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Abstract
Purpose – Automated driving systems (ADSs) are being developed to avoid human error and improve driving safety. However, limited focus has
been given to the fallback behavior of automated vehicles, which act as a fail-safe mechanism to deal with safety issues resulting from sensor
failure. Therefore, this study aims to establish a fallback control approach aimed at driving an automated vehicle to a safe parking lane under
perceptive sensor malfunction.
Design/methodology/approach – Owing to an undetected area resulting from a front sensor malfunction, the proposed ADS first creates virtual
vehicles to replace existing vehicles in the undetected area. Afterward, the virtual vehicles are assumed to perform the most hazardous driving
behavior toward the host vehicle; an adaptive model predictive control algorithm is then presented to optimize the control task during the fallback
procedure, avoiding potential collisions with surrounding vehicles. This fallback approach was tested in typical cases related to car-following and
lane changes.
Findings – It is confirmed that the host vehicle avoid collision with the surrounding vehicles during the fallback procedure, revealing that the
proposed method is effective for the test scenarios.
Originality/value – This study presents a model for the path-planning problem regarding an automated vehicle under perceptive sensor failure, and
it proposes an original path-planning approach based on virtual vehicle scheme to improve the safety of an automated vehicle during a fallback
procedure. This proposal gives a different view on the fallback safety problem from the normal strategy, in which the mode is switched to manual if
a driver is available or the vehicle is instantly stopped.
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1. Introduction

The development of automated driving technologies is
rapidly advancing. However, safety issues resulting from
perceptive sensor failure are still crucial to automated
driving safety (Harris, 2016). When perceptive sensor
failure occurs during the automated driving procedure, it is
necessary for human drivers or the automated driving
system (ADS) to perform fallback behavior, which is to
operate the automated vehicle as well as achieve a minimal
risk condition (SAE On-Road Automated Vehicle Standards
Committee, 2016). For the ADS at Levels 1-3, the human
driver is assumed to perform the fallback maneuver, while at
Level 4 or 5, the ADS can execute fallback behavior without
human intervention. Therefore, this study focuses on the

fallback procedure of an automated vehicle under front
sensor failure without human intervention.
Currently available automated vehicles require a receptive

human driver to a takeover request. Therefore, work has been
conducted that explores the time and quality of driver
intervention after the ADS issues a takeover request to reduce
the risk during the shift from autopilot to manual driving mode
(Braunagel et al., 2017; Zeeb et al., 2015). However, it is
difficult to guarantee that the driver will always be available to
take over the vehicle. Therefore, when an abrupt sensor failure
event occurs, an advanced ADS not only has the ability to
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instruct the driver to take over the vehicle but can also perform
the fallback task without human assistance.
There has been research on safe fallback behavior performed

by ADS. Emzivat et al. (2017) proposed a fallback strategy
aimed at Level 4 ADS features designed to operate a vehicle on
a road, whose ability to monitor the environment has been
compromised. They considered a specific scenario where the
visibility range of a driver is limited. Owing to the limited
visibility range, a low-speed strategy was proved to be safer than
an emergency stop. Svensson et al. (2018) proposed a trajectory
planning method to safely stop a vehicle on a road shoulder, in
which the safe stop problem was formulated as an optimal
control problem. However, their method lacks consideration of
moving obstacles; thus, it is not applicable to scenarios
involving multiple vehicles. Little attention has been given to
safe control of an automated vehicle for the fallback procedure
in a dynamic driving environment.
Normally, a proper control algorithm for the fallback

procedure is supposed to perform optimal vehicle control
tasks under multiple constraints on road boundaries, traffic
regulations, and collision avoidance. Research has shown
that model predictive control (MPC) could be applied to
build a theoretical framework of the constrained vehicle
control problem (Mayne et al., 2000). MPC is designed to
predict future responses based on a dynamic model of the
control process, thereby anticipating future events and
calculating optimal control actions. With the development
of research on vehicle issues, MPC has exhibited great
performance on vehicle control (Erlien et al., 2016; Falcone
et al., 2007; Lima et al., 2017; Yang et al., 2018; Yoshida
et al., 2008), trajectory planning (Howard, 2009; Li et al.,
2014; Ji et al., 2017) and collision avoidance (Anderson
et al., 2010; Liu et al., 2017).
In this study, a vehicle control problem was modeled with

