
Markov probabilistic decision making of
self-driving cars in highway with random traffic

flow: a simulation study
Yang Guan

Tsinghua University, Beijing, China

Shengbo Eben Li
Department of Automotive Engineering, Tsinghua University, Beijing, China, and

Jingliang Duan, WenjunWang and Bo Cheng
Tsinghua University, Beijing, China

Abstract
Purpose – Decision-making is one of the key technologies for self-driving cars. The high dependency of previously existing methods on human
driving data or rules makes it difficult to model policies for different driving situations.
Design/methodology/approach – In this research, a probabilistic decision-making method based on the Markov decision process (MDP) is
proposed to deduce the optimal maneuver automatically in a two-lane highway scenario without using any human data. The decision-making issues
in a traffic environment are formulated as the MDP by defining basic elements including states, actions and basic models. Transition and reward
models are defined by using a complete prediction model of the surrounding cars. An optimal policy was deduced using a dynamic programing
method and evaluated under a two-dimensional simulation environment.
Findings – Results show that, at the given scenario, the self-driving car maintained safety and efficiency with the proposed policy.
Originality/value – This paper presents a framework used to derive a driving policy for self-driving cars without relying on any human driving data
or rules modeled by hand.

Keywords Markov decision process, Decision-making, Dynamic programming, Self-driving cars

Paper type Research paper

1. Introduction

Recently, there has been a steady increase in interest of many
researchers toward developing technologies for self-driving
cars. This technology has the potential to reshape mobility by
enhancing the safety, accessibility, efficiency and convenience
of transportation. Amajor milestone in self-driving cars was the
DARPA Urban Challenge. In 2007, six teams finished the
event, which demonstrated that fully autonomous urban
driving is possible (Buehler et al., 2009). The Google self-
driving car and Tesla’s Autopilot system have been two popular
examples that receive considerable attention since then.
The autonomous driving system can be divided into three

layers: environment perception, decision-making and dynamic
control. Environment perception detects surroundings in real time
via radar, laser light, GPS, odometry and computer vision. The
decision-making further understands the environment and
predicts the movement of different participants. It, then, conducts
maneuver selection and path planning. Finally, dynamic control
instructs throttle, brake and steering of self-driving cars. In

environment perception, Janai et al. (2017) reviewed the current
state-of-the-art on several specific aspects in computer vision for
autonomous vehicles, including recognition, reconstruction,
motion estimation, tracking, scene understanding and end-to-end
learning. Patole et al. (2017) summarized various aspects of
automotive radar signal processing techniques as well as unique
problems associated with automotive radars such as pedestrian
detection. For the perception of multiple vehicles, Liu et al. (2018)
presented a novel distributed Bayesian filtering method using
measurement dissemination for multiple unmanned ground
vehicles with dynamically changing interaction topologies. In
decision-making, an existingmethod ofmotion prediction and risk
assessment for intelligent vehicles based on the semantics used to
define motion and risk was reviewed by Lefèvre et al. (2014).

The current issue and full text archive of this journal is available on
Emerald Insight at: www.emeraldinsight.com/2399-9802.htm

Journal of Intelligent and Connected Vehicles
1/2 (2018) 77–84
Emerald Publishing Limited [ISSN 2399-9802]
[DOI 10.1108/JICV-01-2018-0003]

© Yang Guan, Shengbo Eben Li, Jingliang Duan, Wenjun Wang and Bo
Cheng. Published in Journal of Intelligent and Connected Vehicles. Published by
Emerald Publishing Limited. This article is published under the Creative
Commons Attribution (CC BY 4.0) licence. Anyone may reproduce,
distribute, translate and create derivative works of this article (for both
commercial and non-commercial purposes), subject to full attribution to the
original publication and authors. The full terms of this licence may be seen at
http://creativecommons.org/licences/by/4.0/legalcode

Received 31 January 2018
Revised 2 April 2018
3 May 2018
3 June 2018
6 July 2018
Accepted 13 August 2018

