
A framework and method for
analysis of feed-forward industrial

and manufacturing lines
Cris Koutsougeras

Computer Science, Southeastern Louisiana University,
Hammond, Louisiana, USA, and

Mohammad Saadeh and Ahmad Fayed
Industrial and Engineering Technology, Southeastern Louisiana University,

Hammond, Louisiana, USA

Abstract

Purpose –This modeling facilitates the determination of control responses (or possibly reconfiguration) upon
such events and the identification of which segments of the pipeline can continue to function uninterrupted.
Based on this modeling, an algorithm is presented to implement the control responses and to establish this
determination. In this work, the authors propose usingMessage Queuing Telemetry Transport (MQTT), which
is an integrated method to perform the system-wide control based on message exchanging among local node
controllers (agents) and the global controller (broker).
Design/methodology/approach – Complex manufacturing lines in industrial plants are designed to
accomplish an overall task in an incremental mode. This typically consists of a sequence of smaller tasks
organized as cascaded processing nodes with local controls, whichmust be coordinated and aided by a system-
wide (global) controller. This work presents a logic modeling technique for such pipelines and a method for
using its logic to determine the consequent effects of events where a node halts/fails on the overall operation.
Findings – The method uses a protocol for establishing communication of node events and the algorithm to
determine the consequences of node events in order to produce global control directives, which are
communicated back to node controllers over MQTT. The algorithm is simulated using a complex
manufacturing line with arbitrary events to illustrate the sequence of events and the agents–broker
message exchanging.
Originality/value – This approach (MQTT) is a relatively new concept in Cyber-Physical Systems. The
proposed example of feed-forward is not new; however, for illustration purposes, it was suggested that a feed-
forward be used. Future works will consider practical examples that are at the core of the manufacturing
processes.

Keywords Manufacturing lines, Production lines control, Processing nodes, Message queuing telemetry

transport, Message exchanging

Paper type Technical paper

1. Introduction
This study concerns the control of complex production lines, also referred to as production
pipelines, in which discrete products are incrementally assembled or produced in various
stages following specific processing sequences. Researchers have investigated adaptive and
smart manufacturing plants to overcome traditional manufacturing challenges, such as
diagnostics and predictive maintenance, scheduling, fault tolerance, communication and

Feed-forward
industrial and
manufacturing

lines

75

© Cris Koutsougeras, Mohammad Saadeh and Ahmad Fayed. Published in Journal of Intelligent
Manufacturing and Special Equipment. Published by Emerald Publishing Limited. This article is
published under the Creative Commons Attribution (CC BY 4.0) licence. Anyone may reproduce,
distribute, translate and create derivative works of this article (for both commercial and non-commercial
purposes), subject to full attribution to the original publication and authors. The full terms of this licence
may be seen at http://creativecommons.org/licences/by/4.0/legalcode.

The current issue and full text archive of this journal is available on Emerald Insight at:

https://www.emerald.com/insight/2633-6596.htm

Received 30 June 2021
Revised 16 August 2021

Accepted 24 August 2021

Journal of Intelligent
Manufacturing and Special

Equipment
Vol. 2 No. 2, 2021

pp. 75-91
Emerald Publishing Limited

e-ISSN: 2633-660X
p-ISSN: 2633-6596

DOI 10.1108/JIMSE-06-2021-0031

http://creativecommons.org/licences/by/4.0/legalcode
https://doi.org/10.1108/JIMSE-06-2021-0031

connectivity, as well as many other contemporary issues. Process planning approaches are
mostly limited to problems of static nature and are made ahead of their actual use. Thus, their
adaptability when unforeseen events take place remain limited and insufficient (Wang,
2013). Distributed process planning (DPP) is a shared cyberwork space where adaptive
decision-making that is based on real-time monitoring takes place. Wang et al. (2015)
proposed aWeb-DPPwhere information is sharedwith various decisionmodules to achieve
adaptive decision-making. The availability of machining resources and their current status
are made available by a monitoring module for dynamic resource scheduling, which in turn
helps the Web-DPP for job dispatching to the available machines.

The National Institute of Standards and Technology (NIST) envisioned smart
manufacturing as a fully integrated collaborative manufacturing system that responds in
real time tomeet changing demands and conditions in the factory in the supply networks and
in customer needs. Within this definition, the Message Queuing Telemetry Transport
(MQTT) protocol would allow for full integration, collaboration among nodes in real time to
respond to failures (among other tasks) and to propagate a message to all nodes that sign up
to the thread.

There exist several theoretical aspects that deal with fault management and preventive
maintenance. These theories typically affect how manufacturing plants and lines are
designed. Multiagent systems theory suggests that agents in a manufacturing plant have
properties that include autonomy, ability to communicate, reactivity, mobility and decision-
making. These agents may also have localized and built-in reasoning mechanism to facilitate
intelligent decision-making (Cerrada et al., 2007). Parente et al. (2020) outline some challenges
that are still facing the manufacturing processes in the context of Industry 4.0. Some of the
challenges that are directly related to this work are the need for a decentralized and flexible
decision-making and machine proactiveness and self-scheduling. Landers et al. (2020)
discussed the emerging issues in sensing and monitoring. The work refers to manufacturing
processes monitoring in smart manufacturing and the emergence of smart sensors with built-
in microprocessors that perform localized decision-making, thus reducing the amount of
bandwidth data that need to be processed centrally by the process controller. This gives rise
to alternative communication methods that should be versatile and lightweight to allow for
swarm communication.

Recently, the concept of Cyber-Physical Systems (CPS) was introduced by Lee (2006). In
this model, it is suggested that entities are collaborating and integrating within their
surrounding physical world on the cyber space. This necessitates that communication
algorithms exist to allow for information exchange between these entities. CPS consists of a
hierarchy called the 5C Architecture, introduced by Lee et al. (2015b). The proposed MQTT,
as suggested in this present work, falls in the second level (Conversion level). MQTT allows
for interaction and simple communication exchange among nodes. This allows for
performance prediction and for the development of algorithms for prognostics and health
management application, which brings self-awareness to machines (Lee et al. 2015a).
Montostori et al. (2016) classify two different types of data that exist within CPS: the
configuration data and runtime data. The work cites the importance of real-time
communication channel within the CPS to exchange important information about the well-
being and availability of these entities. Sensing andmonitoring facilitate studying the Overall
Equipment Effectiveness (OEE), which combines the operation, maintenance and the
management of manufacturing equipment and resources (Dal, 1999). Dal et al. (2000) used
OEE as an operational measure and as an indicator of process improvement activities within
a manufacturing environment.