regard to the fallback event of an automated vehicle under
sensor failure. Moreover, adaptive MPC is applied to the
vehicle control in the fallback procedure. Normally, a vehicle
control task requires explicit environmental information.
Nevertheless, the environmental information is usually
uncertain to the automated vehicle as a result of perceptive
sensor failure in the fallback procedure. To maintain operation
of the ADS, a prior prediction of the behavior of surrounding
vehicles in the undetected area is necessary when perceptive
sensor failure occurs. Therefore, this study applied a virtual
vehicle scheme (Kim et al., 2009) to perform predictions of
undetectable vehicles. The method has been applied in the
longitudinal control of car-following (Kim, 2012; Liu et al.,
2017) to smooth the vehicle motion control in lane-keeping
scenarios. This study expands upon the implementation of the
virtual vehicle scheme in dealing with abrupt sensor
malfunction, using virtual vehicles to give a transitory
prediction of the behavior of undetectable vehicles. The virtual
vehicles fill the detection gap caused by sensor failure, thus,
further enabling the ADS to predict the behavior of
surrounding vehicles during the fallback process.
Furthermore, in this study, the vehicle control problem

was modeled from highway traffic, including manually
driven vehicles and an automated vehicle with abrupt
perceptive sensor failure. Considering an undetectable area
resulting from perceptive sensor failure, the virtual vehicle

scheme was developed to assist the ADS to complete the
perception model of the driving environment. Based on the
completed perception model, predictions of the subsequent
variations in the surrounding driving environment as well as
constraints on collision avoidance were made. Furthermore,
a controller was developed from the adaptive MPC
algorithm. The present paper is an improved version of our
conference paper (Xue et al., 2018). We present an
improved method including real-time consideration as well
as a numerical analysis on additional fallback scenarios.
The rest of the paper is organized as follows. A fallback

problem for an automated vehicle is described in Section 2.
The vehicle model is presented in Section 3. Details of the
proposed vehicle control approach are introduced in Section 4.
The numerical analysis on the test scenarios is shown in Section 5.
Finally, the conclusions drawn from the research are presented
in Section 6.

2. Problem description

As illustrated in Figure 1, the host vehicle is assumed to lose
its ability to collect environmental information ahead owing
to front sensor malfunction while traveling in automated
driving mode. As a result, an undetected area appears in
front of the host vehicle. The host vehicle fails to read road
signs or perceive obstacles in the undetected area. In
response, the ADS immediately terminates the current
driving task and executes the fallback maneuver. The
detection delay of the sensor failure is neglected in this study
because algorithms to reduce the fault detection delay have
already been proposed, which can reduce the delay to a fairly
low level for sensors with high sampling frequencies (Jeong
et al., 2015; Kim, 1994). The complete fallback procedure
comprises three phases under the problem setting: lane-
keeping, lane change and pulling over. First, in the lane-
keeping phase, the ADS adjusts the vehicle speed and keeps
the host vehicle in the original lane while issuing a takeover
request to the driver. Then, if no response is received, it may
be necessary for the vehicle to change to the emergency
parking lane and slow to a minimum cruise velocity. Finally,
the host vehicle must be pulled over to the road shoulder. In
this study, it is assumed that the driver is unable to respond
to the takeover request. In addition, the pulling-over phase
was not considered. Therefore, the problem focuses on the
lane-keeping and lane-changing phases in the fallback
procedure.
The problem is modeled on a straight road section of a two-

lane, one-direction and left-hand expressway with a speed limit of

Figure 1 Illustration of the driving environment in a fallback event
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50-100km/h. An emergency parking lane was the designated
destination of the fallback procedure as soon as it was executed.
The parking lane was marked in the embedded digital map of the
host vehicle in advance, and it was assumed to be unoccupied
during the fallback procedure. The surrounding vehicles are
manually driven when sensor failure occurs and have no direct
communication with the host vehicle. Normally, it is considered
that potential collisions only occur between vehicles.
Despite front sensor failure, the side and rear perceptive

sensors of the host vehicle are assumed to function well,
guaranteeing the detection of road boundaries and rear
vehicles. The ADS can collect the real-time positions and
velocities of detected vehicles from the well-functioning
sensors. Meanwhile, the localization module, for example,
global positioning system, is assumed to be unaffected by the
sensor failure during the fallback procedure. Moreover, the
ADS is assumed to be equipped with high-precision digital
map. Therefore, the host vehicle still retains the ability to
perform lane-keeping and lane-changing behavior under sensor
failure.

3. Vehicle model

This section presents a model of the host vehicle as a nonlinear
dynamic system, while a linear and discrete model is derived
from the nonlinear vehicle model for use of the MPC
optimization process.