77

http://dx.doi.org/10.1108/JICV-01-2018-0003


Paden et al. (2016) proposed a structured decision-making in the
contemporary autonomous driving system into route planning,
behavioral decision-making, local motion planning and feedback
control. He also summarized the state-of-the-art currently
available methods on planning and control algorithms for urban
environments. In dynamic control, Carvalho et al. (2015)
presented an overview of control design methods that
systematically handle uncertain forecasts for autonomous and
semi-autonomous vehicles. For the control of multiple vehicles,
this paper (Li et al., 2017c) introduces a decomposition framework
to model, analyze and design the platoon system from the
perspective of multiagent consensus control. For the control of
multiple vehicles, Zheng et al. (2017) presented a distributed
model predictive control algorithm for longitudinal automation of
connected vehicles with unidirectional topologies. Li et al. (2017b)
presented a robust distributed controlmethod formultiple vehicles
with bounded parameter uncertainty and a broad spectrum of
interaction topologies.
This paper focuses on the decision-making, which is a tricky

problem to tackle owing to the highly dynamic, stochastic and
uncertain nature of the traffic environment. The finite state
machine (FSM) has become the most common approach for
decision-making of self-driving cars since the Urban Challenge in
2007. It models finite situations of the traffic environment
manually and obtains policies based on rules. These situations and
rulesmake the decision system explicit, but it needs an experienced
expert to design them to obtain good performance. The champion
of 2008 Urban Challenge Boss (Urmson et al., 2008) used this
approach in its behavioral layer. It defined three high-level
behaviors in advance, including lane driving, intersection handing
and goal selection. Each of them corresponds to several low-level
behaviors. The decision system chose these behaviors by rules
prescribed in advance when the car ran at different situations. The
runner-up Junior (Montemerlo et al., 2008) used FSM for
switching among 13 driving situations and invoking exception
behaviors to overcome stuckness. Besides, Odin (Bacha et al.,
2008) ran with appropriate behaviors under the current situation
using a system of the hierarchical FSM. The system is capable to
distinguish among intersection, parking lot and normal road
scenarios. Similarly, Furda et al. (Furda and Vlacic, 2011)
presented a multiple-criteria decision-making approach to divide
the decision-making task into two stages: the first one determined
feasible maneuvers based on Petri nets, whereas the second used a
multivariate utility function to select themost appropriate one. The
FSM is simple and effective in given situations. However, it does
not explicitly consider environment uncertainties and thus cannot
be applied in a dynamic traffic scenario. Besides, it requires
classifying situations and modeling policies by hand, which fails to
make a decision under unusual situations.
Compared with explicit decomposition of the problem,Chen

et al. (2015) trained a convolutional neural network (CNN)
model on 484,815 images collected and labeled when playing a
car racing video game TORCS for 12 h. Themodel mapped an
input image to a small number of key perception indicators that
is then sent in the designed controller. Bojarski et al. (2016)
trained a CNNmodel, mapping raw pixels from a single front-
facing camera directly to steering commands. The training data
were collected by driving on a wide variety of roads and in a
diverse set of lighting and weather conditions. About 72 h of
driving data were collected and sampled at ten frames per

second, which is used for training after being augmented
further. The system can learn how to drive on local roads or
highways with lane marking or not. The paper (Bojarski et al.,
2017) explained how the neural-network-based system called
PilotNet learns andmakes decisions. They developed a method
for determining which elements in the road image influence the
steering decision the most. The paper also showed that
PilotNet can learn more subtle features that are hard to
program and anticipate by engineers. These end-to-end
approaches simultaneously optimize all processing steps
instead of human-selected intermediate criteria. It will
performance better, especially for smaller systems, but requires
huge amounts of data to get good performance.
This paper proposes a probabilistic decision-making method,

which can be applied in a dynamic traffic environment while
considering safety, efficiency and comfort simultaneously. The
driving task was first formulated as the Markov decision process
(MDP) by defining the environment state space, agent action
space. Then, it built a state transition model and a reward model
by using a prediction model of surrounding cars. The optimal
policy was then automatically deduced using the value iteration
method of dynamic programming (DP). The simulation results
show the preset goal can be achieved. The framework of the
proposed method is shown in Figure 1. This paper provides a
probability decision-making approach that is neither dependent
on human driving data nor limited to only a variety of rules

Figure 1 Framework of the method

Markov probabilistic decision-making

Yang Guan et al.