An early work that depicts a similar message queue system was presented in Syafrudin
et al. (2018). In their work, they proposed an automotive manufacturing model that depends
on IoT to capture vital data of temperature, humidity, accelerometer and gyroscope to

JIMSE
2,2

76

monitor the processes. Their big data processing system consisted of Apache Kafka, which is
a message queue system that publishes streams of data using a python-based program that
serves as the “producer” for the Kafka server. The “producer” client publishes streams of data
to “topics” distributed across one or more cluster nodes/servers called “brokers.”

Some of the works reviewed earlier, while related in terms of the application theme, are
specific to particular processes and are offered as general reference methodology or case
studies. For example, the agents-based design of Cerrada et al. (2007) describes such a general
reference model for fault management, which provides a general breakdown of the overall
management task to subtasks that can be implemented by (software) agents. Some of the
other works reviewed above mostly target the prediction of faults rather than the
management of faults on occurring.

The particular value of the present work and its contrast with the above is that it provides
a Boolean logic-based framework for the analysis of the consequences of a fault(s)—on
occurrence—and facilitates themanagement of themanufacturing system after the fault(s). It
provides directly applicable (and easily reusable) methodology and is in line with the CPS
concept. In fact, it is also shown here how to implement the methodology as a CPS using a
simple message exchange protocol such as the MQTT. The method discussed in this present
work is not limited to manufacturing production lines and can be applied to other systems,
which accomplish an overall task in incremental steps of sequenced smaller tasks. The
benefit of pipelines (production lines) is that a large task is decomposed intomoremanageable
and efficient smaller specialized tasks to improve the overall production throughput. Such
pipelines can be simple or very complex; they are usually thought of as a single linear line of
sequential tasks, but often they may consist of multiple lines, which feed into other lines as
shown in Figure 1.

A stagewhere pipeline segmentsmergemay indicate different parts arriving at that stage,
which then are used for the task of that stage. A problem that may arise in such situations is
when a particular stage goes off-line for various reasons, for example, a jam ormalfunction at
the stage, or for scheduledmaintenance; this represents amajor issue with pipelined systems.
In such a case, the obvious reaction would be to shut down the entire pipeline and effectively
freeze it until the malfunctioning stage is serviced. But this may not always be possible or
even necessary depending on the structure/design of the system and/or the specific tasks that
are performed in the rest of the stages. For example, if one stage is producing a plastic part out
of a thermal injection mold, it cannot be stopped while the mold is filled; it has to complete its
cycle and eject. However, pipelines are usually designed with some fault tolerance in mind,
which may allow partial shutdown of pipeline segments while other segments may still
operate, such as in the case of maintenance of urgent shutdown of some stages. In advanced
pipeline designs, they may also be dynamically reconfigurable to certain extents. So, the
question becomes: given a complex pipeline structure, upon a shutdown of a particular stage,
whether or not the whole pipeline needs to shut down or just some segments of it and which
ones? Making this determination is obviously important during normal operations, but it is

Figure 1.
A pipeline of multiple

interacting linear
segments

Feed-forward
industrial and
manufacturing

lines

77

also important to make such determinations on hypothetical events during the pipeline
design phase, thereby guiding the design.

Another matter is how exactly the pipeline stages are controlled. It is assumed here that
each stage has a dedicated local controller, which controls that stage and that these
controllers can communicate among each other. With such an arrangement, it is desirable to
have a systematic method for managing the coordination of the controllers at the various
stages. If IoT (Internet of Things) devices are used to implement the local controllers, then the
coordination should not put a lot of extra demand on their computational power; it should be
lightweight, yet accounting for all the dependencies among stages. In addition, it should be
scalable and fairly easy to implement. This study also includes such amethodwith anMQTT
(MQTT, 2019, 2021) communication framework assumed as the underlying IoT
communication infrastructure.

There are other industrial methods to control sophisticated industrial plants withmultiple
stages and dependencies. For instance, both Distributed Control Systems (DCS) and
Supervisory Control And Data Acquisition (SCADA) consist of collections of software and
hardware components that allow the supervision and control of plants locally and remotely.
They gather information from the plant and processes, analyze them, provide information to
the operators and perform tasks with the help of input from operators. In the DCS case,
decisions can be made automatically based on messages received from the peripheral
components. The main drawbacks for using such systems include: the high cost of
implementation, the needs for additional software and compatibility issues and the heavy
computation. The MQTT protocol was developed as a more effective solution for networked
real-time pipeline data than that of SCADA (Eastburn, 2020).

The present work specifically targets the analysis of the consequences of partial halting
events (possibly due to faults or maintenance) in production lines in which discrete objects
advance from one processing stage to another. This is useful both in the design phase of
production lines and for developing strategies to react to node halts during the operating
phase (of which the algorithm presented here is an example). Other works in the literature
offer various methods for the analysis of production lines, but mostly target the estimation of
throughput and do sowith simulation-basedmodels of the production flow. In Phadnis (2013),
the author targets a factory layout design based on an evaluation using discrete event
simulation to emulate existing factory constraints. This study focuses on the production line
layout and material follow to optimize the production time. The study deals with inline
automated and manual stations without considering process control techniques in case of
failure of any station. Throughput and cost are the main targets in Gao et al. (2019) where a
method is offered for the analysis of production lines throughput and improve the evaluation
efficiency of production lines with various topologies. This can be used to aid the conceptual
design phase of production lines. A framework based on generalized semi-Markov processes
(GSMP) for the analysis of production lines is offered in Glasserman and Yao (1994). The
research focuses on the scheme of the GSMP and related structural properties with
application of serial production line. In Bierbooms (2012), a method based on mathematical
approximations is presented for the analysis of the performance of production lines, both for
the case of discrete item products and the case of continuous flow of material. The research
introduced the concept of effective process time (EPT) based on many factors including
machine breakdown or uptime and a repair or downtime. Targeting production output
volume, Starkov et al. (2012) present an analytical model with simulation to prove that the
surplus-based decentralized production control strategy is an optimal control policy, which
ensures that the cumulative output of products follows the cumulative production demand. In
summary, themain focus of previousworks has been the analysis or estimation of production
flow by means of discrete or stochastic methods.

