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Abstract
Purpose – This paper aims to present a cooperative adaptive cruise control, called stable smart driving model (SSDM), for connected and
autonomous vehicles (CAVs) in mixed traffic streams with human-driven vehicles.
Design/methodology/approach – Considering the linear stability, SSDM is able to provide smooth deceleration and acceleration in the vehicle
platoons with or without cut-in. Besides, the calibrated Virginia tech microscopic energy and emission model is applied in this study to investigate
the impact of CAVs on the fuel consumption of the vehicle platoon and traffic flows. Under the cut-in condition, the SSDM outperforms ecological
SDM and SDM in terms of stability considering different desired time headways. Moreover, single-lane vehicle dynamics are simulated for human-
driven vehicles and CAVs.
Findings – The result shows that CAVs can reduce platoon-level fuel consumption. SSDM can save the platoon-level fuel consumption up to 15%,
outperforming other existing control strategies. Considering the single-lane highway with merging, the higher market penetration of SSDM-
equipped CAVs leads to less fuel consumption.
Originality/value – The proposed rule-based control method considered linear stability to generate smoother deceleration and acceleration curves.
The research results can help to develop environmental-friendly control strategies and lay the foundation for the new methods.

Keywords Adaptive cruise control, Connected and autonomous vehicle (CAV), Linear stability
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1. Introduction

In recent years, autonomous driving technologies started to be
implemented to provide transport services. Since 2019, Level 3
autonomous vehicles have been tested in the Oslo area to
provide public transport services. Until December 2020, more
than 29,000 passengers have been served and over 33,000
kilometers have been operated by autonomous buses [1].
Moreover, the number of vehicles equipped with adaptive
cruise control (ACC) in the transport system is expected to
increase. Accordingly, autonomous driving-related topics
attracted the attention of researchers all over the world. As one
of the core parts of the autonomous vehicle, a proper control
strategy will significantly improve the performance of
autonomous vehicles and/or transport systems in terms of
traffic efficiency, safety and fuel consumption (Kamal et al.,
2011; Kesting et al., 2008; Li et al., 2015a; Luo et al., 2015;
Mahdinia et al., 2020; Yuan et al., 2009).
Existing control strategies for autonomous vehicles can be

divided into three major categories: optimization, machine

learning and physical models. Desjardins and Chaib-Draa
(2011) proposed a reinforcement-learning-based longitudinal
following strategy that applied function approximation
techniques and gradient-descent learning algorithms to modify
the following policy. Based on a machine-learning method to
detect special maneuvers and predict trajectory, Kazemi et al.
(2018) develop a stochastic model predictive controller to
guarantee safety. Li andGörges (2020) developed an ecological
ACC by using reinforcement learning with a novel actor-gear-
critic architecture. Recently, Lin et al. (2021) compared the
ACC methods based on deep learning and model predictive
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control. They pointed out that the deep learning method can
train a policy very close to the optimal. However, the deep
learning method has difficulties to deal with the case that fall
outside the training dataset. Recently, Kuutti et al. (2021)
conducted a comprehensive review on deep learning-based
control strategies. They indicated the drawbacks of these
strategies in computation, architecture selection, adaptability,
generalization, etc. Moreover, the explainability of the deep
learning-based method is also a challenge (Fazi, 2020).
Another widely applied approach to develop autonomous
vehicle control strategies is the optimization method. Sakhdari
and Azad (2018) proposed an adaptive tube-based nonlinear
model predictive control method to control autonomous
vehicles and reduce the energy cost of plug-in hybrid electric
vehicles. Considering the predicted traffic state, the ecological
driving system proposed by Huang et al. (2018) could optimize
the travel speed profile to reduce fuel consumption.
Considering the fallback procedure, Xue et al. (2019) proposed
an adaptive model predictive control strategy to avoid potential
collisions. To improve ride comfort and safety, He et al. (2020)
proposed a stair-like predictive cruise control that can
significantly reduce the computational cost. Li and Görges
(2020) proposed an optimal control strategy by using
reinforcement learning with a novel actor-gear-critic
architecture to reduce fuel consumption while ensuring the safe
inter-vehicle distance. Wang et al. (2020) proposed the idea of
dynamically optimizing the information flow topologies for
cooperative ACC and enhance its performance in terms of
string stability. Tajeddin et al. (2020) proposed a control
strategy to provide optimal speed and lane-to-drive in real-
time. The optimization objective includes safety, energy
efficiency and desired speed tracking. Based on the hardware-
in-loop experiments, the result shows that the proposed
method can reduce up to 27% of energy consumption
compared to human drivers. Moreover, Nunen et al. (2019)
designed a model predictive control strategy to guarantee string
stability. Zhu et al. (2020) proposed a linear matrix inequalities-
based method to synthesize string-stable control strategy with
low computational cost. The results from numerical experiments
validated the performance of these proposedmethods.
Moreover, numerous ACCs are developed based on physical

