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Abstract
Purpose – Perception has been identified as the main cause underlying most autonomous vehicle related accidents. As the key technology in
perception, deep learning (DL) based computer vision models are generally considered to be black boxes due to poor interpretability. These have
exacerbated user distrust and further forestalled their widespread deployment in practical usage. This paper aims to develop explainable DL models for
autonomous driving by jointly predicting potential driving actions with corresponding explanations. The explainable DL models can not only boost user
trust in autonomy but also serve as a diagnostic approach to identify any model deficiencies or limitations during the system development phase.
Design/methodology/approach – This paper proposes an explainable end-to-end autonomous driving system based on “Transformer,” a state-of-
the-art self-attention (SA) based model. The model maps visual features from images collected by onboard cameras to guide potential driving
actions with corresponding explanations, and aims to achieve soft attention over the image’s global features.
Findings – The results demonstrate the efficacy of the proposed model as it exhibits superior performance (in terms of correct prediction of actions
and explanations) compared to the benchmark model by a significant margin with much lower computational cost on a public data set (BDD-OIA).
From the ablation studies, the proposed SA module also outperforms other attention mechanisms in feature fusion and can generate meaningful
representations for downstream prediction.
Originality/value – In the contexts of situational awareness and driver assistance, the proposed model can perform as a driving alarm system for
both human-driven vehicles and autonomous vehicles because it is capable of quickly understanding/characterizing the environment and identifying
any infeasible driving actions. In addition, the extra explanation head of the proposed model provides an extra channel for sanity checks to
guarantee that the model learns the ideal causal relationships. This provision is critical in the development of autonomous systems.
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1. Introduction

1.1 Background
Motivated by the challenges associated with safety and mobility in
the traditional highway environment and spurred by ongoing
advancements and opportunities in information and robotics
technologies, government agencies and the automobile industry
continue to seek guidance on the measurement of performance in
the context of the new transportation technologies. As is the case
with any new transportation stimulus including technological
innovations, it is imperative to assess performance based on a
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carefully designed portfolio of performance measures (FHWA,
2019; Sinha and Labi, 2007;World Bank, 2005). In the context of
automated (AV) and connected vehicle operations, performance
may be measured from the perspective of the impact type (safety,
mobility, privacy, equity, for example), impact direction (costs and
benefits) and the affected stakeholder (the transportation agency,
road user and the community) (Lioris et al., 2017; Litman, 2014;
TRB, 2018, 2019). Unfortunately, the deployment of AV systems
in the real world has been severely limited due to various obstacles
associated with policy and regulation, infrastructure readiness,
technology and so on. For example, a number of key technologies
associated with perception and decision processors still have not
reached a level of advancement where they can be applied reliably
to produce error-freeAV systems.

1.1.1 Perception is a key consideration
Autonomous driving is a complicated end-to-end system which
contains a sequence of subsystems or modules including
sensing, perception and localization, abstraction, planning and
control (Figure 1), and each module is achieved through the
integration of multiple technologies such as sensing, signal
processing, data analytics, machine learning, artificial
intelligence (AI) and control theory. Of the modules,
perception (second block in Figure 1) is generally considered
the most vulnerable link in the chain (NTSB, 2019). There are
multiple reasons for this. To begin with, the perception module
is one of the very initial blocks of the entire autonomous driving
process, any error at the perception phase will not only cascade
but also be amplified across the subsequent stages. For
example, failure in detecting the road participants (i.e.
pedestrians, cyclists and neighboring ground vehicles) could be
catastrophic because an appropriate evasive maneuver will not
be planned in the following phases. This has been the
underlying cause of several AV-related fatal accidents in the
recent years, including well-known instances of Uber and Tesla
vehicle collisions with pedestrians (McCausland, 2019; Yadron
andTynan, 2016).

1.1.2 Application of perception in existing driving systems
Recently, computer vision (CV) based perception technologies
have been widely used in multiple applications in driving
assistance systems (ADAS) (Horgan et al., 2015; Sowmya

Shree and Karthikeyan, 2018), for example, systems for lane
detection, traffic sign recognition and forward collision
warning. These new features in ADAS have greatly enhanced
driving safety and convenience. However, these modules are
“scattered” in the sense that they are generally designed to
accomplish specific functions in an independent manner. As a
result, they do not cooperate with each other and are unable to
provide full situational awareness of the driving environment
for purposes of autonomous driving. For example, the obstacle
detection module can detect only the barriers in the
surrounding location but cannot cooperate with the lane
marker detection module. Therefore, the obstacle detection
module still requires the human brain to fill the gap in such
knowledge, and to achieve a comprehensive characterization of
the driving environment. Furthermore, these modules in
ADAS are currently designed for human driving (where it is
required that the human driver is always focused during
driving), not AV operations. This means that when developing
vision based ADAS, the reliability may be compromised.
Therefore, such ADAS systems cannot provide a
comprehensive and precise understanding of driving
environments, and thus cannot be applied directly to fully AVs.
For the perception phases of AV operations, a more
sophisticated, integrated cooperative and reliable CV system is
needed. In addition, unlike human vision which can quickly
identify salient objects and grasp the main semantics in a driving
environment, CV models tend to misallocate computation
resources towards analyzing areas of the driving environment that
may be irrelevant to the driving task (e.g. the background sky and
buildings). To alleviate this situation, an appropriate “attention”
mechanism to “guide” the CV model to focus only on relevant
areas of the driving environment, is needed.
More recently, with the emergence of connectivity devices,

perception can be further enhanced by vehicle connectivity
(this yields the often-termed “connected autonomous vehicle”
[CAV]) as more accurate and direct information can be
disseminated through the connectivity devices. It has been
postulated that the benefits of combined automation and
connectivity will exceed the sum of benefits from these two
individually (Ha et al., 2020). In the past few years, many
advanced learning based approaches have been applied in the

Figure 1 The end-to-end autonomous driving task
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CAV operation in contexts including information fusion and
cooperative control (Chen et al., 2021; Dong et al., 2021a;
Dong, Chen, Joun Ha et al., 2020; Dong et al., 2020). We duly
recognize the coupling of connectivity and automation can
accentuate the benefits of the latter. However, there is still a
long way to go before achieving full connectivity for all vehicles
on road. Therefore, in this paper, we address only the
perception tasks of a single vehicle for which we seek to enhance
the interpretability of its perceptionmodule.