Journal of Intelligent and Connected Vehicles

Volume 1 · Number 2 · 2018 · 77–84

78



modeled by hand. In addition, the formulation of the driving task
under a two-lane highway scenario is presented, including state
discretization and transitionmodel estimation.
The remainder of the paper is structured as follows: In

Section 2, a basic knowledge of the MDP is presented. Section
3 presents a MDP formulation for the driving task. Section 4
analyzes the result policy and provides explanations and
intuitions about the MDP method. Finally, Section 5
concludes with remarks on the main work of this paper and
potential areas for future research.

2. Basic knowledge of MDP

This section will give an overview about the used terminology.
There are five basic elements of MDP, that is the tuple
S;A; r s; a; s 0ð Þ; p s; a; s 0ð Þ; gð Þ, whereas S denotes the set of all
states,A denotes the set of all actions, r s; a; s0ð Þ 2 R denotes the
expected immediate reward on transition from state s to s0

under action a, where s; s 0 2 S; a 2 A, and R denotes set of all
possible rewards. And p(s, a, s0) denotes the probability of
transition to state s0 from state s taking action a.
A policy p is a stochastic rule by which the agent selects

actions as a function of states. The agent’s objective is to
maximize the amount of reward it receives over time. That is,
finding an optimal policy p* satisfying formula (1), whereas
vp (s) denotes the expected return from state s using policyp .

p� ¼ argmax
p

vp sð Þ (1)

For all s 2 S.
The Bellman optimality equation (2) is a special consistency

condition that the optimal value functions must satisfy and that
can, in principle, be solved for the optimal value functions,
from which an optimal policy can be determined with the value
iterationmethod.

p � ¼ argmax
a

X
s0;r

p s0; rjs; a� �
r1 gvp � s0ð Þ� �

(2)

3. MDP formulation for driving task

MDP is a mathematically formulation for decision and control
problems with uncertain system behavior. To derive the
optimal policy using it, a tuple including state, action, transition
model, rewardmodel and discounting is first required.

3.1 Environment state space
Variables selected in states are supposed to contain the complete
environmental information, such as properties of road, own car
and other cars, which is required by the agent decision. However,
with the number of variables included in a state rising, the
number of states increases exponentially, which causes
computation andmemory problems. As a result, it is necessary to
do simplification work tominimize the number of these variables.
Consider there is only one car of interest and assume that cars are
always parallel to the lane line. In addition, distance is more
worthy of concern than absolute position in the longitudinal
direction. Consequently, we formulate a tuple as a state.

Dxlon; xlat ego; xlat veh; vlon ego; vlon vehð Þ 2 Sc (3)

where Dxlon represents the longitudinal distance between the
ego car and the other car, and it is positive when the ego car is
behind the other car. xlat_ego, xlat_veh, denote lateral positions of
the ego car and the other car, and vlon_ego, vlon_veh denote the
longitudinal velocity, respectively.
MDP needs a discrete description. For variables related to

distance, we discrete it by dividing the road into no overlapping
areas with equal distance along longitudinal and lateral
directions. Besides, the speed is discreted with a fixed interval.
The state space is discretized as shown in Figure 2.

3.2 Agent action space
Action space has all decisions that we can make. There are two
main layers of decision-making architecture for intelligent cars,
that is driving behavior layer and trajectory planning layer.
Therefore, decisions can be deduced from all trajectories
planned for all driving behaviors. As a result, the action space
should contain all these trajectories. First, we define our
behavior set. Li et al. (2017a) categorized driving behavior in
highway traffic into 12 maneuver states. Here we define
behavior setB as:

B ¼ W �D (4)

where W denotes the basic behavior set and D denotes the
degree set of basic behavior radicalism. They are defined as:

W ¼ fgo straight; turn left; turn rightg (5)

D ¼ fvery radical;medium radical; normal;
medium cautious; very cautiousg (6)

Then, we use a tuple to represent a trajectory in the action
space,

alon; vlat; tð Þ 2 Ac (7)

where alon denotes the longitudinal acceleration, vlat denotes
the lateral speed and t denotes the time that actions go through.
Every b 2 B corresponds a subset ofAc. We can discretize all

these subsets the same way as state discretization. alon and vlat

Figure 2 State discretization

Markov probabilistic decision-making

Yang Guan et al.