JIMSE
2,2

78

Thiswork targets specifically the problem of node halting or faulting, the determination of
operational consequences and the way to react or control the system after such events. It
introduces an alternate method of analysis and control that is lightweight and simple to
implement and which could be used in tandem with methods such as the ones referenced
above. The following sections explain the logic of the protocol and the method it uses to
determine the message-exchanging algorithm. The protocol is simulated using a model of a
typical manufacturing pipeline to illustrate the algorithm and demonstrate its effectiveness.

2. Methodology
2.1 Communication protocol
The MQTT communication protocol is well suited for facilitating the management and
control of multiple IoT devices when the control can be based on simple discrete message
exchanges (Hechtman, 2021; Hasan and Mohammad, 2018; Jaloudi, 2019; Mehmood et al.,
2019). The MQTT is a lightweight message exchange protocol that can facilitate the
networking of simple and lightweight IoT devices. It is a publish/subscribe messaging
protocol according to which clients (IoT node devices) connect to the network by registering
with a coordinating device referred to as the network “Broker.” A node device (client) can
subscribe (with the broker) as a listener or publisher to one or more “topics.” A topic
essentially is a class/category of messages (usually themed) to which various nodes of the
network can declare (to the broker by subscribing to the topic) that they wish to be copied on
messages posted in that topic, that is, in that class/category of messages. A client node
publishes to a topic by sending the data (to be published) to the broker, which then distributes
copies of it to all the node clients that are subscribed to that same topic. So, when a node of the
network has amessage to communicate to other nodes on a particular topic, it simply sends it
to the broker, and the broker replicates the message and sends it to all the network nodes that
have subscribed as listeners to that topic. This is done by a lightweight protocol that is much
simpler than the standard Transmission Control Protocol (TCP) and has much less overhead
in the amount of data transmission. It is also very easily scalable since adding a new client
node to the network is as simple as subscribing the new node to the pertinent topics as a
listener and/or as a publisher.

To use the MQTT protocol for the purposes of managing a production pipeline, one could
consider all the (IoT) controllers of all the pipeline stages as nodes of a network, each of which
runs the MQTT client. There must also be one node designated as the broker and (of course)
at least one topic to which all the client nodes subscribe as listeners and/or as publishers. In
this way, information about a jam at one node can be broadcasted to all other nodes, which
then should react accordingly. But, what should the reaction be? One alternative is to define
the reaction as: shutdown everything, that is, broadcast a message to all nodes to halt.
However, in a complex pipeline, especially those designed as manufacturing or production
pipelines, there are usually provisions that may allow parts of the pipeline to still operate
while other parts are shut down. So the challenge is how to retain the advantages of using the
MQTTprotocol while identifying theminimal partial shutdown that is necessary tomanage a
halt at a node.

2.2 Modeling of the pipeline
Amodel of the pipeline operation is needed for the study of methods to handle node halts as
well as for simulating various design considerations or failure scenarios. Such a model has to
reflect the way a node’s operation depends on other nodes and thus how one node affects
others. To develop such a model, we start at the fundamentals of a pipeline operation:

Feed-forward
industrial and
manufacturing

lines

79

(1) There are no loops in the pipeline. That is, there is no feedback – in the sense that no
item comes back to the same stage (node) for further processing. In this way, the
pipeline is assumed to be a feed-forward-only structure as shown in Figure 2.

(2) Each node receives one ormore inputs (feeds) from other nodes. In the case of multiple
inputs to a node, there are few considerations:

� All of the inputs are needed for a processing cycle at that node. As far as
dependencies are concerned, the function of this node depends on receiving feeds
from all the input lines. In modeling the dependency of this node from its input
feeding nodes, this would be represented as a logical AND dependency.

� One input is an alternate to another input. This would represent two alternate
sources of the same part needed for the local operation at that node; for example,
the same type of part is supplied by two different pipelines arriving at this node
and supplying it with the same part but from different sources (this type is
discussed later in section 3.1). In modeling the dependency of this node from its
input feeding nodes, this would be represented as a logical OR dependency.

� A combination of the above arrangements may exist in a set of inputs to a node.
For example, four inputs feed into a node of which two (IA1, IA2) are alternate
suppliers of the same part A, the other two (IB1, IB2) are alternate suppliers of the
same part B and both partsA andB are necessary for the operation of this node. In
modeling the dependency of this node from its input feeding nodes, this would be
represented as a logical AND-OR dependency: (IA1 OR IA2) AND (IB1 OR IB2).
According to Boolean logic, this would be equivalent to (IA1 AND IB1) OR (IA1
AND IB2) OR (IA2 AND IB1) OR (IA2 AND IB2). For simplicity of notation, we will
denote the operator AND with a “*” and the operator OR with a “þ” as is usually
the case in Boolean logic notation.

(3) A node’s output is typically fed to only one other node (for further processing), but it is
also possible that the output items are routed tomore than one other nodes in a round-
robin fashion. This might be the case when a stage produces more throughput than

Figure 2.
Examples of feed-
forward structures; no
feedback

JIMSE
2,2

80

the processing rate of the next stage in the pipeline or when the next stage in the
pipeline is shutdown, thus throughput can be routed to a temporary holding location.
The concept is illustrated in Figure 3 for node A with two output (receiving)
destination nodes B and C. In Figure 3 the output of node A is shown directed by a
direction mechanism (selector switch), which alternates the output between the
destination nodes B and C; the figure only illustrates the concept of multiple alternate
destinations of an output by simple modeling and is not otherwise tied to the specific
hardware implementation for the output distribution. The determination of where to
direct the output of node A is assumed to be handled by the local controller of node A.
A directing guide that rotates to one of two positions is shown for illustration of the
concept.

3. Implementation of the algorithm
With the above premise, the dependencies of themodel system of Figure 4 can be described as
follows:

For normal operation, nodeH needs an input from node F and either an input from node E
or one from node G. Node F needs either an input from C or one from D. Node C needs both
inputs fromA and B. With this graph, it is evident that a halt at node D does not need to shut
down the rest of the system and the system can still operate with the nodeD offline. Similarly,
one of either node E or G (but not both) would allow the system to operate. A halt at either
nodeA orBwould cause a halt of node C, but the rest of the system can still operate. A halt of
node F would cause the whole system to halt. A halt at node C would need to force a halt at
both nodes A and B, but the rest of the system can still operate.