models. To simulate human-driven vehicles, several car-
following models are introduced in the past decades
(Anesiadou et al., 2021; Bando et al., 1995; Gipps, 1981; Jiang
et al., 2001; Lenz et al., 1999; Newell, 1961; Tampere, 2004).
Based on existing car-following models, Davis (2004) and
Kesting et al. (2010) developed several ACC strategies to
investigate the impact of autonomous vehicles on traffic
stability and capacity. Recently, Yang et al. (2020) developed a
novel hierarchical ecological cooperative adaptive cruise
control based on combined feedforward-feedback control. The
results showed that the proposed model can maintain a stable
platoon and reduce fuel consumption. Huang et al. (2020)
proposed a CACC strategy considering the time-varying lags
function. The linear stability has been investigated based on
Lyapunov function theory.Moreover, the proposed CACC can
significantly reduce fuel consumption compared to human-
driven vehicles.
In recent years, researchers started to adopt field tests and

explore the performance of autonomous control strategies.

Gunter et al. (2019, 2020) conducted a set of car-following
experiments to collect field data from ACC-equipped vehicles.
They evaluated calibrated models and pointed out that the
models are string unstable. Similarly, Makridis et al. (2020)
conduct a field experiment with five ACC-equipped vehicles to
explore the properties of ACC systems and their performances
under real-world situations. The results showed that the ACC
system used in the experiment leads to instability of the car-
platoon even for slight perturbations. Recently, Shang and
Stern (2021) investigated the traffic impact of commercially
available ACC vehicles, which is based on intelligent driver
model. The result shows that commercially available ACC
vehicles may reduce highway bottleneck capacity up to 35%
because of string unstable. Meanwhile, they also indicated that
the string stability and time headway are major impact factors,
leading to bottleneck capacity reduction caused by the
commercially available ACC vehicles.
In summary, several ACC/CACC systems have been

developed to control connected and autonomous vehicle
(CAVs). Most of the ecological control strategies are
formulated as optimization problems, such as particle swarm
optimization and model predictive control. Because
optimization-based approaches are complicated and
computation-intensive, rule-based control strategies have
monopolized the production vehicle market because of their
low computational demand, natural adaptability to online
applications and reliability (Enang and Bannister, 2017; Lu
et al., 2019a, 2019b). However, to the best of the authors’
knowledge, none of the existing control strategies considered
fuel efficiency or linear stability at the same time. To bridge the
existing gap, a rule-based autonomous vehicle control strategy
is proposed.
The rest of the paper is organized as follows. Section 2

presents the rule-based control strategy that considers fuel
efficiency and linear stability. Section 3 evaluates the
performance of the proposed control method by simulating
different traffic situations. The conclusion is presented in
Section 4.

2. Methodology

Recently, a rule-based ACC, named smart driver model
(SDM), is proposed to address the instability of IDM under
homogenous traffic conditions (Lu and Aakre, 2018). The
acceleration profile of the following vehicle equipped with
SDM is determined by the following equation:

anSDM ¼ amax 1� vn
v0

� �4
" #

�
amax 1� vn

v0

� �4h i
1

v2n�v2n�1
2x

exp x
s0 1 vn�T � 1
� �

(1)

where,
anSDM = acceleration of the following vehicle that is equipped

with SDM (m/s2);s0 is the standstill distance between
stopped vehicles (m);amax is the maximum
acceleration (m/s2);

Dx = spacing between the leading and the following vehicle
(m);

T = desired time headway (s);

Ecological control strategy

Chaoru Lu and Chenhui Liu

Journal of Intelligent and Connected Vehicles

Volume 4 · Number 3 · 2021 · 115–124

116



v0 = desired speed (m/s);
vn = speed of the following vehicle (m/s); andvn � 1

= speed of the leading vehicle (m/s).