Journal of Intelligent and Connected Vehicles

Volume 1 · Number 2 · 2018 · 77–84

79



can be discretized within their scope of experience. However, a
reasonable range should be determined for the discretization of
t. It cannot be too long or too short, so 1-3 s is appropriate.

3.3 Environment transitionmodel
3.3.1 Prediction model
Transition model p(s, a, s0) describes the probability of
transition from state s to s’ under action a. Thus, a prediction
model for the other car is needed to obtain the transferred state.
Suppose the scenario has two lanes and the driving behavior set
includes lane keeping and lane change. First, the probability of
driving behavior is predicted using statistic data, and then, the
motion prediction is carried out according to the corresponding
trajectory of that driving behavior.

3.3.2 Transition model
Continuous state space Sc � Rn and discrete state space S can
be linked by a random variable Is : Sc ! S, which is defined on
a probability space Sc;F ;Pð Þ. F is the Borel s -algebra on Sc.
(Royden and Fitzpatrick, 1968) Thus, for every discrete state
s 2 S, its corresponding continuous state set is I�1

S sð Þ ¼
fsc : Is scð Þ 2 sg. Then, we can acquire the probability measure
in probability space S;F0;PIs

� �
, where F0 is the power set of S.

For an event D 2 F0, its probability of occurrence can be
calculated by formula (8).

PIs Dð Þ ¼ P I�1
S Dð Þ� � ¼

ð
sc2I�1

S Dð Þ
p scð Þ (8)

In the same way, action sets can also be associated by random
variable Ia : Ac ! A. Therefore, the probability of transition
from state s 2 S to s0 2 S under action a 2 A can be solved by
formula (9).

p s0js; að Þ ¼ P I�1
S s0ð ÞjI�1

S s0ð Þ; I�1
A að Þ

� �

¼
ð
sc 02I�1

S s0ð Þ

ð
sc2I�1

S sð Þ

ð
ac2I�1

A að Þ
p sc0jsc; ac
� � (9)

It is hard to solve the transition probability using formula (9)
directly. However, it is feasible to approximate it with the
Monte Carlo method. We first sample Q state points with
weight on the continuous state space I�1

S sð Þ corresponding to
the discrete state s. Using action a and our prediction model,
we get the Dirac distribution of sc 0 for every sample point.
Then, the distribution of sc0 given s and a is obtained by
weighted average on all the samples. It is also a Dirac
distribution. Finally, we can get p s0js; að Þ by summing the
probability on all sc 0 2 I�1

S s0ð Þ. Figure 3 shows a sampling
instance of turning left.

3.4 Environment rewardmodel
The reward model r(s, a, s0) can be obtained just the same way
as p(s, a, s0). But howmany rewards the agent is able to get after
adopting action a need to be determined first. This reward has a
relationship with the driving goals, which usually include safety,
efficiency, comfort, economy and compliance with traffic rules
and daily driving habits. We set the reward a large negative
number when the ego car goes into a bad terminal state to
ensure safety. Bad states include colliding with the other car,

driving out of the road and being dumped by the other car. For
efficiency, a large positive number is assigned to the rewardwhen
the ego car dumps the other car, which is the good terminal state.
Andwe achieve other goals by designing rewards as formula (10)
when the ego car does not transfer to a terminal state.

r ¼
Xt=Dt
i¼1

Dt fcomalon 1 fovevlat 1 fobe !Isrightð Þð Þ (10)

To achieve the purpose of comfort and economy, a negative
factor fcom is added in front of the acceleration to punish the large
value of it. To encourage overtakingmoves, a positive factor fove is
added in front of the lateral velocity. Because we need the whole
action execution process to infer the environment model, an
action is decomposed into several steps to implement while a step
time is Dt. To keep the ego car in the right lane as far as possible,
we give it a negative value fobe when it is in the left lane in a step
but nothing when it is not. By multiplying all the three terms
mentioned above by the step time and summing over them on all
the steps during the action implementation, the reward can be
obtained.

4. Policy evaluation

For the evaluations, we use a two-lane highway scenario. The
self-driving agent has to cope with the other vehicle and

Figure 3 State space sampling and transition

Markov probabilistic decision-making

Yang Guan et al.