1.2 Literature review
1.2.1 Problems associated with deep learning
In the field of perception and semantic understanding, deep
learning (DL) is one of the mainstream technologies which has
been used widely in practice. In transportation-related tasks,
DL has been extensively adopted in applications including
infrastructure management (Hou et al., 2020; Zhuang et al.,
2018), traffic prediction (Cui et al., 2019; Liu et al., 2019; Yu
et al., 2020a; Zhou et al., 2021), driver behavior modeling
(Xing et al., 2021), smart routing systems (Du et al., 2021),
smart intersection management (Peng et al., 2021) and traffic
incident and duration recognition (Zhu et al., 2021). With
respect to autonomous driving tasks, DL models have been
applied in every submodule (Figure 1). Specifically, the deep-
learning computer vision (DLCV)-based perceptionmodels for
AV systems are widely researched and have achieved state-of-
the-art (SOTA) in various of contexts (Bojarski et al., 2016; Xu
et al., 2017; Chen, et al., 2019). Although DL models have
been deployed successfully in several real-world applications,
the intrinsic drawback, low interpretability, has not been
resolved. The low interpretability originates from the black box
nature of computations using neural networks. Since themodel
developer can access only the input and output of the model,
the potential weaknesses and drawbacks of DL models are not
easily detectable and therefore errors in these models are
generally difficult to diagnose. This has exacerbated the
problem of user distrust in automation and has further
hindered its deployment in safety-critical tasks (Khastgir et al.,
2018).
To boost user trust in automation and AI technology, several

research efforts have been expended into developing
“explainable” AI (XAI) systems. The key motivation and
underlying notion of XAI systems is to provide human
understandable explanations indicating the rationale used by
the AI tomake decisions (Doran et al., 2018). This idea has also
been adopted into recent transportation-related research
efforts. For example, Alwosheel et al. (2021) developed an
explainable traffic demand prediction model and carried out
detailed investigation on how the model provides the
predictions (Alwosheel et al., 2021); Bustos et al. (2021)
applied DLmodels and provided the interpretability analysis to
demonstrate how pedestrian and vehicle safety could be
enhanced. In the area of AV system design, researchers have
developed explainable (or even, advisable) autonomous driving
models (Kim et al., 2020; Kim and Canny, 2017; Xu et al.,
2020; Dong et al., 2021b). Here, the “advisable” refers to the
model has the ability to process the verbal instructions from
human operator and adjust further decisions based on the
“advice”. These efforts have helped paved the way for
enhanced user trust in DL model-driven autonomous driving.

Yet still, the model performance (in terms of prediction
accuracy and computational cost) can be further improved with
an enhanced design of the neural network architecture that
imitates human vision. This is the main motivation of this
paper. In the subsequent subsections of this introductory
section, we discuss two major approaches for developing
DLCV-based AV systems, the concept of image-attention
based technologies used to imitate human vision. Then we
identify the research gaps in existing research and highlight the
prospective contributions of this paper.

1.2.3 End-to-end versus pipelined systems
In developing DLCV-based AV systems, there exist two major
approaches: end-to-end and pipelined. The former seeks a
direct mapping from the raw sensor inputs (including images
and 3D cloud points) to the driving actions (including straight
movement, left/right turn or slowing down (Bojarski et al.,
2016; Chen et al., 2019; Kim et al., 2020; Kim and Canny,
2017; Xu et al., 2017, 2020)). The latter divides the entire
system into subsystems (including vision block [Hu et al., 2020;
Ku et al., 2019] and decision-generating block [Schwarting
et al., 2018; Veres et al., 2011]) and addresses them
independently. Theoretically, end-to-end approaches are
superior to pipeline approaches because the vision block can get
trained to be goal-induced, meaning it is capable of paying
more attention to the visual information that is necessary for the
ultimate goal. However, the end-to-end approach is generally
more complicated and needs relatively deeper networks and
larger data sets for training. In addition, because the model is
trained from end to end, there are no intermediate results for
diagnosis purposes, and this exacerbates the black box
behavior. The pipeline approach, on the other hand, is
considered more tangible because it can output intermediate
results for purposes of human inspection and validation (i.e.
object detection bounding boxes). However, the pipeline
approach is often suboptimal because training the submodules
separately may cause one to lose track of the ultimate goal.
Such segregated training can lead to a misallocation of
computation resources due to the detection of irrelevant objects
or the erroneous neglect of important objects in the driving
environment. For example, the detection of objects located
beyond the roadway sidewalk will not be beneficial to AVs.
However, failure to detect traffic signal colors could be
catastrophic. Another limitation of the pipeline approach is that
it requires an explicit definition in themanner of cooperation of
the two submodules; if the cooperation protocol is ill-defined,
the overall performance of the entire model can be jeopardized
even if the individual submodules exhibit good performance.
A natural way of integrating the benefits from both end-to-

end system and pipelined system is to add intermediate output
heads that can generate human understandable results while
training the entire system end-to-end for the final goal. For
example, by adding “explanation head” to AV systems, the
model can simultaneously output both driving actions and
corresponding explanations. The explanations provide an
opportunity to ascertain whether the correct causal
relationships (between the driving environment from the input
images and actions) have been learned. They also serve as extra
labels (extra loss function) to facilitate the entire training
process. Furthermore, from an application perspective, the
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joint prediction of explanations and decisions could yield
additional redundancy to the entire system compared to
models that output decisions only. Because causal relationship
between explanations and driving decisions can be easily stored
as simple rules (e.g. perceiving a yellow light on the traffic signal
should result in a slow down or stop decision). If the model fails
to predict the consistent decisions with explanations, warnings
could be sent immediately to the human operator for the
requisite intervention. As the result, this extra setting can help
enhance the model interpretability, boost confidence in the
model and eventually incentivize AV system manufacturers to
adopt themodel.

1.2.4 Imitation of human vision using image attention
In recent years, despite the fact that DL models have shown
great promise in image processing, human vision remains an
incontrovertible benchmark. This is because the human eye
possesses a multiresolution structure, namely, peripheral and
foveal vision (Xia et al., 2020), and a proper “attention”
mechanism to reach a balance in efficiency and recognition
accuracy. Peripheral vision is blurry (low resolution) but
requires only a short time for processing and has a larger field of
vision. Foveal vision, on the other hand, is clear (high
resolution) but requires longer processing time and only has a
limited vision field. The combination of these two structures
guarantees the efficiency because it enables the human to
“attend” only to the salient and important regions with foveal
vision while the overall information of the scene can be
necessarily understood with only peripheral vision. In AV
perception, this is also important because the computation cost
needs to be minimized as much as possible so that perception
and decisions can take place withminimal delay.
In efforts to imitate human vision, visual attention has

gradually evolved into a research area of great interest to AV
researchers. Recently, a SOTA paper on end-to-end AV
systems proposed an object-induced attention mechanism to
generate driving decisions with “salient” objects in the scene
(Xu et al., 2020). More recently, it has been demonstrated
theoretically that a self-attention (SA) based model named
Transformer (Zhao et al., 2020) exhibits similar characteristics
and performance as the convolutional neural network (CNN)
and is also capable of capturing long-range correlations within
an image. This is the key inspiration and motivation for the
present paper. In subsequent sections of this paper, we
demonstrate the efficacy of the Transformer-based model in
generating driving actions and explanations for autonomous
driving systems.

1.3 Research gaps andmain objectives/contributions of
this paper
Xu et al. (2020) proposed an object-induced attention
mechanism that performs an attention over the detected objects
and uses only the relative objects to generate driving actions
and explanations. More specifically, their model uses a
“selector” structure to “crop” the fused regional features. This
fused regional feature is generated by stacking the regional
features that are computed using Ren et al.’s (2017)
FasterRCNN’s region proposal network (referred to as the
local branch) and the raw overall feature map for the entire
image (referred to as the global branch). To conduct feature

selection, the selector assigns a score to each region proposal to
measure its relative importance and identifies the k regions with
k-highest scores to compute the driving actions and
explanations. That is, during the training process, the model
implicitly strives to learn a metric to weigh the regional features
based on the semantics and their relative contribution to the
driving decisions.
Even though their model demonstrated satisfactory