B

C

A

E

H F

G

D

C

A

B
A*BC+DF*(E+D)

Figure 3.
Multiple output

destinations

Figure 4.
Model system

Feed-forward
industrial and
manufacturing

lines

81

So, it is evident that a modeling of the system in this way can reveal what controls are needed
for the system and its various nodes in the event of a particular node halting. It is only a
matter of developing algorithms for traversing the logic of themodel in order to identify what
control actions are needed. In section 3.5, we explain how this model can be represented in a
JSON (JavaScript Object Notation) computing structure, which then can be used by the
system controller running the control algorithm(s) in any language.

3.1 Use of the model
In this section, we introduce the observations that can be derived on the basis of this
modeling. Suppose that in the system segment depicted in Figure 5, node A halts. What
happens with node C to which node A feeds (provides input)?

Considering the type of dependency of node C from node A, we observe the following:

(1) If the dependency of node C from A and B is an OR dependency, then node C will be
able to continue operating even without A producing an output. We conclude that C
will be unaffected for an OR dependency from A.

(2) If the dependency of node C from A and B is an AND dependency, then:

� Node Cwill not be able to continue operating withoutA producing an output. We
conclude that C will also need to halt for an AND dependency from A.

� Because node C will need to halt, node B will also not be able to push its product
out and will need to halt.

The above (re)actions will have to be applied recursively to the entire structure because as it
was evident above, node B (although seemingly independent from A) may need to halt if
A halts.

Now consider a more involved case shown in Figure 6 in which node A halts. The
substructure of the nodesA,B,C is assumed similar to the structure of nodesA,B,C of Figure 5

C

A

B

D E

A

C

B

F

G

Figure 5.
Basic analysis

Figure 6.
Basic analysis
continued

JIMSE
2,2

82

but in this example there is a node F that alternates its output to two other nodes (E and G).
Although node F can feed both E and G, its output at any given time can only go to one
receiving node, either E or G. For this reason, there is no need to contemplate any AND/OR
designation for such output. The only assumption for such output is that as long as at least
one of the nodes E andG is functioning, F can function too and will only need to halt if both E
and G halt.

So, considering that in the structure of Figure 6 nodeA halts, the outcomes for nodesB and
C are the same as discussed in the previous example of Figure 5. However, in this example, we
are concerned with the pipeline part that is upstream from the halting node A:

(1) Node G will also have to halt if it cannot push its output out to the (only) receiving
node A.

(2) With node G halting, F does not need to halt if it can still push its output to the
(alternate) receiving node E.

3.2 Simulating the algorithm
The followingmodel (Figure 7), which depicts a complexmanufacturing pipeline, will be used
to illustrate the effects of node halting according to the analysis introduced in the previous
section. This also illustrates that this method of analysis may be used to identify weaknesses
of a pipeline design and thus help with the design of more fault-tolerant pipelines. In the
following two examples the analysis is informal and qualitative in order to explain the logic,
but these help the understanding of a specific algorithm that follows next.

The following analysis scenarios refer to the example structure of Figure 7.
3.2.1 Example analysis 1: Node 9 halts. The feeds from nodes 1 and 2 will be blocked, and

since nodes 1 and 2 only feed node 9 and do not have alternative routes, they will both need to

Downstream Upstream

19

17 14

10

13

9

1

2

3

4

5

6

7

8

11

12

16

1518

+

+

+

*

*

*

*

*

*
Figure 7.

Example of analysis

Feed-forward
industrial and
manufacturing

lines

83

be halted. With node 9 halted, we need to examine node 13, whose input dependency is an OR
(designated as “þ”) so it can still function with the feed from node 10. Conclusion: with node 9
halting, nodes 1 and 2 need to also halt but the rest of the system can function.

3.2.2 Example analysis 2: Node 15 halts.On the downstream side, node 11 seems to have an
alternate route to node 16, so at this time there is no obvious reason for it to halt. Also, there is
no need to continue the upstream trace (nodes 5,6). On the downstream side, node 18 will have
to halt since it needs both its inputs (input dependency is an AND -designated as “*”). Since
node 18 has to halt, we need to recursively apply the analysis for this new halt event (of node
18). On the downstream side, the affected node is 19, which has an OR input dependency and
so it can still function with input from node 17 alone. On the upstream side of node 18, node 16
will have to halt since its output, fed only to node 18, will be blocked. With the new halt event
of node 16, we apply the analysis again on the upstream and we see that node 12 will need to
halt. Examining node 11, it is now evident that node 11 will have to halt because both its
(alternative) output routes will be blocked. The analysis applied again for the new halting
nodes 11 and 12 similarly reveals that nodes 5, 6, 7 and 8 will also have to halt. The rest of the
system consisting of node 19 and 17 and the subsystem upstream from node 17 can still
function. The previous analysis scenarios indicate how the earlier formulations for the nodes’
input dependencies can be used to determine the effect of a halting event. Yet, the actual goal
is to learn how this can be done algorithmically and thus in an automated way.

3.3 The algorithm for the analysis
The examples given in the previous section lead to an algorithm for checking the effects of
one or more nodes halting. In particular, the analysis of example 2 above points to a method,
which in computer programming is known as Breadth-First-Search. According to this
method, to determine which objects belong to a certain category, one starts with a set of initial
objects that are known to be of that category. Then, this set repetitively expands by including
new objects, which are determined to also belong to this category based on their relation to
objects, which are already labeled as being part of the category. Essentially, the set
(representing the category) starts with the known objects and then expands like a bubble to
include new objects based on their relation to the already labeled ones. The algorithm
terminates when no new inclusions can be made.

Thus, in the case at hand, the way this algorithm works is as follows. The initial set of
halting nodes consists of the one that is known to have halted. If more than one node halts
simultaneously (e.g. multiple jams happening at the same time), then the initial set consists of
all the known halted nodes. In subsequent iterations, the rest of the nodes are examined to
determine which others need to halt based on what is already known to halt (i.e. which nodes
are already in the category of halting nodes). These iterations continue until no more new
nodes are added to the halting category.