3.1 Vehicle modeling
As illustrated in Figure 2, the X-Y coordinates were fixed on
the road and represent the longitudinal and transverse
directions on the road, respectively. A 2-DOF bicycle model
(Abe, 2015) was used to describe the vehicle dynamics, whose
dynamic equations were established as follows:

M _u � vgð Þ ¼ FX (1)

M _v1 ugð Þ ¼ FYf 1FYr (2)

Iz _g ¼ lf FYf � lrFYr (3)

_u ¼ g (4)

_X ¼ u cosu � v sinu (5)

_Y ¼ v cosu 1 u sinu (6)

whereM is the total mass of the vehicle; u, v, and g denote the
longitudinal velocity, lateral velocity, and yaw rate of the vehicle
at its center of gravity, respectively; FX is the total longitudinal
force on the tires; FYf and FYr represent the lateral forces on the
front and rear tires, respectively; Iz is the yaw moment of
inertia; lf and lr represent the distances from the vehicle’s center
of gravity to the front and rear axles, respectively; X and Y
denote the longitudinal position and lateral position of the
center of gravity of the vehicle; and u is the heading angle with
respect to theX-axis.
According to the tire model proposed by Fiala (1954), the

lateral forces on tires are approximately described as follows:

FYf ¼ Cf d � v1 lf g
u

� �
(7)

FYr ¼ Cr � v� lrg
u

� �
(8)

where Cf and Cr represent the cornering stiffness values of front
and rear tires, respectively, and d is the front steering angle.
The nonlinear vehicle model can be compactly defined from

equations (1)- (8) as follows:

_x ¼ F x; ucð Þ (9)

where x ¼ X u Y v u g
� �T anduc ¼ FX d

� �T

3.2Model linearization and discretization
The nonlinear model, given in equation (9), can be linearized
by a one-order Taylor series around the operating point (xs, uc,s)
as follows:

_x � F xs; uc;sð Þ1rF xs; uc;sð Þ x� xs
uc � uc;s

� �
(10)

wherer represents the gradient.
Rewriting equation (10) into state-space representation, we

obtained the following continuous-timemodel:

_x ¼ A xsð Þx1Buc 1N xsð Þ (11)

where:

A xsð Þ ¼ @F
@x

� �
xs
;B ¼ @F

@uc

� �
uc;s

¼
0 1

M 0 0 0 0

0 0 0 Cf

M 0 lf Cf

Iz

2
4

3
5
T

N xsð Þ ¼ F xs; uc;sð Þ � A xsð Þxs � Buc;s:

By discretizing the continuous-time model over a sample time
Ts, equation (11) was transformed into a discrete state-space
representation as follows:

xk1 1 ¼ Ad xsð Þxk 1Bd xsð Þuc;k 1Nd xsð Þ (12)

whereAd xsð Þ ¼ eA xsð ÞTs ;Bd xsð Þ ¼
Ð Ts

0 eA xsð ÞtBdt and Nd xsð Þ ¼Ð Ts

0 eA xsð ÞtN xsð Þdt .

Figure 2 Illustration of vehicle model
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4. Control algorithm

This section presents the development of the adaptive model
predictive controller for the fallback procedure. The virtual
vehicle scheme was implemented to complete the perception
model of the surrounding driving environment, introduced in
Section 4.1. Predictions of the behavior of surrounding vehicles
were developed for the construction of safe driving constraints,
as in Section 4.2. The desired control outputs are defined in
Section 4.3, including the desired longitudinal velocity and
lateral trajectory in the fallback procedure. Finally, a model
predictive controller was formulated as in Section 4.4.

4.1 Virtual vehicle scheme
Front vehicles become undetectable to the host vehicle owing
to front sensor malfunction. Therefore, the virtual vehicle
scheme was implemented to give a prediction of the movement
of the undetected front vehicles. As illustrated in Figure 3,
when the ADS fails to detect front vehicles owing to sensor
failure, the same number of virtual vehicles is created to replace
each undetected vehicle. The virtual vehicle inherits the
position and velocity from the history data of its corresponding
undetected vehicle.
To reduce the collision risk during the fallback procedure,

the control algorithm should anticipate the most dangerous
driving behavior that the undetected vehicles would take and
further manage to avoid accidents under these conditions.
Therefore, virtual vehicles are assumed to approach the host
vehicle in hazardous ways. The prediction of the velocity of a
virtual vehicle is illustrated in Figure 4. The virtual vehicle is
assumed to decelerate at a maximum deceleration until a stop if
it is in the same lane as the host vehicle, which is the most
dangerous manner to approach the host vehicle. The velocity
profile of a virtual vehicle, vf, is defined as follows:

vf tð Þ ¼ max vf t0ð Þ � am t � t0ð Þ;0ð Þ; t > t0 (13)

where t0 denotes the time when sensor failure occurs and am is
themaximumdeceleration of the virtual vehicle.
If the virtual vehicle is in another lane, it is assumed to

maintain its initial speed and change to the lane of the host

vehicle before decelerating at maximum deceleration until it
reaches a stop. The velocity profile is defined as follows:

vf tð Þ ¼
vf t0ð Þ; t0 < t � td

max vf t0ð Þ � am t � tdð Þ; 0� 	
; t > td

8<
:

(14)

where td is the time delay assumed for the lane change. The
delay is considered for two reasons. First, a driver rarely
decelerates significantly while changing lane; second, vehicles
in different lanes may not have enough longitudinal space, the
delay gives the host vehicle time to make space for the sudden
cutting-in behavior of the virtual vehicle.
Although a short-term traffic prediction method, for

example, long short-term memory network (Zhao et al., 2017)
may match the driving behavior of the front vehicle in most of
the cases that method can hardly predict an abrupt dangerous
behavior of the front vehicle. In this work, the most dangerous
condition is taken into consideration, to make the host vehicle
avoid all the potential collisions with undetectable vehicles.

4.2 Safe driving constraints
The safe driving constraints were built upon the predictions of
the surrounding vehicles. The constraints were considered up
to a maximum prediction step, np. Here, np is named the
prediction horizon.
The prediction of the velocity of the front vehicle up to the

prediction horizon was determined based on the velocity profile
in equation (13) as follows:

Figure 3 Explanations of virtual vehicle schemes

Figure 4 Velocity prediction of the virtual vehicle
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v̂f ;k1 i ¼ vf tk1 ið Þ; i ¼ 1; . . . ; np (15)

where k denotes the current timestep and i is the prediction
step. The notation “^” represents that the marked variable is a
prediction.
The rear vehicle was assumed to keep following the host

vehicle, while responding to the velocity variation of the host
vehicle after a short delay. Therefore, the prediction of the rear
vehicle follows the car-following model proposed by Chandler
et al. (1958), as shown below:

_̂vr;k1 i ¼ l uk1 i�np � vr;k1 i�npð Þ; i ¼ 1; . . . ; np (16)

where vr represents the velocity of the rear vehicle; _̂vr is the
prediction of the acceleration of the rear vehicle; and l is a
constant parameter.
The safe driving constraints were defined based on the time-

to-collision (TTC) values between the host vehicle and
surrounding vehicles as follows:

TTCa;k1 i � Tsafe � i � Ts; a 2 f ; rf g;
i ¼ 1; . . . ; np;

(17)

TTCf ;k1 i ¼ X̂ f ;k1 i � X̂ k1 i � Lf

ûk1 i � v̂f ;k1 i
(18)

TTCr;k1 i ¼ X̂ k1 i � X̂ r;k1 i � Lr

v̂r;k1 i � ûk1 i
(19)

where TTCa, for a [ {f, r}, denotes the TTC value between
the host vehicle and the front vehicle or the rear vehicle; Xf

and Xr are the longitudinal positions of the front vehicle’s
back and the rear vehicle’s front, respectively; X̂ f and X̂ r

were derived from the predictions of the velocities of the
front and rear vehicles, respectively; Lf and Lr denote the
distances from the center of gravity of the host vehicle to its
front and back, respectively; and Tsafe represents the safe
TTC value.
The safe driving constraints take effect until the host vehicle

completely leaves the active lane. Consequently, the safe
driving constraints can be defined in a discrete representation
during the prediction horizon interval as follows:

Eix̂k1 i � h1Diŵk1 i; i ¼ 1; . . . ; np (20)

where
h ¼ �Lf �Lr

� �T , ŵ ¼ X̂ f v̂f X̂ r v̂r

h iT
;

Ei ¼
1 Tsafe � i � Ts 0 0 0 0

�1 �Tsafe 1 i � Ts 0 0 0 0

" #
; and

Di ¼
1 Tsafe � i � Ts 0 0

0 0 �1 �Tsafe 1 i � Ts

" #
.