Journal of Intelligent and Connected Vehicles

Volume 1 · Number 2 · 2018 · 77–84

80



manage tasks like overtaking and avoiding collision. A detailed
analysis of the results and tests in a two-dimensional simulation
environment has been done.

4.1 Analysis of the results
After building the MDP model, we applied the value iteration
method to get the optimal policy. When the ego car transfers to
a bad terminal state, it is given a reward of �1000. On the
contrary, a reward of 1000 is given when it goes into a good
terminal state. Otherwise, we assign the reward using formula
(10) while setting fcom = 0, fove = 0, fobe = –30. Besides, we set
discounting factor g to 0.9. There are 64 samples of the ego car
and the other car. Hence, the number of samples is 64 � 64.
The results are as shown in Figure 4 and Figure 5. Figure 4
shows the optimal policy when the other car is in the right lane
and its speed is between 0 and 4 m/s. Figure 4a, 4b and 4c,
respectively, represent the state value, the optimal acceleration
and the optimal lateral speed when the ego car is also in the
right lane, whereas Figure 4d represents the optimal lateral
speed when the ego car is in the left lane. Each sub-figure
corresponds to values under 165 states, which consists of 33
discrete values of Dxlon horizontally and five discrete values of
xlat_veh vertically.
As can be seen in Figure 4a, when Dxlon > 10 m, the state

value increases with the vehicle speed increasing. This is
because when the ego car is beyond the other car, it can reach
the good terminal state to get the 1000 reward. Because future
rewards decay exponentially with respect to steps taken from
the current state, the ego car arrives faster, the greater return it
gets, and that is why states with a greater speed have a higher
value. By contrast, when Dxlon>�30 m and<0, the state value
decreases with the increase of the vehicle speed. This is because
when the ego car is close to its front car, the greater its speed,
themore likely it collides and gets a reward of�1000, the lower
the state value.
The optimal policy is the policy that leads to highest values

for all states. The Bellman equation shows that the value of a
state consists of instantaneous reward and the value of the
following state. Therefore, policy selection is a trade-off among
three factors including efficiency, safety and avoiding staying in
the left lane too long. As shown in Figure 4b, when the ego car
is behind and its speed is small, efficiency is more worthy of
attention than safety. Thus, a large acceleration is adopted.
However, with the speed increasing, the agent is more
concerned about preventing collision than being faster. As a
result, a small acceleration or even a negative one is taken in this
case. On the other hand, when Dxlon < 0, optimal accelerations
decrease with jDxlonj decreasing also owing to safety
considerations. When the ego car goes to the front, there is
almost no collision avoidance problem. In addition, there is no
comfort or economy consideration in the reward function. The
goal is to reach the destination as soon as possible, so the
maximum acceleration is chosen, namely, 4m/s2.
For the lateral speed selection, it is still the trade-off among

the three factors. As can be seen in Figure 4c, when the ego car
runs behind, lateral speed changes from 0 to 2 m/s with the
increasing of the vehicle speed. That is because the larger the
speed, the more unsafe the agent feels, so it switches to the left
lane to avoid collision. For the same reason, the optimal lateral
speed changes from 0 to 2 m/s with the distance decreasing.

Figure 4 Optimal policy when the other car is at the right lane with
speed 0-4 m/s

–50 0 50
Δ xlon[m]

0

5

10

15

20

v lo
n_
eg
o[m

/s
]

–1,000

–500

0

500

1,000

V
al

ue

–50 0 50
Δ xlon[m]

0

5

10

15

20

v lo
n_
eg
o[m

/s
]

–4

–2

0

2

4

a l
on

[m
/s

2 ]

–50 0 50
Δ xlon[m]

0

5

10

15

20

v lo
n_
eg
o[m

/s
]

–2

–1

0

1

2

v l
at

[m
/s

]

–50 0 50
Δ xlon[m]

0

5

10

15

20

v lo
n_
eg
o[m

/s
]

–2

–1

0

1

2

v l
at

[m
/s

]

Notes: (a) Maximal value; (b) acceleration;
(c) lateral speed (ego on the right lane);
(d) lateral speed (ego on the left lane)

(a)

(b)

(c)

(d)

Markov probabilistic decision-making

Yang Guan et al.