performance in predicting the actions together with
explanations, there is still good reason to consider this attention
mechanism as suboptimal with certain shortcomings. The
shortcomings arise due to three reasons. First, the ablation
study results in Xu et al.’s research depict a baseline model with
only “global” branch can exhibit performance similar to the full
model (which integrates the “global” and “local” features of the
image). This indicates that the global features (overall
information of the image) are more important and can
overwhelm the contribution of regional features (the
recognized objects in the scenario). This phenomenon is
consistent with the intuition that when generating high-level
driving actions (move forward, turn left/right, or stop), human
drivers tend to use peripheral vision because only an
approximate characterization of the driving scene is needed.
For example, if there is an obstacle in the driving scene, the
driver only needs to roughly see it (with peripheral vision) and
can quickly eliminate the erroneous action of driving towards
the obstacle’s direction before clearly perceiving its details such
as shape and color. However, the object-induced attention as
described in the research is more consistent to foveal vision
because the prediction head of the model can “only” rely on
those highly detailed cropped-out regions. Secondly, this
attention mechanism largely depends on the object detection
module (region proposal network) which has been pretrained
to assign greater focus on “object-containing” regions and
ignoring “non-object” (background) regions. However, for
driving tasks, these “non-object” regions may contain vital
information such as lane markers and drivable areas.
Therefore, building the model on top of the method based on
object detection could be suboptimal. Third, as the number of
selected regions k is part of the model parameter, it requires
large number of experiments to determine its value. If k too
small, this “hard” selection mechanism will inevitably create a
bottleneck to restrict the information flow in the model. For
example, selecting only k regions will restrain the model
flexibility, especially in the cases when there exist more than k
pivotal regions (the regions that require the model to attend to
achieve full understanding of the scenario). If k too large, the
computation resources will be wasted, and the extra
information could rather impair the model performance
because the noise level is high.
To overcome these three shortcomings, we propose a global

soft attention (GSA) mechanism which imitates the peripheral
vision capability of the human eye and uses the global features
of the image. Overall, the model “softly” fuses the information
from each region inside the image using Transformer model.
The Transformer model is adopted here because a number of
research studies have demonstrated that, compared to CNN,
Transformer releases the constraints of generating visual
features only based on local regions (Zhao et al., 2020). This
makes themodel capable of possessing a “broader” horizon and
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capturing regions that not only aremuch wider compared to the
traditional CNN kernel but also facilitate analysis of
correlations within the image. This issue is further discussed in
the results section of this paper.
In summary, the main contributions of this paper are

threefold:
1 developed an end-to-end explainable DLCV model to

generate driving actions with explanations;
2 proposed a new DL architecture with a novel visual

attention mechanism using the Transformer model to
achieve SOTA with significantly superior performance
and lower computational cost compared to the
benchmark model; and

3 conducted multiple experiments in a variety of settings to
evaluate the importance of information (global vs
regional) and the attention mechanism (hard vs soft) in
the high-level driving decision-making process.

From the perspective of practical application, the proposed
model can enhance human trust in DLCV-based autonomous
driving system for both AV users and AV system developers.
For AV users, on the one hand, the driving decisions and
explanations can be presented to the user simultaneously
showing the corresponding causal relationship at the initial
deployment stage of autonomous vehicles. On the other hand,
such system can perform as a “whistle” to send out instant
warnings to the driver or require human intervention if there
exist inconsistency between any two predictions. This could
lend additional safety redundancy to the entire AV system and
thereby boost human trust and acceptance of automated
driving systems. For developers, such explainable system is
helpful in system debugging because it can output human-
understandable outputs, identify potential flaws of the existing
system and identify directions for future improvements.
Therefore, the concept of “explainable” models is beneficial to
the entire AV industry from perspectives of both the user and
themanufacturer.

2. Methods

The proposed model, as well as all the baseline models
introduced in Section 3 share the same structure containing
three blocks, namely, Feature Extractor, AttentionModule and
Decision/Reason Generation (Figure 2). As its name suggests,
the feature extractor is used to generate the low-level feature
embeddings from the raw image, which contains image
preprocessing (i.e. normalization, reshape) and a pretrained
backbone CNNmodel. On top of Feature Extractor, Attention
block solves the problem of information fusion and feature
selection. For the proposed model, the attention is achieved by

correlating the features from each spatial location using “self-
attention” mechanism to compute the attention weights and
using these attention weights to either “amplify” or “filter out”
the features. The final block takes in the attended feature map
and conducts two separate multiclass classification tasks for
generating both driving decisions and corresponding
explanations. The entire model integrates the three blocks and
is trained end-to-end with the aggregated loss function for both
predictions. The rest of this section of the paper explains each
block in detail.

2.1 Feature extractor
The proposed model used the Feature Extractor block as the
global feature extractor to acquire overall features of the image
instead of specifically focusing on object-containing regions.
To this end, as shown in Figure 3, themodule first preprocesses
the image (resize and normalization) and then computes the
visual features using pre-trained CNNmodels. In this work, we
experimented with two classic backboneCNNmodels, namely,
Resnet50 (He et al., 2016) or Mobilenet_v2 (Sandler et al.,
2018). The evaluation and selection of these two models was
based on the tradeoff between computation cost and accuracy.
Mobilnet_v2 is designed to run on mobile devices, which has
much higher computational speed due to its use of a smaller
number of parameters, while the Resnet model are much
deeper in structure and is believed to represent the state of the
art in image feature generation. In addition, as the target for this
project is to examine the performance of the upper stream
architecture (attention module) and the feature importance,
the pretrained Feature Extractor module is frozen in both
training and testing time.

2.2 Transformer
The feature map obtained from the Feature Extractor contains
the information of the entire image, which is then fed to the
Transformer to perform “global soft attention” (Figure 4).
More specifically, the output from the previous block is a 3D

tensor of shape (h �w � f) where f is the feature dimension of
each spatial location. The variables h andw represent the height
and width, respectively, of the feature map. Then, the two
spatial dimensions (h and w) are flattened, and the output 2D
feature map X [ Rs � f is treated as a sequence of input with a
sequence length of s = h �w. The basic building block of the
Transformer model is referred to as the multihead self-
attention (MHSA) layer. MHSA represents a parallel
computation of SA which measures the “similarity” between
two inputs using their dot product. Initially, SA establishes
three representations: key, query and value (K, Q and V) with
three distinct linear layers: K = XWK, Q = XWQ and

Figure 2 Architecture of the proposed model
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V = XT WV, with WK, WQ and WV as their respective weights,
K; Q 2 Rs�dk and ; V 2 Rs�dv). It is then possible to
generate a matrix of the attention score (a) (which measures
degree of correlation between regions) by determining the dot
product of the query and key, and then softmax normalization
as shown in equation (1):

a ¼ softmax
QKTffiffiffiffiffi

dk
p

 !
2 Rs�s (1)

where dk is the dimension of K and Q. This attention
mechanism enables the output embedding for each spatial
location contains not only the information of the
spatial location itself but also important information from other
spatial locations. The attention scores serve as the fusion
weights for generating the attended feature maps. The output
of the SA is themultiplication of the value (V) and the attention
score, and this completes the computation for single head
[equation (2)]. Then the MHSA layer is simply the parallel
version of SA which simultaneously computes multiple SA by
concatenating all the heads [equation (3)]:

head ¼ Attention K;Q;Vð Þ ¼ aV (2)

MHSA Xð Þ ¼ concat head1; . . . ; headhð Þ Wout 2 Rs�dout

(3)

where Wout 2 Rdv�dout represent the weights for the final
output linear layer which is applied for fusing the results from
multiple heads and h is the number of heads computed in
parallel. Compared to single head, using MHSA enables each
head to simultaneously focus on different tasks and can attend
to regions with different ranges. This manipulation can greatly
enhance the model’s flexibility and generalization power. The
final output from theTransformer (MHSA layer)maintains the
same spatial dimension as the input feature map X. However,
each spatial location contains the “fused” information from this
location itself and other regions based on the automatically
computed correlation. For demonstration purposes, we use a
singleMHSA layer in this paper.