4.3 Determination of desired outputs
It is assumed that the desired velocity and lane were
predefined in an optimization problem for tracking.
Therefore, the longitudinal velocity and lateral position of
the host vehicle’s center of gravity are the outputs to be
tracked:

y ¼ u Y
� �T ¼ Cx;

C ¼ 0 1 0 0 0 0

0 0 1 0 0 0

" #
(21)

ydes ¼ udes Ydes
� �T

; (22)

where y is the vector of the output variables; ydes is the vector of
the desired outputs; and udes and Ydes are the desired
longitudinal velocity and lateral position, respectively.
The lane-keeping and lane-changing phases were

considered. During the lane-keeping phase, the host vehicle
decelerates along the active lane, waiting for a possible takeover
from the driver. After this, the vehicle enters the lane-changing
phase, changing to the emergency parking lane and slowing,
ready to be pulled over to the road shoulder.
The time to switch from the lane-keeping phase to the lane-

changing phase is denoted as tl. When t0 < t < tl, the desired
outputs are defined as follows:

udes tð Þ ¼ max u t0ð Þ1 ades t � t0ð Þ; vc;minð Þ;
Ydes tð Þ ¼ Y t0ð Þ

(23)

where u (t0) and Y (t0) are the longitudinal velocity and the
lateral position of the host vehicle when sensor failure occurs,
respectively; vc,min is the minimum cruising speed; and ades is
the desired acceleration.
When t � tl, the desired outputs in the lane-changing phase

are defined as follows:

udes tð Þ ¼ max u t0ð Þ1 aref t � t0ð Þ; vc;minð Þ;

Ydes tð Þ ¼
P tð Þ; tl � t < tl 1Tlc

Lw 1Y t0ð Þ; t � tl 1Tlc
;

(

P tð Þ ¼ Lw 6
t � tl
Tlc

� �5

� 15
t � tl
Tlc

� �4

110
t � tl
Tlc

� �3
" #

1Y t0ð Þ

(24)

where Ydes was designed based on a quintic polynomial on time
P (t); Lw represents the lane width; and Tlc is the desired time
cost of the lane change. The quintic polynomial is implemented
to generate a smooth lateral position target, satisfying the
position, lateral velocity and lateral acceleration constraints at
both ends of the lateral position trajectory.

4.4 Adaptive model predictive control
The model predictive controller predicts the response of the
vehicle up to a prediction horizon, and it optimizes a predefined
objective function with constrained control inputs and outputs
up to that horizon based on the predicted values. For a nonlinear
system, the adaptive MPC (Giselsson, 2010) and nonlinear
MPC (Borrelli et al., 2005; Du et al., 2016) are two major
methods that resolve the nonlinear optimization problem. The
adaptive MPC updates the embedded model with an
approximate linear model in each optimization iteration, which
has a lower computation cost than nonlinearMPC.
A diagram of the adaptive MPC is illustrated in Figure 5.

Based on the measured state, an approximate linear model
was generated to update the embedded model in the
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controller. By means of the embedded model, the MPC
predicts future behaviors of the host vehicle. This prediction
determines the future states within a specified prediction
horizon, and based on these future states, control inputs are
optimized to force the constrained output variables to track
the predefined references.
The model update in each optimization iteration is based on

the state variables of the vehicle as follows:
xk1 1 ¼ Ad;kxk 1Bd;kuc;k 1Nd;k (25)

whereAd,k=Ad (xk),Bd,k=Bd (xk), andNd,k=Nd (xk).
Using the model in equation (25), the MPC was designed

to predict the future state variables during the prediction
horizon interval, [1, np], through the current state variables
and the control inputs. Note that the control inputs only
change during the control horizon interval and remain
constant after that, that is, uc;k1 i ¼ uc;k1 nc�1 for nc � i � np –
1, in which nc denotes the control horizon. The vectors of the
predictive state variables xp(k) and control inputs uc(k) are
represented by:

xp kð Þ ¼ x̂k1 1 x̂k1 2 � � � x̂k1 np
� �T (26)

uc kð Þ ¼ uc;k uc;k1 1 � � � uc;k1 nc�1
� �T (27)

The predictive state variables during the prediction horizon
interval can be formulated as follows:

xp kð Þ ¼ Wkxk 1 H kuc kð Þ1 K kNd;k (28)

whereWk ¼ Ad;k A2
d;k � � � Anp

d;k

h iT
,

Hk ¼

Bd;k 0 � � � 0

Ad;kBd;k Bd;k � � � 0

..

. ..
. . .

. ..
.

Anc�1
d;k Bd;k Anc�2

d;k Bd;k � � � Bd;k

..