Journal of Intelligent and Connected Vehicles

Volume 1 · Number 2 · 2018 · 77–84

81



However, it changes back to 0 when the distance continues to
decrease. This is because in emergency, owing to physical
constraints of the tire, the lateral force is turned to 0 tomake the
longitudinal force the maximal value. When the ego car runs at
the front, there are no collision worries, so the lateral speed
always equals 0.
In Figure 4d, we can see when the ego car runs behind, the

greater the distance and the lower the speed, the more the
tendency of changing lanes. In these cases, it is the main
consideration to avoid staying in the overtaking lane.
Otherwise, we care more about the efficiency and safety. Then,
when it runs at the front, with the distance increasing, the focus
of our attention changes from safety to rule compliance, and
then efficiency. And that is why the optimal lateral speed
changes from0 to 2m/s, and then 0.
Figure 5a shows the importance of a more sophisticated

prediction model. The situation is basically the same as the
above example, except the other car drives on the right lane
with a speed between 12 and 16 m/s. Obviously, the safety
distance shrinks compared with the case where the other car is
in low speed, because there is more time to brake. The
difference between 5a and 5b is 5a has a complete driving
behavior set in its prediction model, whereas 5b only has lane
keeping behavior. The missing uncertainty leads to an extra
lane changing behavior when the rear car is approaching,
because the ego car predicts the rear car will go straight so that
it does this to avoid collision. However, this is extremely

dangerous when it is really driving because the rear car is very
likely to overtake in that situation. The complete prediction
model is able to forecast this, and consequently, the ego car in
Figure 5a holds lane.

4.2 Simulation test
The decisions of the agent with the other car were practically
evaluated in a two-dimensional simulation environment. The
speed limit is 30 m/s for the ego car. Several tests were done
when the other car was being controlled manually with
acceleration and the steering wheel. One of the simulation
processes is shown in Figure 6. In this process, the other car is
being controlled to behave at random, as the blue lines shown
in Figure 6a and 6b. We can see the agent showed reasonable

Figure 5 Comparison of the different prediction model

-50 0 50
Δ xlon[m]

0

5

10

15

20
v lo
n_
eg
o[m

/s
]

–2

–1

0

1

2

v l
at

[m
/s

]

-50 0 50
Δ xlon[m]

0

5

10

15

20

v lo
n_
eg
o[m

/s
]

–2

–1

0

1

2
v l
at

[m
/s

]

Notes: (a) Complete prediction model;
(b) only lane keeping prediction

(a)

(b)

Figure 6 Simulation results

Markov probabilistic decision-making

Yang Guan et al.

Journal of Intelligent and Connected Vehicles

Volume 1 · Number 2 · 2018 · 77–84

82



behavior. Sometimes the controlled car fast approached the
ego car in the right lane and overtook it, just as what
happened around 10 s. In this situation, the ego car would
keep a constant speed and stay in the right lane rather than
turning left to avoid collision. Sometimes the ahead
controlled car suddenly decelerated, as what happened
between 20 s and 30 s. Under this circumstance, it can be
seen that the ego car chose to decelerate too and when it
slowed down, it chose to turn left and overtook the front car.
Besides, when the high-speed controlled car overtook the ego
car from the left lane and turned to the right lane suddenly,
the ego car would decelerate right away, just as shown around
20 s, 50 s and 62 s.
It can be seen that the results obtained here are consistent

with previous analyses. The deduced policy can adapt to any
movement of the surrounding car and make the ego car drive
safely and efficiently.

4.3 Comparison to existingmethods
From the above results, it can be seen that the MDP defines
per step reward and uses the DP method to choose behavior
in each state to get the maximal expected total reward in the
future. To implement the DP, it first needs to estimate the
transition model through the Monte Carlo method.
Compared with the FSM method, which chooses behavior
by rules, the MDP does not need too much experience to
design the whole decision system but a little knowledge to
design the per step reward, which is related to the driving
goals. Compared with the CNN method, which chooses
action by a CNN trained on a large number of labeled
driving images, the whole process of the MDP does not need
any driving data but an environment model used in equation
(2) to get the policy by iteration. As a result, the performance
of the MDP is restricted by the precision of the estimated
model. Besides, a large state space will lead to expensive
computing cost when using the DP. In conclusion, the MDP
is more suitable for problems where the precise environment
model is available and the surrounding traffic environment is
not too complex.