Considering the synchronized flow and congestion condition,
where the driving behavior of the following vehicle is impacted
by the leading vehicle, the impact of speed control terms in
equation (1), 1� vn

v0

� �4h i
, can be ignored. Therefore, equation

(1) can be simplified as follows:

anSDM ¼ amax �
amax 1

v2n�v2n�1
2x

exp x
s0 1 vn�T � 1
� � (2)

Based on the SDM (Lu and Aakre, 2018) and ecological SDM
(EcoSDM) (Lu et al., 2019a, 2019b), a rule-based Ecological
CACC, named stable SDM (SSDM), is proposed considering
the platoon-level string stability. With regard to connected
vehicles and autonomous vehicles, we assume that
connected vehicles are capable of communicating with other
connected vehicles through vehicle-to-vehicle communication
(Davis, 2017). Moreover, the onboard sensors measure vehicle
speed, space headway and relative speed with respect to the
preceding vehicle on regular time intervals (Wang et al., 2018).
By introducing the stabilization parameter into SDM

[equation (2)], the acceleration profile of the following vehicle
equipped with the proposed SSDM is determined by the
following equation:

anSSDM ¼ amax �
amax 1

v2n�v2n�1
2x

exp x
s0 1 vn�T � 1� b � vn

v0

� � (3)

where,
anSSDM = acceleration of the following vehicle that is equipped

with SSDM (m/s2); and
b = stabilization parameter.

According to the existing string stability analysis studies (Chen
et al., 2013; Pei et al., 2016; Wilson and Ward, 2011), the
general form of time-continuous car-following models is
formulated as follows:

x€n ¼ f vn t � tð Þ; sn t � tð Þ; vn t � tð Þð Þ (4)

where,
f = a general nonlinear function;
x€n = acceleration of the following vehicle in the platoon;sn is

the space headway, sn = s01 vn�T;t is the delay; and
Dvn = relative velocity between the leading and following

vehicles,Dvn = vn � 1� vn.
In this study, a platoon mixed with SSDM-equipped vehicles and
human-driven vehicles is considered. To achieve the platoon-level
string stability, the parameter (b ) of SSDMis determined, based on
the string stability condition proposed by Talebpour and
Mahmassani (2016) andSun et al. (2018), as follows:

1� wð Þ f ov
2

2
� f ov f

o
v � f os 1 t1f ov f

o
s

� �
f Ss
� 	2

1 w
f Sv

2

2
� f Sv f

S
v � f Ss 1 t2f Sv f

S
s

� �
f Os
� 	2

> 0 (5)

Where, f Ov ¼ @f
@vn







ve;se ;0ð Þ

, f Ov ¼ @f
@vn







ve ;se;0ð Þ

and f Os ¼ @f
@sn







ve;se;0ð Þ

are partial derivatives of human-driven model, which represent

the human-driven vehicles in the platoon; f Sv ¼ @f
@vn







ve ;se;0ð Þ

,

f Sv ¼ @f
@vn







ve;se ;0ð Þ

and f Ss ¼ @f
@sn







ve ;se;0ð Þ

are partial derivatives of

SSDMmodel, which represent the autonomous vehicles in the
platoon; and u denotes the penetration rate of autonomous
vehicles in the platoon, w ¼ M

N.
By substituting equations (6)–(9) into the stability condition

[equation (4)], we have the following:

f S½jmath�v ¼
ve

se � exp �b � vn
v0

� � (6)

f Ss ¼ � amax

se � exp �b � vn
v0

� � (7)

f Sv ¼
b
v0
� T

se

� �
� amax

exp �b � vn
v0

� � (8)

se ¼ s0 1 ve � T (9)

1� wð Þ f Ov
2

2
� f Ov f Ov � f Os 1 t1f ov f

o
s

� �
1
se

� �2

1 w

b
v0
� T

se

� �2
2

�
b
v0
� T

se

� �
� ve

amax � se
1

exp �b � ve
v0

� �
amax � se

2
4

�t2

b
v0
� T

se

� �
se

� f Os
� 	2

> 0 (10)

