold. The main contributions of the
algorithm could be summarized as:

(1) A threshold-adaptive Cook’s distance method is designed, which can automatically
match a suitable threshold. Compared with the current adopted threshold, this
method shows a better denoising performance and adaptability in simulated point
cloud sets under noise ratios from 5% to 30%.

(2) The ICOOK is fused with theWTLSmethod, and the simulation experiments and the
actual fitting of the surface of the DD motor are carried out to verify the actual
application.

(3) The results shows that the plane fitting accuracy and unit weight variance of the
algorithm in this paper are substantially enhanced. This shows that the algorithm in
this paper is robust enough to noise, and effectively solves the problem that the
current point cloud plane fitting method is not robust enough to noise.
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