2.3 Decision/reason generator
As shown in Figure 5, theDecision/ReasonGenerator block is a
standard multitask classifier containing two branches for
generating driving decisions and explanations, respectively. It
takes the output feature map from MHSA block as input and
performs two separate classifications.
This is achieved using two independent neural networks: the

action network and the explanation network. The former has
four output classes that represent each driving decisions (going
straight, stop/slow down, turn left, turn right) while the latter
has 21 output classes for the corresponding explanations. As for
the detailed architecture, we use the same structure with fully

Figure 3 Global feature extractor

Figure 4 Self-attention (SA) layer (single head)
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connected (FC) layers for both the networks [Dense(128) 1
Dense(128)1Dense(# of outputs)]. Finally, the model is trained
end-to-end, following the classic multitask learning manner
that aggregates the two losses (driving action loss LA and
explanation loss LE). This setting requires the model to
simultaneously learn to generate the decision and explanation,
thus the corresponding causal relationship between these two
losses [equations (4) and (5)] can be learned implicitly:

LA ¼
X4
i

L Âi ;Ai

� �
;LE ¼

X21
i

L Êi ;Ei

� �
(4)

L ¼ lLA 1LE (5)

where l is the weight parameter for tuning the tradeoff between
the two losses. Based on the experiment in Xu et al. (2020),
when l = 1, the model yields the best performance in terms of
both action and explanation prediction. In this paper, we adopt
this result from that study, and therefore, use a l = 1 value of 1,
because the explanation and driving decision should be equally
weighted. The “4” and “21” in equation (4) refer to the total
number of actions and explanations, respectively, in the
dataset, which will be explained in detail in Section 3 of this
paper. L(s²,s²) represents the binary cross entropy loss defined
in equation (6), where y and ŷ represent the true label and the
model prediction, respectively:

L y; ŷð Þ ¼ � 1
N

XN
i¼1

yi logðp ŷlð ÞÞ þ 1� yið Þlogð1� p ŷlð ÞÞ (6)

3. Experimental settings

Figure 6 presents themodel components for the baselinemodels.

3.1 Data set
The study trained and evaluated the models described above,
using Xu et al.’s (2020) BDD Object Induced Actions (BDD-
OIA) data set. The BDD-OIA data set extended the original
BDD-100K data set (Yu et al., 2020b) by labeling each frame
individually with driving actions and explanations. The actions
refer to high-level feasible driving maneuvers that can be
undertaken by the driver at any specific time step: move forward,

stop/slow down, turn left and turn right. The explanations are
associated with the actions and are summarized into 21 classes.
Figure 7 illustrates the example image and labels. Table 1
presents the labels for actions and explanations. The model is
developed with a training set of 16,082 images, a validation set of
2,270 images and a test set of 4,572 images.

3.2 Baselinemodels and setups
As mentioned in the Introduction, two key technical
motivations for this study are to evaluate the relative
importance between global and regional information and test
different attention mechanisms (hard vs. soft attention).
Therefore, we compare our GSA model with several baseline
models including: regional hard-attention (RHA), regional
soft-attention (RSA) and global no-attention (GNA)model:
� The RHA model is similar to the object-induced attention

model proposed in a benchmark study (Xu et al., 2020) albeit
with the local branch only (we did not reimplement the model
in the benchmark study but compared its results with ours in
the result section). This model uses Faster RCNN with
Feature Pyramid Network (FPN) as feature extractor as
shown in Figure 6(b), followed by a RHAmodule which uses
a FC layer to compute a score for each region proposal and
select only top-k objects (based on the scores) for generating
actions [as shown in Figure 6(d)]. In this research, we trained
two models with k = 5 and k = 10. We keep the local branch
only to test the importance of regional information for the
overall driving decision and explanation generation.

� The RSA model uses the same soft attention mechanism
(Transformer) as the proposed GSAmodel [MHSA block in
Figure 6(c)], but the attention is conducted over the region
proposals instead of the global features. It uses the same
FasterRCNN (FPN) as Xu et al. (2020) to generate the
regional features [acquired from Figure 6(b)]. This model
mainly serves to compare the performance between soft
attention and hard attention. In addition, we trained two
RSAmodels with five and eight heads.

� The GNA model mainly serves as an ablation study to our
GSA model. It uses the same global features [generated
from Resnet/Mobilenet backbone with Figure 6(a)
structure] as GSA. However, a vanilla FCN having
parameters similar to those of the MHSA block replaces
the Transformer structure (MHSA) block.

Figure 5 Process of the Decision/Reason Generator
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Figure 6 Structures for the baseline models
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4. Results

The training is conducted on one NVIDIA Quadro RTX-6000
GPU, which has 24GB RAM. All the models are trained using
batch size b = 10, the stochastic gradient descent method with
an initial learning rate a = 0.001, and a learning rate decay of

10�4. All the models are trained for 40 epochs (64,080
batches). Figure 8 presents the corresponding training curves
(training loss vs number of steps) for our proposed GSAmodel
and all the baselines mentioned above. From the training curve,
it can be observed clearly that the two proposed GSA models
converge much faster and can achieve much lower training
losses compared to the baselines.

4.1 Quantitative evaluation
We performed the same prediction task (actions and
explanations prediction) as the benchmark model presented in
previous research (Xu et al., 2020), and we evaluated the
proposed model using evaluation metrics similar to those in
recent literature. For both decision and explanations, two
versions of the F-1 score were used: the overall F1 score, F1all
(the F1 score calculated over all the predictions), and the mean
in-class F1 score, mF1, a metric typically used where the data
are unbalanced. Amodel with a high F1 score indicates that the
model has higher recall and higher precision. Equation (7)
presents the calculation of theF1all score:

F1all ¼ 1
jAj
XjAj
j¼1

F1 Âj ;Aj

� �
(7)

where Aj = true label (representing an explanation or action),
jAj = total number of predictions, Âj = predicted value. In the
data set, there exist a greater number of instances associated
with the “going-straight” action compared to the “turn-left”
action; in other words, the data set is unbalanced. For this
reason, equation (8) was used to calculate the F1 score for each

Figure 7 Examples of ground-truth images and decisions from the BDD-OIA data set

Table 1 Actions with explanations in BDD-OIA

Actions Explanations

Move forward Traffic light is green
Follow traffic
Road is clear

Stop/Slow down Traffic light is red
Traffic sign
Obstacle: car
Obstacle: person
Obstacle: rider
Obstacle: others

Turn left No lane on the left
Obstacles on the left lane
Solid line on the left
On the left-turn lane
Traffic light allows
Front car turning left

Turn right No lane on the right
Obstacles on the right lane
Solid line on the right
On the right-turn lane
Traffic light allows
Front car turning right
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predicted class, and the mF1 value was calculated as the mean
of all the F-1 scores:

mF1 ¼ 1
C

XC
j¼1

Xn
i¼1

F1 ^Aj
i ;A

j
i

� �
(8)

C is the number of predicted classes (4 for actions, 21 for
explanations), n is the total number of points in the test data set.
The detailed performance in terms of actions and explanations
prediction is listed in Table 2.
Apart from the prediction performance, another important

aspect of evaluating the model is the computation complexity.
We document the number of trainable parameters and the total
training time for 40 epochs on the training data set in the final
two columns of Table 2. Compared to the regional model

(RHA and RSA) which takes more than 10hours of training,
the global models (GNA, GSA) require only one-third of
computation resources. The combined results from both loss
curve (Figure 8), the performance and computational cost in
Table 2 indicate that even with fewer parameters and much
shorter training time, the proposed GSA model achieves lower
training loss and yields higher performance. This indicates that
the global attention is generally superior to regional attention in
predicting driving-related actions and explanations.