Because exp �b � ve
v0

� �
> 0, we have:

b
v0
� T

se

� �2
2

�
b
v0
� T

se

� �
� ve

amax � se
1

exp �b � ve
v0

� �
amax � se

� t2

b
v0
� T

se

� �
se

>

b
v0
� T

se

� �2
2

�
b
v0
� T

se

� �
� ve

amax � se
� t2

b
v0
� T

se

� �
se

(11)

As a result, the stability condition is derived as follows:

b
v0
� T

se

� �2
2

�
b
v0
� T

se

� �
� ve

amax � se
� t2

b
v0
� T

se

� �
se

> A (12)

A ¼ M �Nð Þ
M

fOv
2

2
� f Ov f Ov � f Os 1 t1f ov f

o
s

� �
1

f Os � se

� �2
(13)

By solving the stability condition [equation (12)], we have the
following:

b > v0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2A1

ve 1 amax � t2
amax � s0 1 veT

� �2
s

1
ve 1 t2 1Tð Þ � amax

amax � s0 1 veT

2
4

3
5

(14)

Therefore, the stabilizationparameter in this study is as follows:
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b ¼ v0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2A1

ve 1 amax � t2
amax � s0 1 veT

� �2
s

1
ve 1 t2 1Tð Þ � amax

amax � s0 1 veT

2
4

3
5

(15)

Because the following vehicle is targeting at the speed of the leading
vehicle, the speed of the leading vehicle is set as the equilibrium
speed.The stabilizationparameter is calculated as follows:

b ¼
v0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2A1 vn�1 1 amax�t2

amax� s0 1 vn�1�Tð Þ
� �2r

1
vn�1 1 t2 1Tð Þ � amax

amax � s0 1 vn�1 � Tð Þ

" #
;A > 0

v0
2vn�1 1 2t2 1Tð Þ � amax

amax � s0 1 vn�1 � Tð Þ
� �

; A � 0

8>>>><
>>>>:

(16)

The environmental benefit may vary with the location in the
string of mixed traffic (Ioannou and Stefanovic, 2005).
According to the study conducted by Ioannou and Stefanovic
(2005), the CAV located in the front of the platoon must be
able to attenuate most of the disturbance from the human-
driven vehicle in front of it to achieve better stabilization and
ecological effects. Therefore, we weighted the stabilization
parameter based on the position of CAVs in the platoon. The
SSDM is formulated as follows:

anSSDM ¼ amax �
amax 1

v2n�v2n�1
2x

exp x
s0 1 vn�T � 1� b � vn

v0

� � (17)

Especially, when the delays are ignored, equation (16) is
simplified as follows:

b stable

¼
v0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2A1 vn�1

amax� s0 1 vn�1�Tð Þ
� �2r

1
vn�1 1T � amax

amax � s0 1 vn�1 � Tð Þ

" #
;A > 0

v0
2vn�1 1T � amax

amax � s0 1 vn�1 � Tð Þ
� �

; A � 0

8>>>><
>>>>:

(18)

Same as in the study conducted by Talebpour andMahmassani
(2016), the IDM (Kesting et al., 2010) is used in this paper to
simulate the human-driven connected vehicles. The IDM is
formulated as follows:

anIDM ¼ amax 1� vn
v0

� �4

� s�

x

� �2
" #

(19)

s� ¼ s0 1 vnT 1
vn vn � vn�1ð Þ

2
ffiffiffiffiffiffiffiffiffiffiffiffi
amaxb

p (20)

where,
anIDM = acceleration of the following vehicle based on the

IDM (m/s2);s� is the desired headway space (m);
and

b = desired deceleration (m/s2).

According to the study conducted by Li et al. (2015b), the partial
derivatives of IDMat equilibriumcanbe calculated as follows:

f Ov ¼ � ve
s0 1 veT

ffiffiffiffiffiffiffiffiffi
amax

b

r
(21)

f Os ¼ 2amax

s0 1 veT
(22)

f Ov ¼ � 4amaxv3e
v40

� 2amaxT
s0 1 veT

(23)

By substituting equations (21)–(23) into the stability condition
[equation (13)], we have the following:

A ¼ M �Nð Þ
M

4av3e
v40

1 2amaxT
s0 1 veT

� �2
2

� ve
s0 1 veT

ffiffiffiffiffiffiffiffiffi
amax

b

r !2
64

4amaxv3e
v40

1
2amaxT
s0 1 veT

 !
� 2amax

s0 1 veT
� t1

2amax

s0 1 veT

4amaxv3e
v40

1
2amaxT
s0 1 veT

 !#
1

2amax

� �2
(24)