In each iteration, to determine any possible new nodes that need to halt, we apply the
concepts of the formulation regarding dependencies. This is done by scanning the nodes that
have not yet been labeled as halting. For each such node, first we test if all of its output
destination nodes are in the halting set. If all of its output streams are going to be blocked,
then this nodemust be added to the halting set. Note that thismight subsequently require, in a
similar fashion, other nodes to be labeled as halting. Second, for the same node we test if it can
function based on which other nodes have been labeled as halting. For this second test, if the
input dependency of the currently considered node is an AND, then if any of its feeding nodes
is in the halting set, then this node must be added to the halting set (i.e. be labeled as halting).
If the input dependency is an OR, then if all of its feeding nodes are labeled as halting, then
this node too must be labeled as halting. But even in the more general case where the input
dependency is a composite AND-OR logic (Boolean) function, the test is simply the outcome of

JIMSE
2,2

84

that logic function (the node’s logic dependency formula) where the inputs corresponding to
already labeled nodes are set to logic 0 (halting) and those corresponding to unlabeled nodes
set to logic 1 (able to operate). This test is valid even for nodes with a single input (the trivial
case), in which case the test obviously reduces down to passing the label of its feeding node
(accordingly 0 or 1 as above). This algorithm described here in verbose is described in pseudo-
code in section 3.4.

It should be noted here that the algorithm aims to determine what parts of the pipeline are
feasible to operate after one or more nodes halt. The overall optimization of the pipeline’s
throughput is not part of the present study, although it can be addressed in future studies.

3.4 The algorithm to check for halting nodes
Table 1 shows one algorithm to determine which nodes of a pipeline will need to halt as a
consequence of one (or more) node halting.

For purposes of illustration, the following analysis demonstrates how this algorithm
would run on the previous examples 1 (section 3.2.1) and 2 (section 3.2.2):

Case of example 1 where node 9 halts:
The array H is initialized with a 0 for node 9 and 1's for the rest of the 18 nodes ;

In the first iteration of the while loop of line 5:

The flag C will be cleared on line 7 ;

In the loop starting at line 8 :

 For node 1, the code at line 11 will set H[1] to 0. Similarly for node 2, H[2] will be set to 0;

 The flag C will be set to 1 (so that the while loop of line 5 will continue) ;

 For node 13, the code at line 10 will set H[13] to (H[9] OR H[10])=(0 OR 1)=1 ;

The first iteration of the while loop of line 5 ends and a new one starts because C is '1':

The flag C will be cleared on line 7 ;

In the loop starting at line 8 :

 In this iteration there will be no changes in any H[] values, so C will remain cleared ;

The second iteration of the while loop of line 5 ends and a new one does not start because C is '0' ;

Program ends with H[] values of 0 indicating the halting nodes.

1.

// Each node is assumed to be represented by a record indicating:
// List of input nodes; Input dependency as a Boolean function; List of output (receiving) nodes;
// List of outputs may be constructed at initialization as it is implicitly reflected in the inputs of the receiving nodes
// Also create an array H[] of true/false (0/1) labels for the various nodes exists to label halting nodes
// Initialization: Create array H[] with all elements set to '1'.
// Mark the node (or nodes) halting/failing in the array H[]

2. H[Node(s)]=0;

3. C='1'; // Boolean flag set to 'true', indicating to enter/continue the following iterations.
4. // Start iterations
5. while C is '1' (i.e. at least one node is newly marked as halting), do:

6. {

7. C='0'; // clear flag C
8. for each node N where H[N] is '1', do:

9. {

10. H[N]=value(Compute the Boolean output of node N's dependency function based on H[i] values);

11. for each node T that is an output receiving from N do: { if all H[T] values are '0', then set H[N]=0; }

12. if H[N] has turned to '0' (newly marked for halting), then C='1'; // set C to continue the while loop iterations
13. }

14. }

15. Output each node X for which H[X] is "0" as a halting node;

16. // End.

Table 1.
Algorithm in
pseudo-code

Feed-forward
industrial and
manufacturing

lines

85

Table 2 shows the node states for this pipeline as this algorithm is applied at each step to
simulate a halt of node 9.

Case of example 2 where node 15 halts:
The array H is initialized with a 0 for node 15 and 1's for the rest of the 18 nodes ;

In the 1st iteration of the while loop of line 5:

The flag C will be cleared on line 7 ;

In the loop starting at line 8 :

For node 18, the code at line 10 will set H[18] to (H[15] AND H[16])=(0 AND 1)=0;

The flag C will be set to 1 (so that the while loop of line 5 will continue) ;

All other H[] values remain unchanged in this iteration
The 1st iteration of the while loop of line 5 ends and a 2nd one starts because C is '1':

The flag C will be cleared on line 7 ;

In the loop starting at line 8 :

For node 16, the code at line 11 will set H[16] to 0;

The flag C will be set to 1 (so that the while loop of line 5 will continue) ;

The 2nd iteration of the while loop of line 5 ends and a 3rd one starts because C is '1':

The flag C will be cleared on line 7 ;

In the loop starting at line 8 :

For node 11, the code at line 11 will set H[11] to 0;

For node 12, the code at line 11 will set H[12] to 0;

The flag C will be set to 1 (so that the while loop of line 5 will continue) ;

The 3rd iteration of the while loop of line 5 ends and a 4th one starts because C is '1':

The flag C will be cleared on line 7 ;

In the loop starting at line 8 :

For node 5, the code at line 11 will set H[5] to 0;

For node 6, the code at line 11 will set H[6] to 0;

For node 7, the code at line 11 will set H[7] to 0;

For node 8, the code at line 11 will set H[8] to 0;

The flag C will be set to 1 (so that the while loop of line 5 will continue) ;

The 4th iteration of the while loop of line 5 ends and a new one starts because C is '1':

The flag C will be cleared on line 7 ;

In the loop starting at line 8 :

In this iteration there will be no changes in any H[] values, so C will remain cleared ;

The iteration of the while loop of line 5 ends and a new one does not start because C is '0' ;

Program ends with H[] values of 0 indicating the halting nodes.

The halting nodes are those with H[N]=0, which in this run are: 5, 6, 7, 8, 11, 12, 15, 16, 18.

Table 3 shows the node states for this pipeline as this algorithm is applied at each step to
simulate a halt of node 15.