4.3 Qualitative evaluation
Figure 9 presents the examples of the predictions (generated
from GSA-Mobilenet) on the test set. Regarding the action
prediction, “G” stands for ground truth and “P” for model
prediction. Regarding explanations, green color indicates true

Figure 8 Training curve for all seven models (proposed GSA and baselines)

Table 2 Model performance and complexity of proposed model� and the baselines

Attention mechanism Model Decision mF1 Decision F1all Explanation mF1 Explanation F1all
# of trainable
parameters

Training time
(40 epochs)

Regional
Attention

Xu et al. (2020) 0.718 0.734 0.208 0.422 – –

RHA (5 obj) 0.572 0.494 0.482 0.047 11.04M 10 h, 28min
RHA (10 obj) 0.565 0.495 0.499 0.123 21.53M 10 h, 30min
RSA (5 heads) 0.595 0.476 0.506 0.127 21.22M 10 h, 32min
RSA (8 heads) 0.608 0.542 0.554 0.330 20.75M 10 h, 42min

Global no attention GNA (resnet) 0.706 0.660 0.561 0.352 26.10M 3 h, 10min
�Global soft attention GSA (resnet) 0.750 0.729 0.644 0.525 24.08M 3 h, 15min

GSA (mobilenet) 0.746 0.718 0.642 0.531 2.61M 2 h, 53min

Notes: From Table 2, the following conclusions can be made: The proposed global soft attention (GSA) models outperform all the baselines with a significant
margin, particularly with regard to explanation prediction. Global features are generally more useful compared to regional features, even where the vanilla
model (GNA) is used without any special attention mechanism. Soft attention is superior to hard attention even in cases where only regional information is
available. With regard to the feature extractor, using Mobilenet_v2 has comparable predictive performance compared to Resnet50 but saves a significant
amount of training time. Increasing the number of heads can generally enhance the performance of soft attention models. The superiority of the model is:
GSA> GNA> RSA> RNA. This also matches the training loss curve (Figure 8) in terms of the final loss and convergence rate
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positive, yellow indicates false positive and red indicates false
negative. The predictions are done for eight images chosen
randomly from the test data set. By inspecting the scenarios and
the predictions, the model predictions can correctly predict the
driving decisions with high accuracy while generating the
corresponding explanations. The generated explanations
match the decisions and driving scenarios in most cases. It is
worth noting that from the first image, the model predicts an
extra explanation indicating the traffic light is red. Even though
this is not included in the label, by inspecting the image, we can
see the model is in fact making the correct prediction as it does
exist the red traffic light in the right of the image.We also notice
that there exists some inconsistency in the labels of the dataset,
for example, the third image labels the vehicle with turn right
decision even if it has the explanation indicating the vehicle is
on the left turning lane. This explanation is not predicted by the
model since it does not match the correct causal relationship.

Furthermore, by inspecting more examples, we notice this
inconsistency does not greatly impair the performance of the
model and does not impact the comparative analysis between
the proposedmodel with all other baselines.

4.4 Discussion
4.4.1 Attention mechanism: soft > hard
The soft attention (Transformer in this work) is superior to the
hard attention (score-based selection) because the former is
capable of fusing individual pieces of information in the image
based on their individual contributions to the ultimate driving
goal (maneuver) rather than simply picking themore important
regions. The latter inevitably creates a “bottleneck” to the
information flow path and therefore leads to nonconsideration
of some information that could be useful to the driving actions.
Furthermore, as the regional hard attention “crops” the
regions, the correlation between the objects as well as the

Figure 9 Example predictions
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“relativity” among the image are eliminated. For example, after
“selection” operation [Figure 6(d)], obstacles located farther
away could have the same representation of the obstacles
located close by, then the model cannot know which one is
closer. This will increase the ambiguity to the downstream
decision/explanation generation block. On the other hand, the
soft attention can learn the correlation and compute a “soft”
fusion of all the features using the attentionmap.

4.4.2 Feature importance: global > local
The global features are superior to regional features due to the
inherent nature of driving decisions. For generating high-level
actions (e.g. move forward, stop/slow), the acquisition of an
overall characterization of the roadway scene is more essential
compared to the recognition of every single object and
computation of their bounding boxes. Therefore, even the
GNA baseline can yield superior performance compared to
regional attention models built on top of object detection
models. In addition, despite the GSA models are not equipped
specifically with object detection block in the architecture, the
explanations predicted still contains the information of local
regions. For example (Figure 9, column 1), the model can still
identify the red traffic lights, persons and vehicles obstacles
even if these objects occupy only a small proportion of the
image. Therefore, based on our experiment results, it is still safe
to conclude the global attention (Transformer) mechanism will
not neglect the local regions.

4.4.3 Transformer is useful in feature fusion
The Transformer-based models (the two GSAs) outperform
the GNA because their MHSA structure can capture long-
range correlations within an image. Compared to classic CNN
based methods which can capture only the local region
correlations due to the fixed size of convolution kernels in each
layer, the Transformer-basedmodels enable information fusion
over the entire image. This long-range correlation is typically
crucial for driving decisions because there exists a “relativity”
correlation within the image. For example, “left” is relative to
the “right”; therefore, to generate the decision of “turn left,”
the model needs to understand which part of the image
depicts the “left region.” Because the cameras are not always
facing the same direction as the movement direction of the
vehicle, the ratio of “left region” to the entire image keeps
changing. Therefore, the model has to understand “left” and
“right” relatively from the scene context, which can only be
achieved with Transformer based model by simultaneously
attending to multiple regions. This entire mechanism is
analogous to the peripheral vision of the human eye as human
drivers generating driving actions (quickly looking at multiple
regions and then making driving decisions instantaneously
without clearly seeing each individual object in the region)
(Wolfe et al., 2017; Rosenholtz, 2016).

4.4.4 Causal relationship is correctly learned
One of the most salient problem for the existing end-to-end
DLCV-based autonomous driving system is that whether the
model has truly “understood” the driving scenario remains
uncovered to human even if the prediction of driving decisions
is correct. In our settings, we “force” the model to explicitly to
understand the driving environment by injecting a second loss
function (through joint prediction of explanation) as these

explanations are the human understandable descriptions to the
driving scenario. From Figure 9, it is clearly shown that the
model can correctly identify majority of the explanations
associated with the driving decisions. This indicates that the
model is able to capture the correct causal relationship between
the driving decisions and the driving environment, and this
capability is useful to enhance the user trust in the automated
system.