3. Numerical simulations

Numerical simulation has been widely used to compare
techniques in transportation research to evaluate performance
(Zheng, 2021). In this section, numerical experiments are
conducted to evaluate the performance of SSDM-equipped
vehicles by comparing them with existing control strategies.
The parameters of ACC or car-following models are based on
the parameters used by existing studies (Chen et al., 2009;
Kesting et al., 2010; Lu and Aakre, 2018), where themaximum
acceleration is 1.4m/s2; the desired time headway is 1.6 s; and
the standstill distance is 1.5m. Based on the work conducted by
Li et al. (2015b), an open-boundary single-lane highway with
30m/s speed limit is simulated considering different scenarios.
The speed and distance between the leading and following
vehicles are measured by the sensor at each time step.

3.1 Vehicle platoon with cut-in
First of all, the performance of SSDM is compared with SDM
and EcoSDMby simulating the cut-in scenario, which has been
widely applied in existing studies (Davis, 2007; Lu and Aakre,
2018;Milanés and Shladover, 2016). As shown in Figure 1, the
oscillations from the cut-in vehicle are reduced by the 4th to the
14th vehicles equipped with control models when the desired
time headway is 1.5 s. When the desired time headway is 1 s,
the SDM is amplifying the oscillation while EcoSDM and
SSDMare stable.Moreover, the SSDMoutperforms EcoSDM
and SIDM in terms of stability considering different desired
time headways. The reason is that SSDM considered platoon-
level stability.

3.2 Vehicle platoon without cut-in
Driving cycles, which represent different driving scenarios,
have been widely applied in simulations to evaluate the
performance of control strategies (Li and Görges, 2020; Lu
et al., 2019a, 2019b; Lin et al., 2021). In this study, a vehicle
platoon with 100 vehicles is simulated on a single-lane road
where the leading vehicle follows the driving cycle of federal test
procedure (FTP) [2]. In this section, the CAVs are equipped
with different control strategies, i.e. SDM, EcoSDM and SSDM.
Therefore, the stability and safety performance of SSDM has
been explored by comparingwith SDMandEcoSDM.
As shown in Figure 2, SSDM is able to stabilize the string

faster than SDM and EcoSDM. Moreover, SSDM provides
smoother deceleration and acceleration than SDM and
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EcoSDM. Therefore, it requires fewer CAVs in the platoon to
maintain a stable string if CAVs are equippedwith SSDM.
To investigate the safety performance of SSDM, the collision

sensitivity coefficient (CSC) by Jiao et al. (2021) is used in this
study. TheCSC is calculated as follows:

CSC ¼ vn�1 tð Þ � vn tð Þ
x tð Þ � lc

(25)

If CSC is less than 0, the probability of a collision between
vehicles increases. Alternatively, if CSC is larger or equal to 0,
the probability of a collision between vehicles is small.
As shown in Figure 3, SSDM leads to a safer platoon than

SDM and EcoSDM. Together with the aforementioned result,
the control strategies with better stabilization ability will lead to
the better platoon-level safety performance.
Moreover, a platoon with 20 vehicles is simulated to evaluate

the fuel consumption of different control strategies. In this
study, IDM is used to model human-driven vehicles and used

as the baseline. The Virginia tech microscopic energy and
emission (VT-Micro) model (Ahn et al., 2002; Rakha and Ahn,
2004), which is calibrated by Lu et al. (2018), is used to
calculate the fuel consumption of vehicles. Three driving
cycles, which are FTP, NY City cycle (NYCC) and LA92
dynamometer driving schedule (LA92DDS) [3], are
considered in this study. The performance of different control
strategies is shown in Table 1. Considering FTP, NYCC and
LA92DDS, three control strategies have similar average speed
and average acceleration, which means that the travel times of
vehicles equipped with these control strategies are similar.
Overall, SSDM has the smoothest speed profile with the
smallest acceleration variance. Figure 4 shows the fuel
consumption enhancement of SDM, EcoSDM and SSDM
considering different driving cycles. The result shows that
SSDM outperforms EcoSDM and SDM in terms of fuel
consumption considering FTP, NYCC and LA92DDS.
Moreover, SSDM can reduce the platoon-level fuel
consumption by up to 15%.

