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Abstract

Purpose – The purpose of this paper is to study the factors affecting COVID-19 mortality.
Design/methodology/approach –An empirical model is developed inwhich themortality rate permillion is
the dependent variable, and life expectancy at birth, physician density, education, obesity, proportion of
population over the age of 65, urbanization (population density) and per capita income are explanatory
variables. Crosscountry data from 184 countries are used to estimate the quantile regression that is employed.
Findings –The estimated results suggest that obesity, the proportion of the population over the age of 65 and
urbanization have a positive and statistically significant effect on COVID-19 mortality. Not surprisingly, per
capita income has a negative and statistically significant effect on COVID-19 death rate.
Research limitations/implications – The study is based on the COVID-19 mortality data from June
2020, which have constantly being changed. What data reveal today may be different after two or three
months. Despite this limitation, it is expected that this study will serve as the basis for future research in
this area.
Practical implications – Since the findings suggest that obesity, population over the age of 65 and density
are the primary factors affecting COVID-19 death, the policy-makers should pay particular attention to these
factors.
Originality/value – To the authors’ knowledge, this is first attempt to estimate the factors affecting the
COVID-19 mortality rate. Its novelty also lies in the use of quantile regressions, which is more efficient in
estimating empirical models with heterogeneous data.
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Introduction
On December 31, 2019, Chinese officials in the city of Wuhan confirmed several cases of
pneumonia from an unknown cause [1]. As it quickly spread in Wuhan, scientists eventually
identified it as a novel coronavirus on January 7, 2020 [2]. According to the World Health
Organization (WHO), symptoms included dry cough, fever, shortness of breath, pneumonia
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and respiratory failure, which are symptoms similar to that of influenza and other viruses
that attack the respiratory system. By January 11, 2020, the first virus-related death of a 61-
year-old man in Wuhan was reported [1]. On January 20, the WHO reported the first
confirmed cases of the novel coronavirus outside of China in Japan, South Korea and
Thailand. As the number of infections and fatalities in China increased, on January 23rd, the
Chinese Communist Party placed the entire population ofWuhan onmandatory lockdown [1].
All domestic travel in and out of the city was suspended except for international flights. On
January 30th, the WHO declared a global public health emergency as a result of 9,000 cases
reported in 18 countries, including China [1]. The following day, on 31st January, the US
banned entry for most foreign nationals who had traveled to China [1].

The first coronavirus death outside China of a 44-year-old male, who was a resident of
Wuhan city in China, was reported in the Philippines on February 2, 2020 [1]. By February
9th, the death toll in China rose to 811, surpassing the Severe acute respiratory syndrome
(SARS) death in 2003. OnFebruary 11th, theWHOnamed the novel virus SARS-CoV-2 and its
accompanying disease COVID-19 [2]. By the end of February, many other countries reported
COVID-19 infections and fatalities, including South Korea, Iran, Italy and Japan. As a result,
the US government banned flights from Iran, Italy, Japan and South Korea.

The first confirmed fatality related to COVID-19 in the United States was reported on
February 29th, a man in his 50s in Washington state [1]. Over the next six weeks, infections
and fatalities increased exponentially in Italy as well as many other European countries. By
the end of March, infections, as well as fatalities, also started to rise exponentially in the
United States. By June 2020, the death toll in theUnited States surpassed 100,000. Fatalities as
a percentage of infection (i.e. case fatality rate) in European countries rose to alarming levels.
The case fatality rate (CFR) inAsian andAfrican countries, however, remained relatively low.
In other words, the COVID-19 CFR and overall mortality rate, defined as the number of deaths
in a population, varied from country to country.

Because COVID-19 is a new virus, there is a dearth of literature on its effect on the health
outcome of the general population. To determine the socioeconomic determinants of the
COVID-19 pandemic, a Bayesian model was developed and showed that the true empirical
model of COVID-19 was constituted by only a few of its determinants [3]. There is other
empirical literature [4, 5] that indicates that obesity, age over 65 and smoking are important
factors causing COVID-19 death.

The purpose of this paper was to identify the factors correlated with the COVID-19
mortality rate. We hope to increase the level of understanding concerning factors that render
some populations more vulnerable to the virus than others. As coronavirus continues its
spread across the globe, even modest, but early advances in such knowledge could lead to a
significant reduction in loss of life.

Methodology
Drawing upon the literature discussed above, the following model was developed in order to
identify the factors affecting COVID-19 death.