. ..
. . .

. ..
.

Anp�1
d;k Bd;k Anp�2

d;k Bd;k � � � Anp�nc
d;k Bd;k

2
66666666666664

3
77777777777775
; and

K k ¼

I

Ad;k

..

.

Anp�1
d;k

2
6666664

3
7777775

Discretizing the desired outputs predefined in equations (22)-
(24), the vehicle control problem can be transformed into the
following optimization problem:

min
Xnp
i¼1

ŷk1 i � ydes; k1 ið ÞTQ ŷk1 i � yref ;k1 ið Þ

1
Xnc�1

i¼0

uTc;k1 iRuc;k1 i 1
Xnc�1

i¼0

D uTc;k1 iS D uc;k1 i 1 r««
2

(29a)

s:t: Ei1 1x̂k1 i1 1 � h1Di1 1ŵk1 i1 1 1 «V (29b)

ymin � ŷk1 i1 1 � ymax (29c)

uc;min � uc;k1 i � uc;max (29d)

Duc;min � Duc;k1 i � Duc;max (29e)

« � 0 (29f)

i ¼ 0; 1; . . . ; np � 1 (29g)

where ŷkþi ¼ Cx̂kþi, which is the vector of the predictive output
variables;Q,R andS represent the weightmatrices on the outputs,
inputs, and input increments, respectively; and Duc,k1i represents
the discrete input increment. The constraint of equation (29b) is a
soft constraint extended from equation (20), implying that the
constraint violation is allowed but that violation is penalized in the
objective function. « is a slack variable to allow the constraint
violation, and r« is the weight on the penalty for constraint
violation. The vector V is the band for constraint softening, which
is used to adjust the strictness of each constraint. A larger band
represents less penalty on the constraint violation, while a zero
band does not allow any constraint violation. The constraint of
equation (29c) was determined owing to the traffic regulations on
speed limits and road boundaries in specific scenarios.
The MPC optimization problem in equation (29) can be

transformed into a quadratic programming problem. The
sequence of the optimal input can be obtained through a
quadratic programming solver as follows:

u�c kð Þ ¼ u�c;k u�c;k1 1 � � � u�c;k1 nc�1

� �T (30)

where u�c;k is transferred to the vehicle plant as the optimal
control input at the current timestep.

5. Case studies

5.1 Test scenarios
In this study, four test scenarios were defined to test the
performance of the proposed approach. The test scenarios
represent only some of the many cases that could occur when
the automated vehicle encounters front sensor failure.
Nevertheless, these scenarios can evaluate the performance of
the proposed approach in avoiding rear-end collisions with
surrounding vehicles during the lane-keeping and lane-
changing phases in the fallback procedure.
In each scenario, the surrounding vehicles were modeled as

double integrators whose input is acceleration and outputs are

Figure 5 Diagram of adaptive MPC scheme
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position and velocity. A virtual vehicle was created upon the
initial position and velocity of the front vehicle, and it was set to
behave in a hazardous way, as described in Section 4.1. The rear
vehicle in each scenario was set to maintain its original speed
within the first 2.4 s, and decelerate to 50km/h at a constant
deceleration ar. This driver reaction timewas chosen according to
the study result that over 95 per cent of drivers take less than 2.4 s
to react with an unalert deceleration of the front vehicle (Taoka,
1989). The ADS adopted a fixed fallback strategy that the host
vehicle keeps in the initial lane within the first 3 s waiting for the
driver to take over and thenmoves to the emergency parking lane
for a low-speed cruise.
Scenarios 1 and 2 were developed from a car-following case,

as illustrated in Figure 6(a). In Scenario 1, there is a short car-
following distance between the host vehicle and the rear
vehicle. The host vehicle should follow the desired longitudinal
velocity to decelerate during the lane-keeping phase, while the
rear vehicle does not react sufficiently to the sudden
deceleration of the host vehicle and decelerates slower than
expected. Therefore, the host vehicle may need to decrease the
brake pedal force to avoid a collision with the rear vehicle. In
Scenario 2, there is a short car-following distance between the
host vehicle and the front vehicle. A virtual vehicle was created
on the initial position of the front vehicle, and it was supposed
to decelerate at the maximum deceleration. The host vehicle
may need to follow a velocity profile lower than the desired
velocity profile before leaving the active lane.
Scenarios 3 and 4 test the performances of the proposed

method in an overtaken and overtake case, respectively, as
illustrated in Figure 6(b). In Scenario 3, the host vehicle is
overtaken by the front vehicle in the right lane. In Scenario
4, the host vehicle overtakes the front vehicle in the right
lane at a velocity 20 km/h higher than that of the front
vehicle, just before executing a fallback behavior. The host
vehicle may need to avoid a potential collision brought by
the sudden cut-in behavior of the front vehicle. In both
scenarios, the host vehicle may need to keep a safe distance
with the rear vehicle, as well.