Figure 1 Acceleration profiles of vehicles equipped with SDM, EcoSDM and SSDM under cut-in situation considering different desired time headways
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3.3Merging
In this section, a hypothetical single-lane highway with a single-lane
on-ramp (Figure 5) is applied to evaluate the performance of the
proposed control strategy. The merging maneuver proposed by
Davis (2007) is used in this study. Because the proposed control

strategy is able to consider string stability, a congested traffic status is
considered in this study. Therefore, the main lane and ramp flow
are set to 2000 veh/h and 600 veh/h, respectively. As shown in
Figure 6, the higher market penetration of SSDM-equipped CAVs
leads to less fuel consumption.

Figure 2 Acceleration profiles of vehicle platoon equipped with SDM,
EcoSDM and SSDM

Figure 3 CSC profiles of vehicle platoon equipped with SDM, EcoSDM
and SSDM
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4. Conclusions

In this paper, we present a cooperative ACC, called SSDM, for
CAVs in mixed traffic streams with human-driven vehicles.
Considering the linear stability, SSDM is able to provide
smooth deceleration and acceleration in the vehicle platoons
with or without cut-in. Moreover, the calibrated VT-Micro is
applied in this study to investigate the impact of CAVs on the
fuel consumption of vehicle platoon and traffic flows.
Under the cut-in condition, all control strategies can reduce

the oscillations caused by the cut-in vehicle when the desired
time headway is 1.5 s. When the desired time headway is 1 s,
the SDM is amplifying the oscillation while EcoSDM and
SSDMare stable.Moreover, the SSDMoutperforms EcoSDM
and SDM in terms of stability considering different desired
time headways.
Moreover, single-lane vehicle dynamics are simulated for

human-driven vehicles and CAVs. The result shows that CAVs
can reduce platoon-level fuel consumption. SSDM can save
platoon-level fuel consumption up to 15% compared to
human-driven vehicle platoons. SSDM outperforms the SDM
and EcoSDM in terms of fuel consumption. Considering the
single-lane highway with merging, the higher market
penetration of SSDM-equipped CAVs leads to less fuel
consumption.
The present paper has the following limitations. First, only

one of the existing lateral maneuvers is considered in this study.
Different combinations of longitudinal and lateral maneuvers
should be applied to identify the best control strategy of CAVs.
Moreover, field experiments will be conducted to evaluate the
performance. Second, because human driving behavior may
change because of the presence of autonomous driving
technologies (Anesiadou et al., 2021; Pan et al., 2021; Shi et al.,
2021; Zhao et al., 2020), the human driver behavior model,
which is considered in the proposed strategy, needs to be
updated according to the field data from mixed traffic in the
future. Third, the performance of control strategies is evaluated
based on freeway traffic conditions. In the future, network-level
performance may be further evaluated. Moreover, the
performance of the control methods based on machine
learning, optimization and rules should be compared and
discussed in future works.

Table 1 Performance of different control strategies

Driving cycle Characteristic Statistics SDM EcoSDM SSDM

FTP Speed (m/s) Average 9.39 9.38 9.37
Standard deviation 7.05 6.85 6.8

Acceleration (m/s2) Average 0.007 0.007 0.007
Standard deviation 0.501 0.458 0.446

NYCC Speed (m/s) Average 3.2 3.2 3.2
Standard deviation 3.27 3.13 3.04

Acceleration (m/s2) Average 0.001 0.001 0.001
Standard deviation 0.398 0.361 0.331

LA992DDS Speed (m/s) Average 10.98 10.98 10.98
Standard deviation 8.74 8.51 8.46

Acceleration (m/s2) Average 0.002 0.002 0.002
Standard deviation 0.57 0.519 0.499

Figure 4 Platoon-level fuel saving of CAVs with different driving cycles

Figure 5 Scenario of merging simulation

Figure 6 Cumulative fuel consumption on the simulated freeway
segment considering different market penetration of SSDM-equipped
CAVs
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Notes

1 https://ruter.no/en/about-ruter/reports-projects-plans/autonomous-
vehicles/

2 https://www.epa.gov/vehicle-and-fuel-emissions-testing/
dynamometer-drive-schedules

3 https://www.epa.gov/vehicle-and-fuel-emissions-testing/
dynamometer-drive-schedules
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