4.4.5 Potential to identify the limitations of the existing model
From the last two columns in Figure 9, it can be inferred that a
weakness of the model is its inability to predict the explanations
pertaining to the lane location of the vehicle (the model fails to
identify the vehicle is on the left-turning lane in both cases).
This problemmay be due to the lack of training data associated
with this explanation as the original BDD-OIA data set is
unbalanced with relatively very few examples indicating that
the vehicle should make a turn as it is on the corresponding
lane. This can be mitigated by further enriching the dataset by
collecting data instances regarding these sparse cases and
incrementally training the existing model. Therefore, the
proposed model can potentially identify not only its limitations
but also the direction of its improvement in a human-
understandable manner. This property does generally not exist
inmost otherDLmodels in the existing literature.

5. Conclusion

In this paper, we propose a novel architecture to generate
driving actions as well as explanations based on images, to
facilitate autonomous driving. The objective is to mitigate the
low interpretability nature of DL-based computer vision
models and ultimately, to enhance user trust of autonomous
driving systems. The proposed architecture uses the
Transformer model (i.e. the MHSA module) to imitate the
peripheral vision of humans. The results from the experiments
demonstrate that the proposed model outperforms all the
baseline models in terms of prediction accuracy and training
time.
In the process of addressing these broad objectives, the study

evaluated the relative importance of the global features and the
local features as well as the appropriate visual attention
mechanism for feature engineering. The experiment results
suggest that based on the BDD-OIA data set used in the study:
� global features are relatively more important than regional

features; and
� the soft attention (Transformer) is superior to hard

attention (region selection).

These results are consistent with intuition: for the high-level
driving decisions (go straight, slow down/stop, etc.) the
peripheral vision (emulated by the global attention) that can
achieve long-range correlation and can quickly grasp the overall
semantics in the driving environment is found to be more
essential compared to foveal vision which specifically focuses
on a relatively small region. Therefore, in the development of
actual vision-based autonomous driving systems, it is
recommended that the designers assign higher priority to the
overall information and create the appropriate attention
mechanism to enhance the global features.
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In the contexts of situational awareness and driver assistance,
the proposed model can perform as a driving alarm system for
both human-driven vehicles and autonomous vehicles because
it is capable of quickly understanding/characterizing the
environment and identifying any infeasible driving actions. In
addition, the extra explanation head of the proposed model
provides an extra channel for sanity checks to guarantee that
themodel learns the ideal causal relationships. This provision is
critical in the development of autonomous systems.
Moving forward to the future work, the proposed model can

be further improved by incorporating and fusing other sources
(sensor types) such as LiDAR point clouds and information
from vehicle-to-vehicle (V2V) connectivity. In this context, the
camera is a powerful sensor that can capture a number of
semantics in the driving environment, but is vulnerable to
occlusion, poor illumination, reflection and so on, and V2V
connectivity can address these limitations. V2V provides more
straightforward information on the speed, speed change rate
and location of neighboring vehicles, and this information can
be used directly in the vehicle motion planning module without
perception requirements. The fusion of information from
multiple sources imparts to the autonomous driving system, the
virtues of information redundancy, resilience to possible sensor
misfunction and an added layer of system reliability and
occupant safety.

References

Alwosheel, A., van Cranenburgh, S. and Chorus, C.G. (2021),
“Why did you predict that? Towards explainable artificial
neural networks for travel demand analysis”, Transportation
Research Part C: Emerging Technologies, Vol. 128, doi:
10.1016/j.trc.2021.103143.

Bojarski, M., Del Testa, D., Dworakowski, D., Firner, B.,
Flepp, B., Goyal, P. Jackel, L.D. et al. (2016), “End to end
learning for self-driving cars”, pp. 1-9.

Bustos, C., Rhoads, D., Solé-Ribalta, A., Masip, D., Arenas,
A., Lapedriza, A. and Borge-Holthoefer, J. (2021),
“Explainable, automated urban interventions to improve
pedestrian and vehicle safety”, Transportation Research Part
C: Emerging Technologies, Vol. 125, doi: 10.1016/j.
trc.2021.103018.

Chen, S., Leng, Y. and Labi, S. (2019), “A deep learning
algorithm for simulating autonomous driving considering
prior knowledge and temporal information”, Computer-Aided
Civil and Infrastructure Engineering, Vol. 35 No. 4, doi:
10.1111/mice.12495.

Chen, S., Dong, J., Ha, P., Li, Y. and Labi, S. (2021), “Graph
neural network and reinforcement learning for multi-agent
cooperative control of connected autonomous vehicles”,
Computer-Aided Civil and Infrastructure Engineering, Vol. 36
No. 7, doi: 10.1111/mice.12702.

Cui, Z., Henrickson, K., Ke, R. andWang, Y. (2019), “Traffic
graph convolutional recurrent neural network: a deep
learning framework for network-scale traffic learning and
forecasting”, IEEE Transactions on Intelligent Transportation
Systems, Vol. 21No. 11, doi: 10.1109/tits.2019.2950416.

Dong, J., Chen, S., Zong, S., Chen, T. and Labi, S. (2021b),
“Image transformer for explainable autonomous driving

system”, In 2021 IEEE International Intelligent Transportation
Systems Conference (ITSC), IEEE, pp. 2732-2737.

Dong, J., Chen, S., Li, Y., Du, R., Steinfeld, A. and Labi, S.
(2021a), “Space-weighted information fusion using deep
reinforcement learning: the context of tactical control of
lane-changing autonomous vehicles and connectivity range
assessment”, Transportation Research Part C: Emerging
Technologies, Vol. 128, doi: 10.1016/j.trc.2021.103192.

Dong, J., Chen, S., Li, Y., Ha, P.Y.J., Du, R., Steinfeld, A. and
Labi, S. (2020), “Spatio-weighted information fusion and
DRL-based control for connected autonomous vehicles”,
2020 IEEE 23rd International Conference on Intelligent
Transportation Systems, ITSC 2020, doi: 10.1109/
ITSC45102.2020.9294550.

Doran, D., Schulz, S. and Besold, T.R. (2018), “What does
explainable AI really mean? A new conceptualization of
perspectives”,CEURWorkshop Proceedings.

Du, R., Chen, S., Dong, J., Ha, P.Y.J. and Labi, S. (2021),
“GAQ-EBkSP: a DRL-based urban traffic dynamic
rerouting framework using fog-cloud architecture”, doi:
10.1109/isc253183.2021.9562832.

FHWA (2019), “Evaluation methods and techniques:
advanced transportation and congestion management
technologies deployment program, tech”, Rep. Nr. FHWA-
HOP-19-053, Prepared by the Volpe National Transportation
Syst,Washington, DC.

Ha, P., Chen, S., Du, R., Dong, J., Li, Y. and Labi, S. (2020),
“Vehicle connectivity and automation: a sibling
relationship”, Frontiers in Built Environment, Vol. 6, doi:
10.3389/fbuil.2020.590036.

He, K., Zhang, X., Ren, S. and Sun, J. (2016), “Deep residual
learning for image recognition”, Proceedings of the IEEE
Computer Society Conference on Computer Vision and Pattern
Recognition, doi: 10.1109/CVPR.2016.90.

Horgan, J., Hughes, C., McDonald, J. and Yogamani, S.
(2015), “Vision-based driver assistance systems: survey,
taxonomy and advances”, IEEE Conference on Intelligent
Transportation Systems, Proceedings, ITSC, doi: 10.1109/
ITSC.2015.329.

Hou, R., Jeong, S., Lynch, J.P. and Law, K.H. (2020), “Cyber-
physical system architecture for automating the mapping of
truck loads to bridge behavior using computer vision in
connected highway corridors”, Transportation Research Part
C: Emerging Technologies, Vol. 111, doi: 10.1016/j.trc.2019.
11.024.