As it is evident in the above examples, for the actual coding it is necessary to provide a
representation of the pipeline structure on which the code will operate. There are many
programming methods to represent data structures such as the forms of the pipelines and
most notably variants of linked lists. However, we propose here the use of JSONs as more

Node State

Step Flag_C 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

1.4 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1

1.13 1 0 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1

2.4 1 0 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1

2.13 0 0 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1

Result: 0 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1

Table 2.
Step-by-step node
states due to a halt at
node 9

JIMSE
2,2

86

portable structured representations, which can be stored, imported and exported easily and
provide some relative code independence.

3.5 A JSON supporting structure
A JSON is a programming syntactic concept for storing and exchanging data. It provides a
lightweight data-interchange structure that is easy to generate or parse inmost programming
languages (Python, Java, Javascript, etc.). It is possible to “stringify” a JSON (such a method
exists in most languages) for communicating it among servers and clients, as well as to parse
it for use within any particular program. The following is oneway (out ofmany possible ones)
in which the structure of a pipeline can be represented. This JSON then can be parsed by code
that implements the algorithm discussed in section 3.4.

{ "Node":

{

"NodeID":"1",

"Inputs":["External"],

"Outputs":["9"],

"Dependency": ""

},

…………

{

"NodeID":"8",

"Inputs":["External"],

"Outputs":["12"],

"Dependency": ""

},

{

"NodeID":"9",

"Inputs":["1", "2"],

"Outputs":["9"],

"Dependency": "N1*N2"

},

{

"NodeID":"10",

"Inputs":["3", "4"],

"Outputs":["13", "14"],

"Dependency": "N3*N4"

},

{

"NodeID":"11",

"Inputs":["5", "6"],

"Outputs":["15", "16"],

"Dependency": "N5*N6"

},

…………

{

"NodeID":"19",

"Inputs":["17", "18"],

"Outputs":["External"],

"Dependency": "N17+N19"

}

}

4. Discussion
One may wonder why would such control be needed since nodes can simply rely on local
control according to which, a node simply keeps operating while it is receiving its necessary

Node State

Step Flag_C 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

1.4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1

1.13 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 1

2.4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 1

2.13 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 0 1

3.4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 0 1

3.13 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 0 0 1 0 1

4.4 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 0 0 1 0 1

4.13 1 1 1 1 1 0 0 0 0 1 1 0 0 1 1 0 0 1 0 1

5.4 1 1 1 1 1 0 0 0 0 1 1 0 0 1 1 0 0 1 0 1

5.13 0 1 1 1 1 0 0 0 0 1 1 0 0 1 1 0 0 1 0 1

Result: 1 1 1 1 0 0 0 0 1 1 0 0 1 1 0 0 1 0 1

Table 3.
Step-by-step node

states due to a halt at
node 15

Feed-forward
industrial and
manufacturing

lines

87

inputs and is able to push out its output. It is obviously necessary to keep overall control of the
pipeline that will prevent an overall system collapse and probably divert to a possible
alternative route to optimize resources. In addition, there might be pipelines with processes
(nodes) that push throughput in transient and unstable phase and rely on the subsequent nodes
to reach a stable condition (i.e. a node that feeds plastic particles in an injection unit node, which
heats and melts plastic before injecting it into the clamping unit node). If the clamping unit is
down, then probably the injection unit will continue to keep the plastic in a fluid state until the
clamping unit is serviced, but the preceding plastic feeding node should halt to prevent
congesting the injection unit with additional plastic particles. Also, this will be the case when
two lines of nodes produce components that arrive at the same time and rate at another node to
assemble them. If one line halts, the other line should also halt (i.e. in a bottle filling line, one line
has multiple nodes that produce caps and stamp them. Another line moves bottles on a
conveyor, then fills themwith liquid; both lines arrive at a capping station. If the stamping node
halts, then the liquid filling line should also halt to prevent placing liquid in open containers
exposed for extended time). These examples clearly show that certain nodes might be affected
and must halt even if their immediate inputs and outputs are operating normally.

It should be evident however that besides the purposes of control, this method is also
valuable for the design of a complex pipeline and for determining the effects of failures and
evaluating its fault tolerance.

4.1 Further considerations
In a simple linear pipeline such as the one of Figure 8, the throughput (production rate) of the
entire structure is as fast as the slowest stage (node) of the pipeline. This is also the case for a
structure like the one of Figure 9 if the dependency of node E is an AND. If the dependency of
node E (in Figure 9) is an OR, then the throughput of the segment consisting of nodes E and F
has an upper limit to the sum of the throughputs of its two input feeding segments.

In the case of a structure such as the one of Figure 10, the throughput of the segment
consisting of nodesA andB has an upper limit to the sum of the throughputs of its two output
feeding segments.

F E

B

D

A

C

D

F E

C

B A

Figure 8.
A simple linear pipeline

Figure 9.
A pipeline with
merging linear
segments

Figure 10.
A pipeline with
splitting linear
segments

JIMSE
2,2

88

These properties serve to explain that with goals of optimal pipeline designs, it is acceptable
to include redundant or repeating substructures. For example, in the case of Figure 9, it is
possible that the segmentsA-B and C-D be designed to produce the exact same part of which
node E has two alternative sources (an OR dependency). This would make sense if the
production of the part produced by each of these segments is slower than the processing rate
through the segment E-F. A similar scenario is possible with the structure of Figure 10 where
the segments C-D and E-F may be processing the output part of segment A-B in exactly the
same way (i.e. they are redundant) because the processing of that part may be much slower
than the processing throughA-B. It follows then that certain redundancies in the design may
help both the speed of production and introduce some fault tolerance. On a secondary note,
this explains why the dependencies are modeled in the way presented in this study. However,
this discussion segment serves more to illustrate why complex designs consisting of
substructures like those of Figures 9 and 10 may be needed and why redundant segments
may serve purposes of tuning the pipeline throughput as well as purposes of fault tolerance.
In such cases, the present work serves to evaluate possible fault scenarios during the design
phase of a pipeline, as well as to facilitate its overall control during operation.

With the above concepts in mind, the following would be a way to monitor and control a
complex pipeline in which one or more nodes halt.

(1) Each of the pipeline nodes is assumed to include an IoT device that is at least able to
run an MQTT client.