The initial parameters of the test scenarios are listed in Table I,
including the initial positions and velocities of the rear, host and
front vehicles as well as the deceleration of the host vehicle.
The numerical results are obtained by a simulation

procedure conducted in a Simulink and CarSim environment.
The MPC controller is programmed with Simulink tools, and
the plant of host vehicle is a Mercedes-Benz B-class hatchback
model, whose parameters were extracted from CarSim
database. The controller parameters are listed in Table II.

5.2 Numerical analysis
The analysis results of Scenario 1 are illustrated in Figure 7. The
path of the host vehicle is illustrated in Figure 7(a). In this figure,
the colored markers describe the positions of the host vehicle,
rear vehicle and virtual front vehicle at four sample times.
Different vehicles are represented by different shapes, and each
color represents a sample time. As it is shown, the host vehicle
maintains its position in the original lane within the first 3 s and
then changes to the parking lane after. The host vehicle maintains
a short distance with the rear vehicle until it leaves the lane at
5.8 s. As illustrated in Figure 7(d), the host vehicle decelerates
along the desired velocity at the beginning of the fallback
procedure but latermaintains its speed for a short while to avoid a
close separation with the rear vehicle, until leaving the active lane.
As illustrated in Figure 7(e), before the host vehicle leaves the
active lane, the minimum TTC value with the rear vehicle is
2.74 s. Because the safe driving constraint is a soft constraint, the
constraint violation will not result in an infeasible solution to the

Figure 6 Illustration of test scenarios

Table I Test scenario parameters

Xf (m) Xr (m) u (km/h) vf (km/h) vr (km/h) ar (m/s2)

Scenario 1 90 �45 90 90 90 2.0
Scenario 2 50 �60 90 90 90 2.5
Scenario 3 20 �60 90 70 90 2.5
Scenario 4 5 �70 90 95 90 2.5

Table II Parameters of the path-planning controller

Symbol Value (unit) Symbol Value (unit)

M 1230 (kg) Iz 1343.1 (kgm2)
Cf 100800 (N) Cr 70800 (N)
lf 1.04 (m) lr 1.56 (m)
Lf 1.70 (m) Lr 2.26 (m)
am 5 (m/s2) td 3 (s)
k 0.4 (s�1) a\ibie\ �2.5 (m/s2)
Lw 3.5 (m) tl 3 (s)
Tlc 4 (s) vc,min 18 (km/h)
Tsafe 4 (s) t0 0 (s)
Ts 0.05 (s) r \ill\ 105

np 40 nc 5
Q diag (6, 100) R diag (7e�7,10)
S diag (4e�7,8e5) V [10,10,0]T

ymin [0,�5]T ymax [27.8, 4.25]T

uc,min [�6150,�0.2]T uc,max [6150, 0.2]T

Duc,min [�308,�0.02]T Duc,max [308, 0.02]T
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quadratic programming problem. Therefore, the controller still
works even if the safe driving constraint is violated.
Scenario 2 describes a dense car-following case, whose

numerical analysis results are illustrated in Figure 8. As can be
seen in Figure 8(a), the host vehicle starts the lane-changing
phase at 3 s and leaves the left lane completely at 7.45 s.
Figure 8(d) illustrates the velocity profiles of the three vehicles
in this scenario. The host vehicle makes a sharp deceleration to
avoid a potential collision with the virtual front vehicle. Before
the host vehicle leaves the active lane, the TTC values with the
front and rear vehicle remain above 2.03 s, as illustrated in
Figure 8(e).
Scenario 3 is an overtaken case, whose numerical analysis

results are illustrated in Figure 10. The host vehicle completely
leaves the middle lane until 7.55 s. From the velocity graph
illustrated in Figure 10(d) and the TTC values illustrated in
Figure 10(e), it is implied that the fast front vehicle has little
influence on the control of the host vehicle. When the host
vehicle travels into the middle lane, the TTC value with the
front vehicle is higher than the safe TTC value in the safe
driving constraint, while theminimumTTC value with the rear
vehicle is slightly lower than the safe TTC value.
Scenario 4 was developed from an overtaking case. The