Hu, H., Zhao, T., Wang, Q., Gao, F. and He, L. (2020), “R-
CNN based 3D object detection for autonomous driving”,
CICTP 2020: Transportation Evolution Impacting Future
Mobility – Selected Papers from the 20th COTA International
Conference of Transportation Professionals, doi: 10.1061/
9780784483053.077.

Khastgir, S., Birrell, S., Dhadyalla, G. and Jennings, P. (2018),
“Calibrating trust through knowledge: introducing the
concept of informed safety for automation in vehicles”,
Transportation Research Part C: Emerging Technologies,
Vol. 96, doi: 10.1016/j.trc.2018.07.001.

Kim, J. and Canny, J. (2017), “Interpretable learning for self-
driving cars by visualizing causal attention”, Proceedings of the
IEEE International Conference on Computer Vision, doi:
10.1109/ICCV.2017.320.

Autonomous driving systems

Jiqian Dong et al.

Journal of Intelligent and Connected Vehicles

Volume 5 · Number 3 · 2022 · 235–249

247

http://dx.doi.org/10.1016/j.trc.2021.103143
http://dx.doi.org/10.1016/j.trc.2021.103018
http://dx.doi.org/10.1016/j.trc.2021.103018
http://dx.doi.org/10.1111/mice.12495
http://dx.doi.org/10.1111/mice.12702
http://dx.doi.org/10.1109/tits.2019.2950416
http://dx.doi.org/10.1016/j.trc.2021.103192
http://dx.doi.org/10.1109/ITSC45102.2020.9294550
http://dx.doi.org/10.1109/ITSC45102.2020.9294550
http://dx.doi.org/10.1109/isc253183.2021.9562832
http://dx.doi.org/10.3389/fbuil.2020.590036
http://dx.doi.org/10.1109/CVPR.2016.90
http://dx.doi.org/10.1109/ITSC.2015.329
http://dx.doi.org/10.1109/ITSC.2015.329
http://dx.doi.org/10.1016/j.trc.2019.11.024
http://dx.doi.org/10.1016/j.trc.2019.11.024
http://dx.doi.org/10.1061/9780784483053.077
http://dx.doi.org/10.1061/9780784483053.077
http://dx.doi.org/10.1016/j.trc.2018.07.001
http://dx.doi.org/10.1109/ICCV.2017.320


Kim, J., Moon, S., Rohrbach, A., Darrell, T. and Canny, J.
(2020), “Advisable learning for self-driving vehicles by
internalizing observation-to-action rules”, Proceedings of the
IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, doi: 10.1109/CVPR42600.2020.00968.

Ku, J., Pon, A.D. andWaslander, S.L. (2019), “Monocular 3D
object detection leveraging accurate proposals and shape
reconstruction”, Proceedings of the IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, doi:
10.1109/CVPR.2019.01214.

Lioris, J., Pedarsani, R., Tascikaraoglu, F.Y. and Varaiya, P.
(2017), “Platoons of connected vehicles can double
throughput in urban roads”, Transportation Research Part C:
Emerging Technologies, Vol. 77, doi: 10.1016/j.trc.2017.
01.023.

Litman, T. (2014), “Autonomous Vehicle Implementation
Predictions: Implications for Transport Planning”, Transportation
Research Board AnnualMeeting, doi: 10.1613/jair.301.

Liu, Y., Liu, Z. and Jia, R. (2019), “DeepPF: a deep learning
based architecture for metro passenger flow prediction”,
Transportation Research Part C: Emerging Technologies,
Vol. 101, doi: 10.1016/j.trc.2019.01.027.

McCausland, P. (2019), “Self-driving uber car that hit and
killed woman did not recognize that pedestrians jaywalk”,
NBCNews, pp. 3-5.

NTSB (2019), “Collision between vehicle controlled by
developmental automated driving system and pedestrian”,
Highway Accident Report NTSB/HAR19/03 Washington,
DC.

Peng, B., Keskin, M.F., Kulcs�ar, B. and Wymeersch, H.
(2021), “Connected autonomous vehicles for improving
mixed traffic efficiency in unsignalized intersections with
deep reinforcement learning”, Communications in
Transportation Research, Vol. 1, doi: 10.1016/j.commtr.
2021.100017.

Ren, S., He, K., Girshick, R. and Sun, J. (2017), “Faster R-
CNN: towards real-time object detection with region
proposal networks”, IEEE Transactions on Pattern Analysis
and Machine Intelligence, Vol. 39 No. 6, doi: 10.1109/
TPAMI.2016.2577031.

Rosenholtz, R. (2016), “Capabilities and limitations of
peripheral vision”, Annual Review of Vision Science, Vol. 2
No. 1, doi: 10.1146/annurev-vision-082114-035733.

Sandler, M., Howard, A., Zhu, M., Zhmoginov, A. and Chen,
L.C. (2018), “MobileNetV2: inverted residuals and linear
bottlenecks”, Proceedings of the IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, doi:
10.1109/CVPR.2018.00474.

Schwarting, W., Alonso-Mora, J. and Rus, D. (2018),
“Planning and decision-making for autonomous vehicles”,
Annual Review of Control, Robotics, and Autonomous Systems,
Vol. 1 No. 1, pp. 187-210.

Sinha, K.C. and Labi, S. (2007), “Transportation decision
making: principles of project evaluation and programming,
transportation decision making: principles of project
evaluation and programming”, doi: 10.1002/
9780470168073.

Sowmya Shree, B.V. and Karthikeyan, A. (2018), “Computer
vision based advanced driver assistance system algorithms
with optimization techniques-a review”, Proceedings of the 2nd

International Conference on Electronics, Communication and
Aerospace Technology, ICECA 2018, doi: 10.1109/
ICECA.2018.8474604.

Talpaert, V., Sobh, I., Ravi Kiran, B., Mannion, P., Yogamani,
S., El-Sallab, A. and Perez, P. (2019), “Exploring
applications of deep reinforcement learning for real-world
autonomous driving systems”, VISIGRAPP 2019 –

Proceedings of the 14th International Joint Conference on
Computer Vision, Imaging and Computer Graphics Theory and
Applications, doi: 10.5220/0007520305640572.

TRB (2018), “Socioeconomic impacts of automated and
connected vehicle: summary of the sixth EU – US”,
Transportation Research Symposium, Transportation Research
Board Conference Proceedings.

TRB (2019), “TRB forum on preparing for automated vehicles
and shared mobility: mini-workshop on the importance and
role of connectivity”,Transportation Research Circular.

Veres, S.M., Molnar, L., Lincoln, N.K. and Morice, C.P.
(2011), “Autonomous vehicle control systems – a review of
decision making”, Proceedings of the Institution of Mechanical
Engineers. Part I: Journal of Systems and Control Engineering,
doi: 10.1177/2041304110394727.

Wolfe, B., Dobres, J., Rosenholtz, R. and Reimer, B. (2017),
“More than the useful field: considering peripheral vision in
driving”, Applied Ergonomics, Vol. 65, doi: 10.1016/j.
apergo.2017.07.009.

World Bank (2005), “A framework for the economic evaluation
of transport projects, transport notes”.