(2) One IoT device, designated as the (central) controller, is appointed to run the MQTT
broker service. This device may be attached to any of the nodes, or it may be a stand-
alone processor (such as a Raspberry Pi, BeagleBone, etc.) that exists only for the
purposes of the pipeline control; the only requirement is that it is powerful enough to
run the MQTT broker service and the code that implements the checking algorithm
(explained in sections 3.4 and 3.5). Running just two topics: EVENT and ACTION,
should suffice for our purposes (but it is conceivable that the control may be
expanded to more topics as additional purposes may deem appropriate).

(3) All the nodes subscribe as publishers to the topic EVENT and as listeners to the topic
ACTION. The EVENT topic is the channel by which new events are communicated
by the various nodes. The ACTION topic is the channel by which controls are
communicated to nodes.

(4) When a node enters a halting state, it publishes its ID to the EVENT topic to notify the
controller about the fact that a new event has occurred, which means that the node is
entering or has entered a halting state. For example, if node K halts, its attached IoT
device publishes the message “K:Halted” to the EVENT topic. The controller then runs
the algorithm discussed previously (section 3.4) to determine what the effect of the
current events will be and which nodes will need to also halt. Once the list of other
possible nodes (e.g. X, Y, Z) to be halted is determined, this list of node IDs is published
in theACTION topic (e.g. “X:Halt,” “Y:Halt,” “Z:Halt”), and so they are communicated to
the nodes. The local controller of each node would receive the published messages and
should halt that particular node if it has been tagged for halting (by themain controller).

(5) The same channels can be used to restart a pipeline (or sections of it) as previously
halted nodes restart. A node K can publish to the EVENT topic the message
“K:Ready.” The controller can run the algorithm to determine which nodes can now
restart (and perhaps in what order – but that is an extension to be considered in the
future) and accordingly publishes messages in the ACTION topic (e.g. “K:Start,”
“X:Start,” “Y:Start,” “Z:Start”).

Feed-forward
industrial and
manufacturing

lines

89

As a final note, it should be mentioned that to use MQTT, one may choose from a variety of
software implementations for it. Some of these software implementations are very plain and simple
such asMOSQUITTO (EclipseMosquitto™, 2020), and some are more advanced such asMQTT
SPARKPLUG (Obermaier, 2020) and (Eclipse Foundation, 2019), which standardizes the
communication data format and its interpretation. It also allows communication with non-
MQTTdevices or fromusingdata fromother protocols such asOPC-UAorModbus.One alsomust
be aware of possible security concerns as is usually the case with networked systems. Specifically,
in an MQTT implementation where the subscription for publishing is open (i.e. the Broker accepts
subscriptions without authentication), it is possible for any agent to subscribe to the messaging
topics and create havoc. So, users should be aware of various methods to address security issues
suchas client authentication, payload encryption, use ofTLS transport and thevulnerabilities of the
various network layers. Some informative articles can be found in MQTT Security Fundamentals
(2015) by the HiveMQ Team and in Dinculean�a and Cheng (2019) among many others available.

5. Conclusion
Referring to pipeline designs, the present framework and analysis method can be used to
determine “what if” scenarios of node failure(s) and thus evaluate the fault tolerance properties
of a pipeline proposed design and possibly guide its development. It is also possible to extend
this work to consider expected probabilities of failures of various nodes (which could possibly
reflect statistical data of node components) to assess a design and drive updates.

References

Bierbooms, R. (2012), Performance Analysis of Production Lines: Discrete and Continuous Flow Models,
Technische Universiteit Eindhoven, Eindhoven.

Cerrada, M., Cardillo, J., Aguilar, J. and Faneite, R. (2007), “Agents-based design for fault management
systems in industrial processes”, Computers in Industry, Vol. 58, pp. 313-328.

Dal, B. (1999), Audit and Review of Manufacturing Performance Measures at Airbags International
Limited, UMIST.

Dal, B., Tugwell, P. and Greatbanks, R. (2000), “Overall equipment effectiveness as a measure of
operational improvement: a practical analysis”, International Journal of Operations and
Production Management, Vol. 20 No. 12, pp. 1488-1502.

Dinculean�a, D. and Cheng, X. (2019), “Vulnerabilities and limitations of MQTT protocol used between
IoT devices”, Applied Sciences, Vol. 9 No. 5, 848.

Eastburn, J. (2020), “How MQTT is advancing automation and control”, Process Instrumentation,
available at: https://www.piprocessinstrumentation.com/process-control-automation/article/
21122615/how-mqtt-is-advancing-automation-and-control#:∼:text5MQTT%20creates%20an
%20efficient%20data,quality%20reported%20in%20real%2Dtime.

Eclipse Foundation (2019), “Sparkplug MQTT topic and payload specification rev 2.2”, available at:
https://www.eclipse.org/tahu/spec/Sparkplug%20Topic%20Namespace%20and%20State%
20ManagementV2.2-with%20appendix%20B%20format%20-%20Eclipse.pdf.

Gao, S., Rubrico, J.I., Higashi, T., Kobayashi, T., Taneda, K. and Ota, J. (2019), “Efficient throughput
analysis of production lines based on modular queues”, IEEE Access, Vol. 7, pp. 95314-95326,
doi: 10.1109/access.2019.2928309.

Glasserman, P. and Yao, D.D. (1994), “A GSMP framework for the analysis of production lines”,
in Research, S.S. (Ed.), Stochastic Modeling and Analysis of Manufacturing Systems, Springer,
New York, NY, doi: 10.1007/978-1-4612-2670-3_4.

Hasan, H. and Mohammad, B. (2018), “Evaluation of MQTT protocol for IoT based industrial
automation”, IJESC, Vol. 8 No. 12, pp. 19364-19369.