5. Conclusion

This paper presents a method that can automatically deduce
the optimal behavior for autonomous driving. This method
formulates driving tasks as the MDP and integrates a
sophisticated motion prediction model of the surrounding car,
in which predictions in continuous space andMDP planning in
discrete space are combined by means of the probability
method. The deduced optimal policy in the given two-lane
highway scenario is evaluated analytically and used in a two-
dimensional simulation environment. The results show that it
behaves reasonably to achieve safe and efficient driving, such as
braking when the front car slows down, overtaking the front car
when it drives slow and keeping its lane rather than changing
lanes when the rear car is fast approaching. This method could
be applied in standard scenarios, such as highway and park
driving, so that there is no need to model policies by hand
comparing with rule-basedmethods.
But there are several issues that need to be improved. First of

all, the time needed rises sharply as the dimension of the state

space increases owing to high computational complexity.
Because lots of states are virtually impossible to meet in
practice, it is reasonable to compute on-line when a new state is
encountered rather than doing all the computation off-line. In
addition, the result shows that fixed discretization is too fine for
states whose values are close and discrete interval is too large for
states whose values have a significant difference. A more
efficient discretization method is required. Finally, to use the
decision-making model in reality, a more detailed vehicle
dynamic model and a traffic model need to be included;
besides, the approximation function should be used to
represent the value function in the continuous state space to
enhance generalization of the policy and reduce the
computation cost in large-scale decision problems.

References

Bacha, A., Bauman, C., Faruque, R., Fleming, M., Terwelp,
C., Reinholtz, C., Hong, D., Wicks, A., Alberi, T.,
Anderson, D. and Cacciola, S. (2008), “Odin: team
VictorTango’s entry in the DARPA Urban Challenge”,
Journal of Field Robotics, Vol. 25No. 8, pp. 467-492.

Bojarski, M., Del Testa, D., Dworakowski, D., Firner, B.,
Flepp, B., Goyal, P., Jackel, L.D., Monfort, M., Muller, U.,
Zhang, J. and Zhang, X. (2016), “End to end learning for
self-driving cars”, arXiv Preprint arXiv, Vol. 1604, p. 07316.

Bojarski, M., Yeres, P., Choromanska, A., Choromanski, K.,
Firner, B., Jackel, L. and Muller, U. (2017), “Explaining
how a deep neural network trained with end-to-end learning
steers a car”, arXiv Preprint arXiv, Vol. 1704, p. 7911.

Buehler, M., Iagnemma, K., and Singh, S. (2009), The
DARPA Urban Challenge: Autonomous Vehicles in City Traffic,
Springer, Berlin, Vol. 56.

Carvalho, A., Lefévre, S., Schildbach, G., Kong, J. and
Borrelli, F. (2015), “Automated driving: the role of forecasts
and uncertainty a control perspective”, European Journal of
Control, Vol. 24, pp. 14-32.

Chen, C., Seff, A., Kornhauser, A., and Xiao, J. (2015), Deep
driving: learning affordance for direct perception in
autonomous driving. in Proceedings of the IEEE International
Conference on Computer Vision, pp. 2722-2730.

Furda, A. and Vlacic, L. (2011), “Enabling safe autonomous
driving in real-world city traffic using multiple criteria
decision making”, IEEE Intelligent Transportation Systems
Magazine, Vol. 3No. 1, pp. 4-17.

Janai, J., Güney, F., Behl, A. andGeiger, A. (2017), “Computer
vision for autonomous vehicles: problems, datasets and
state-of-the-art”, arXiv Preprint arXiv, Vol. 1704,
p. 05519.

Lefèvre, S., Vasquez, D. and Laugier, C. (2014), “A survey on
motion prediction and risk assessment for intelligent
vehicles”,Robomech Journal, Vol. 1No. 1, p. 1.