Xia, Y., Kim, J., Canny, J., Zipser, K., Canas-Bajo, T. and
Whitney, D. (2020), “Periphery-fovea multi-resolution
driving model guided by human attention”, Proceedings –

2020 IEEE Winter Conference on Applications of Computer
Vision, WACV 2020, doi: 10.1109/WACV45572.2020.
9093524.

Xing, Y., Lv, C., Cao, D. and Velenis, E. (2021), “Multi-scale
driver behavior modeling based on deep spatial-temporal
representation for intelligent vehicles”, Transportation
Research Part C: Emerging Technologies, Vol. 130, doi:
10.1016/j.trc.2021.103288.

Xu, H., Gao, Y., Yu, F. and Darrell, T. (2017), “End-to-end
learning of driving models from large-scale video datasets”,
Proceedings – 30th IEEE Conference on Computer Vision and
Pattern Recognition, CVPR 2017, doi: 10.1109/
CVPR.2017.376.

Xu, Y., Yang, X., Gong, L., Lin, H.C., Wu, T.Y., Li, Y. and
Vasconcelos, N. (2020), “Explainable object-induced action
decision for autonomous vehicles”, Proceedings of the IEEE
Computer Society Conference on Computer Vision and Pattern
Recognition, doi: 10.1109/CVPR42600.2020.00954.

Yadron, D. and Tynan, D. (2016), “Tesla driver dies in first
fatal crash while using autopilot mode”,TheGuardian.

Yu, B., Lee, Y. and Sohn, K. (2020a), “Forecasting road traffic
speeds by considering area-wide spatio-temporal
dependencies based on a graph convolutional neural network
(GCN)”, Transportation Research Part C: Emerging
Technologies, Vol. 114, doi: 10.1016/j.trc.2020.02.013.

Yu, F., Chen, H., Wang, X., Xian, W., Chen, Y., Liu, F.,
Madhavan, V. and Darrell, T. (2020b), “BDD100K: a
diverse driving dataset for heterogeneous multitask
learning”, Proceedings of the IEEE Computer Society Conference

Autonomous driving systems

Jiqian Dong et al.

Journal of Intelligent and Connected Vehicles

Volume 5 · Number 3 · 2022 · 235–249

248

http://dx.doi.org/10.1109/CVPR42600.2020.00968
http://dx.doi.org/10.1109/CVPR.2019.01214
http://dx.doi.org/10.1016/j.trc.2017.01.023
http://dx.doi.org/10.1016/j.trc.2017.01.023
http://dx.doi.org/10.1613/jair.301
http://dx.doi.org/10.1016/j.trc.2019.01.027
http://dx.doi.org/10.1016/j.commtr.2021.100017
http://dx.doi.org/10.1016/j.commtr.2021.100017
http://dx.doi.org/10.1109/TPAMI.2016.2577031
http://dx.doi.org/10.1109/TPAMI.2016.2577031
http://dx.doi.org/10.1146/annurev-vision-082114-035733
http://dx.doi.org/10.1109/CVPR.2018.00474
http://dx.doi.org/10.1002/9780470168073
http://dx.doi.org/10.1002/9780470168073
http://dx.doi.org/10.1109/ICECA.2018.8474604
http://dx.doi.org/10.1109/ICECA.2018.8474604
http://dx.doi.org/10.5220/0007520305640572
http://dx.doi.org/10.1177/2041304110394727
http://dx.doi.org/10.1016/j.apergo.2017.07.009
http://dx.doi.org/10.1016/j.apergo.2017.07.009
http://dx.doi.org/10.1109/WACV45572.2020.9093524
http://dx.doi.org/10.1109/WACV45572.2020.9093524
http://dx.doi.org/10.1016/j.trc.2021.103288
http://dx.doi.org/10.1109/CVPR.2017.376
http://dx.doi.org/10.1109/CVPR.2017.376
http://dx.doi.org/10.1109/CVPR42600.2020.00954
http://dx.doi.org/10.1016/j.trc.2020.02.013


on Computer Vision and Pattern Recognition, doi: 10.1109/
CVPR42600.2020.00271.

Zhao, H., Jia, J. and Koltun, V. (2020), “Exploring self-
attention for image recognition”, Proceedings of the IEEE
Computer Society Conference on Computer Vision and Pattern
Recognition, doi: 10.1109/CVPR42600.2020.01009.

Zhou, F., Li, L., Zhang, K. and Trajcevski, G. (2021), “Urban
flow prediction with spatial–temporal neural ODEs”,
Transportation Research Part C: Emerging Technologies,
Vol. 124, doi: 10.1016/j.trc.2020.102912.

Zhu, W., Wu, J., Fu, T., Wang, J., Zhang, J. and Shangguan,
Q. (2021), “Dynamic prediction of traffic incident duration

on urban expressways: a deep learning approach based on
LSTM and MLP”, Journal of Intelligent and Connected
Vehicles, Vol. 4No. 2, doi: 10.1108/jicv-03-2021-0004.

Zhuang, L., Wang, L., Zhang, Z. and Tsui, K.L. (2018),
“Automated vision inspection of rail surface cracks: a
double-layer data-driven framework”, Transportation
Research Part C: Emerging Technologies, Vol. 92, doi: 10.1016/
j.trc.2018.05.007.

Corresponding author
Sikai Chen can be contacted at: chen1670@purdue.edu

For instructions on how to order reprints of this article, please visit our website:
www.emeraldgrouppublishing.com/licensing/reprints.htm
Or contact us for further details: permissions@emeraldinsight.com

Autonomous driving systems

Jiqian Dong et al.

Journal of Intelligent and Connected Vehicles

Volume 5 · Number 3 · 2022 · 235–249

249

http://dx.doi.org/10.1109/CVPR42600.2020.00271
http://dx.doi.org/10.1109/CVPR42600.2020.00271
http://dx.doi.org/10.1109/CVPR42600.2020.01009
http://dx.doi.org/10.1016/j.trc.2020.102912
http://dx.doi.org/10.1108/jicv-03-2021-0004
http://dx.doi.org/10.1016/j.trc.2018.05.007
http://dx.doi.org/10.1016/j.trc.2018.05.007
mailto:chen1670@purdue.edu

	Development and testing of an image transformer for explainable autonomous driving systems
	1. Introduction
	1.1 Background
	Undefined namespace prefix
xmlXPathCompOpEval: parameter error
xmlXPathEval: evaluation failed

	Undefined namespace prefix
xmlXPathCompOpEval: parameter error
xmlXPathEval: evaluation failed


	1.2 Literature review
	Undefined namespace prefix
xmlXPathCompOpEval: parameter error
xmlXPathEval: evaluation failed

	Undefined namespace prefix
xmlXPathCompOpEval: parameter error
xmlXPathEval: evaluation failed


	1.3 Research gaps and main objectives/contributions of this paper

	2. Methods
	2.1 Feature extractor
	2.2 Transformer
	2.3 Decision/reason generator

	3. Experimental settings
	3.1 Data set
	3.2 Baseline models and setups

	4. Results
	4.1 Quantitative evaluation
	4.3 Qualitative evaluation
	4.4 Discussion
	Undefined namespace prefix
xmlXPathCompOpEval: parameter error
xmlXPathEval: evaluation failed

	Undefined namespace prefix
xmlXPathCompOpEval: parameter error
xmlXPathEval: evaluation failed

	Undefined namespace prefix
xmlXPathCompOpEval: parameter error
xmlXPathEval: evaluation failed

	Undefined namespace prefix
xmlXPathCompOpEval: parameter error
xmlXPathEval: evaluation failed



	5. Conclusion
	References