positions of the host vehicle and surrounding vehicles are
illustrated in Figure 9(a). In this figure, the virtual front vehicle
cuts into the left lane within the first 3 s, before braking to a stop
after. As illustrated in Figure 9(d), the front vehicle maintains a

lower velocity than its following vehicle in the first 3 s and then
decelerates to a full stop. Owing to the dangerous cut-in
behavior, the host vehicle sharply decelerates, as illustrated in
Figure 9(d). The velocity of the host vehicle is mostly lower
than the desired velocity before the host vehicle leaves the active
lane, indicating that the host vehicle takes a hard brake to avoid
the potential collision with the virtual vehicle. The host vehicle
leaves the lane at 7.9 s, and the TTC value between the host
vehicle and the front vehicle remains above 1.41 s.
In general, encounters of vehicles with a minimum TTC, of

less than 1.5 s, are considered critical (Horst and Hogema,
1993). The numerical analysis shows that in the four test
scenarios, the proposed method avoid collisions with the
surrounding vehicles during fallback procedures. In Scenarios 1,
2 and 3, the host vehicle maintains relative safe separations to the
surrounding vehicles, with minimum TTCs larger than the
critical value. The TTC in Scenario 4 indicates that the host
vehicle encounters a critical situation before leaving the active
lane, as a result of the 3-second waiting time for driver response,
which is too long in that situation. It is necessary to adjust the
fallback strategy according to different fallback situations, and
furthermore, the proposed approach can be applied to evaluate
fallback strategies during the fallback procedure.
The average calculation time of an optimization iteration was

0.0131 s over all the test scenarios and therefore the control
problem can be solved in real time, because the sample time is
0.05 s.

Figure 8 Numerical analysis results of scenario 2Figure 7 Numerical analysis results of scenario 1
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6. Conclusions

This paper proposes an adaptive model predictive approach
based on virtual vehicle scheme, to realize a fallback procedure
of an automated vehicle while encountering a front perceptive
sensor failure during highway transportation. To design the
fallback procedure, the automated vehicle is normally required
to perform lane-keeping and lane-changing behaviors, until
safely reaching a low cruise speed in the emergency parking
lane. Therefore, it was assumed that the undetectable vehicles
continually perform hazardous driving behaviors, which may
oblige the host vehicle to actively avoid incoming collisions.
In the beginning, virtual vehicles can be established from the

history data to replace the surrounding vehicles in undetectable
areas, then, an adaptive MPC controller is implemented to
optimize the velocity and steering control for the fallback
procedure. Furthermore, to reduce the computation cost
brought by the nonlinear vehicle model, the embedded model
in MPC is updated by a linearized discrete vehicle model at
each optimization iteration. In this manner, the MPC
optimization process can be solved as a real-time quadratic
programming problem.
As a common sense, it is considered to be a safe fallback

strategy that a human driver takes over the vehicle. However,
driving automation causes drowsiness, which may lead to a late
take-over response from the driver (Thiffault and Bergeron,

2003). Moreover, several traffic accident reports already
showed that human drivers can easily make mistakes after
taking over the vehicle under critical conditions (Favarò et al.,
2017). Therefore, it is still necessary for ADS to require a
performing capability of fallback behavior. Anyway, to ensure
driving safety of automated vehicles, different fallback
strategies should be preserved in ADS for a variety of traffic
conditions.
On the other hand, a hard brake to stop is commonly used as

the fallback strategy in low-speed scenarios or when the ego
vehicle encounters inevitable collision (Jain et al., 2019). In
high-speed traffic environment, an abrupt stop in an active lane
probably results in rear-end collisions. Therefore, Emzivat et al.
(2017) verified that a low-speed cruise strategy is safer than an
emergency stop, when the speed limit is up to 70km/h. For the
highway case that emergency parking areas are normally set up,
an alternative solution may be necessary to drive the automated
vehicles to the emergency parking area.
Thereby, the proposed method takes an emergency parking

area as the objective, while focuses on the steering and velocity
control during the fallback process. This study further indicates
that the proposed approach is effective for the driving safety of
automated vehicles, even only regarding the front perceptive
sensors. Compared with the emergency stop strategy and the
low-speed cruise strategy, the strategy proposed in this study
can reduce the subsequent impact on highway traffic.
Additionally, it may be an interesting topic to evaluate the

Figure 10 Numerical analysis results of scenario 4Figure 9 Numerical analysis results of scenario 3
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vehicle control approach for a more complicated failure
situation in amixed transport environment.
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