Li, G., Li, S.E., Cheng, B., andGreen, P. (2017a), “Estimation
of driving style in naturalistic highway traffic using maneuver
transition probabilities”, Transportation Research Part C,
Emerging Technologies, Vol. 74, pp. 113-125.

Li, S.E., Qin, X., Li, K., Wang, J. and Xie, B. (2017b),
“Robustness analysis and controller synthesis of
homogeneous vehicular platoons with bounded parameter

Markov probabilistic decision-making

Yang Guan et al.

Journal of Intelligent and Connected Vehicles

Volume 1 · Number 2 · 2018 · 77–84

83



uncertainty”, IEEEASME Transactions on Mechatronics,
Vol. 22No. 2, pp. 1014-1025.

Li, S.E., Zheng, Y., Li, K., Wu, Y., Hedrick, J.K., Gao, F. and
Zhang, H. (2017c), “Dynamical modeling and distributed
control of connected and automated vehicles: challenges and
opportunities”, IEEE Intelligent Transportation Systems
Magazine, Vol. 9No. 3, pp. 46-58.

Liu, C., Li, S.E., Yang, D. and Hedrick, J.K. (2018),
“Distributed Bayesian filter usingmeasurement dissemination
for multiple unmanned ground vehicles with dynamically
changing interaction topologies”, Journal of Dynamic Systems,
Measurement, and Control, Vol. 140No. 3, p. 030903.

Montemerlo, M., Becker, J., Bhat, S., Dahlkamp, H., Dolgov,
D., Ettinger, S., Haehnel, D., Hilden, T., Hoffmann, G.,
Huhnke, B., et al. (2008), “Junior: the Stanford entry in the
urban challenge”, Journal of Field Robotics, Vol. 25 No. 9, pp.
569-597.

Paden, B., �Cáp, M., Yong, S.Z., Yershov, D. and Frazzoli, E.
(2016), “A survey of motion planning and control techniques
for self-driving urban vehicles”, IEEE Transactions on
Intelligent Vehicles, Vol. 1No. 1, pp. 33-55.

Patole, S.M., Torlak, M., Wang, D. and Ali, M. (2017),
“Automotive radars: a review of signal processing
techniques”, IEEE Signal ProcessingMagazine, Vol. 34No. 2,
pp. 22-35.

Royden, H.L. and Fitzpatrick, P. (1968), Real Analysis, Vol. 2,
Macmillan, NewYork, NY, Vol. 2.

Urmson, C., Anhalt, J., Bagnell, D., Baker, C., Bittner,
R., Clark, M., Dolan, J., Duggins, D., Galatali, T.,
Geyer, C. and Gittleman, M. (2008), “Autonomous
driving in urban environments: boss and the urban
challenge”, Journal of Field Robotics, Vol. 25 No. 8,
pp. 425-466.

Zheng, Y., Li, S.E., Li, K., Borrelli, F. and Hedrick, J.K.
(2017), “Distributed model predictive control for
heterogeneous vehicle platoons under unidirectional
topologies”, IEEE Transactions on Control Systems Technology,
Vol. 25No. 3, pp. 899-910.

Corresponding author
Shengbo Eben Li can be contacted at: lishbo@tsinghua.
edu.cn

For instructions on how to order reprints of this article, please visit our website:
www.emeraldgrouppublishing.com/licensing/reprints.htm
Or contact us for further details: permissions@emeraldinsight.com

Markov probabilistic decision-making

Yang Guan et al.

Journal of Intelligent and Connected Vehicles

Volume 1 · Number 2 · 2018 · 77–84

84

mailto:lishbo@tsinghua.edu.cn
mailto:lishbo@tsinghua.edu.cn

	Markov probabilistic decision making of self-driving cars in highway with random traffic flow: a simulation study
	1. Introduction
	2. Basic knowledge of MDP
	3. MDP formulation for driving task
	3.1 Environment state space
	3.2 Agent action space
	3.3 Environment transition model
	Undefined namespace prefix
xmlXPathCompOpEval: parameter error
xmlXPathEval: evaluation failed


	3.4 Environment reward model

	4. Policy evaluation
	4.1 Analysis of the results
	4.2 Simulation test
	4.3 Comparison to existing methods

	5. Conclusion
	References