JIMSE
2,2

90

https://www.piprocessinstrumentation.com/process-control-automation/article/21122615/how-mqtt-is-advancing-automation-and-control#:~:text=MQTT%20creates%20an%20efficient%20data,quality%20reported%20in%20real%2Dtime
https://www.piprocessinstrumentation.com/process-control-automation/article/21122615/how-mqtt-is-advancing-automation-and-control#:~:text=MQTT%20creates%20an%20efficient%20data,quality%20reported%20in%20real%2Dtime
https://www.piprocessinstrumentation.com/process-control-automation/article/21122615/how-mqtt-is-advancing-automation-and-control#:~:text=MQTT%20creates%20an%20efficient%20data,quality%20reported%20in%20real%2Dtime
https://www.piprocessinstrumentation.com/process-control-automation/article/21122615/how-mqtt-is-advancing-automation-and-control#:~:text=MQTT%20creates%20an%20efficient%20data,quality%20reported%20in%20real%2Dtime
https://www.eclipse.org/tahu/spec/Sparkplug%20Topic%20Namespace%20and%20State%20ManagementV2.2-with%20appendix%20B%20format%20-%20Eclipse.pdf
https://www.eclipse.org/tahu/spec/Sparkplug%20Topic%20Namespace%20and%20State%20ManagementV2.2-with%20appendix%20B%20format%20-%20Eclipse.pdf
https://doi.org/10.1109/access.2019.2928309
https://doi.org/10.1007/978-1-4612-2670-3_4

Hechtman, S. (2021), ISA Interchange, available at: https://blog.isa.org/mqtt-ideal-connectivity-
protocol-industrial-internet-of-things.

Jaloudi, S. (2019), “Communication protocols of an industrial internet of things environment: a
comparative study”, Future Internet, Vol. 11 No. 3, 66.

Landers, R., Barton, K., Devasia, S., Kurfess, T., Pagilla, P. and Tomuzuka, M. (2020), “A review of
manufacturing process control”, Journal of Manufacturing Science and Engineering, Vol. 142
No. 11, p. 23, 110814.

Lee, E. (2006), “Cyber-physical systems - are computing foundations adequate?”, Position Paper for
NSF Workshop On Cyber-Physical Systems: Research Motivation, Techniques and Roadmap.

Lee, J., Ardakani, H., Yang, S. and Bagheri, B. (2015a), “Industrial big data analytics and cyber-
physical systems for future maintenance and service innovation”, The Fourth International
Conference on Through-life Engineering Services, Cranfield, pp. 3-7.

Lee, J., Bagheri, B. and Kao, H.-A. (2015b), “A Cyber-Physical Systems architecture for Industry 4.0-
based manufacturing systems”, Manufacturing Letters, Vol. 3, pp. 18-23.

Mehmood, F., Ahmad, S. and Kim, D. (2019), “Design and implementation of automation appliances
control based on MVC model using distributed MQTT broker in CoT networks”, International
Journal of Innovative Technology and Exploring Engineering, Vol. 8 No. 3C, pp. 262-269.

Monostori, L., Bauernhansl, T., K�ad�ar, B. and Kondoh, S. (2016), “Cyber-physical systems in
manufacturing”, CIRP Annals, Vol. 65 No. 2, pp. 621-641.

Mosquitto, E. (2020), “An open source MQTT broker”, Mosquitto, available at: https://mosquitto.org/.

MQTT (2019), “In Wikipedia”, available at: https://en.wikipedia.org/wiki/MQTT, March 7.

MQTT (2021), “MQTT”, METT: The Standard for IoT Messaging, available at: https://mqtt.org/.

MQTT Security Fundamentals (2015), HiveMQ, available at: https://www.hivemq.com/blog/mqtt-
security-fundamentals-wrap-up/.

Obermaier, D. (2020), “MQTT sparkplug essentials”, HIVEMQ, available at: https://www.hivemq.com/
blog/mqtt-sparkplug-essentials-part-1-introduction/.

Parente, M., Figueira, G., Amorim, P. and Marquez, A. (2020), “Production scheduling in the context of
Industry 4.0: review and trends”, International Journal of Production Research, Vol. 58 No. 17,
pp. 5401-5431.

Phadnis, V.S. (2013), “Production line design and system analysis for new product”, Master Thesis,
MIT, available at: http://hdl.handle.net/1721.1/85788.

Starkov, K.K., Feoktistova, V., Pogromsky, A.Y., Matveev, A. and Rooda, J.E. (2012), “Performance
analysis of a manufacturing line operated under optimal surplus-based”, Mathematical
Problems in Engineering. doi: 10.1155/2012/602094.

Syafrudin, M., Alfian, G., Fitriyani, N. and Rhee, J. (2018), “Performance analysis of IoT-based sensor,
big data processing, and machine learning model for real-time monitoring system in automotive
manufacturing”, Sensors, Vol. 18 No. 9, 2496.

Wang, L. (2013), “Machine availability monitoring and machining process planning”, CIRP Journal of
Manufacturing Science and Technology, Vol. 6, pp. 263-273.

Wang, L., T€orngren, M. and Onori, M. (2015), “Current status and advancement of cyber-physical
systems in manufacturing”, Journal of Manufacturing Systems, Vol. 37 No. 2, pp. 517-527.

Corresponding author
Mohammad Saadeh can be contacted at: msaadeh@selu.edu

For instructions on how to order reprints of this article, please visit our website:
www.emeraldgrouppublishing.com/licensing/reprints.htm
Or contact us for further details: permissions@emeraldinsight.com

Feed-forward
industrial and
manufacturing

lines

91

https://blog.isa.org/mqtt-ideal-connectivity-protocol-industrial-internet-of-things
https://blog.isa.org/mqtt-ideal-connectivity-protocol-industrial-internet-of-things
%20https://mosquitto.org/
https://en.wikipedia.org/wiki/MQTT
https://mqtt.org/
https://www.hivemq.com/blog/mqtt-security-fundamentals-wrap-up/
https://www.hivemq.com/blog/mqtt-security-fundamentals-wrap-up/
https://www.hivemq.com/blog/mqtt-sparkplug-essentials-part-1-introduction/
https://www.hivemq.com/blog/mqtt-sparkplug-essentials-part-1-introduction/
http://hdl.handle.net/1721.1/85788
https://doi.org/10.1155/2012/602094
mailto:msaadeh@selu.edu

	A framework and method for analysis of feed-forward industrial and manufacturing lines
	Introduction
	Methodology
	Communication protocol
	Modeling of the pipeline

	Implementation of the algorithm
	Use of the model
	Simulating the algorithm
	Example analysis 1: Node 9 halts
	Example analysis 2: Node 15 halts

	The algorithm for the analysis
	The algorithm to check for halting nodes
	A JSON supporting structure

	Discussion
	Further considerations

	Conclusion
	References