MRT ¼ f ðPCGDP; DOC; OLD; OBE; URB; EDU; LEBÞ (1)

where,

MRT 5 mortality rate per million of the population,

OLD 5 proportion of population 65 years or older,

OBE 5 percentage of the adult population with a BMI of 30 or greater,

LEB 5 life expectancy at birth,

Factors
affecting

COVID-19
mortality

167



DOC 5 availability of doctors per 1000 population,

URB 5 proportion of population living in urban areas,

PCGDP 5 per capita GDP in PPP (purchasing power parity) and

EDU 5 government expenditure on education out of total government spending.

In this estimation, the dependent variable MRT and the PCGDP controlled variable were
transformed into a natural logarithm ln DRM and lnPCGDP, respectively. In Eqn (1), the
coefficient OLD was expected to be positive as an increase in population over 65 years of age
are more prone to die from pneumonia and respiratory failure caused by COVID-19. The
coefficient of LEB could be positive or negative. Greater life expectancy at birth is an
indication of good health of the population with a good immune system, which can fight the
disease; therefore, LEB should have a positive coefficient. However, at the same time, greater
life expectancy at birth implies people live longer with aging, and thus more prone to die of
COVID-19 if infected. In this case, it can have a negative coefficient. DOC is expected to have a
negative effect on the death rate as an increase in the number of medical doctors implied
better healthcare for the patients infected and prone to COVID-19 infection and death.

Eqn (1) also included some social as well as economic variables. One of them was
urbanization (URB). People who live in rural areas are more likely to maintain some sort of
social distance. In contrast, those in urban areas, particularly large cities, often cannot
maintain much, if any, social distance. This is particularly true for those who rely on public
transportation. The increased population density present in urban areas almost certainly
increased exposure to all communicable pathogens. As a result, urban residents were more
likely to be infected with a heavy viral load which could increase the severity of COVID-19
and lead to death. The coefficient of this variable, therefore, was expected to be positive. The
next variable in the model was per capita income (PCGDP). Higher per capita income implies
better health and a higher quality of life. Therefore, we expected this variable to have a
negative coefficient. Finally, a lack of education was also expected to harm the COVID-19
mortality rates, as a better-educated population wasmore informed about the prevention and
treatment of COVID-19. However, a greater number of higher education institutions lead to an
increased risk of transmission through contact with students, faculty and staff in
communities where higher education institutions are located. This risk can increase the
COVID-19 mortality rate; therefore, it is possible that EDU can have a positive coefficient.

A sample size of observations from 184 countries was used for this study. The data for
mortality rate caused by COVID-19 was from June 22, 2020, or before and derived from Johns
Hopkins University and Medicine Coronavirus Resource Center. The remaining data used in
the model were derived from the CIA country fact book from 2020.

Ethical considerations
This study did not involve human beings during the research. The University of New Haven
Institutional Research Board (IRB) exempted it under 45 CFR 46.104(b) (4) and approved it for
dissemination (Protocol no. 2020-074).

Results
This investigation employed two different estimation techniques: ordinary least square (OLS)
and quantile regression to estimate the death rate per million, which had been transformed to
the natural logarithm while estimating with results presented in Table 1. The results from
OLS are presented simply for reporting purposes, as the study discusses more on the results
from the quantile regression.
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Results of OLS and
quantile estimations
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The benefits of using quantile regression were that the model would not be restricted by any
specific distribution of the residuals. Unlike OLS, which is a mean regression, quantile
regression used the median and therefore determined the relationships between variables
that were outside of the mean of the data. The quantile regression informed us about how the
effect of changing X by 1 unit varied across the conditional distribution of Y. Hence, the use of
quantile regression was useful in understanding outcomes that were nonnormally
distributed and that had nonlinear relationships with predictor variables. Therefore, using
a quantile regression for this study allowed us to capture every possible effect of variables on
the dependent variable lnDRM. The Stata command sqreg performed simultaneous quantile
regression, and without any option, the sqreg did a median regression in which the
coefficients were estimated byminimizing the absolute deviations from themedian [6, 7]. As it
was an estimate of central tendency, the median regression was a resistant measure that was
not as significantly affected by outliers as a mean regression would be. The standard error
estimates provided by sqreg were computed with the bootstrap standard errors via
bootstrapping rather than through analytical formula. Since the analytical technique treated
the sample means as fixed, whereas the bootstrap estimates accounted for their sampling
variability and the standard errors estimated via bootstrapping, it was better when compared
to the standard that OLS provides [8].

The quantile regression was run for 10, 25, 50, 75 and 90% quantiles. Due to the
significance seen at 50%quantile, the results primarily discussed were based on this quantile
while the other quantiles were presented for comparison purposes only. The results from the
quantile regression showed that the natural log of per capita gross domestic (lnPCGDP) was
significant at 10%, suggesting that if the 50% quantile of the DRM was considered, a 1%
increase in lnPCGDP would decrease the mortality rate per million due to COVID-19 by
2.76*10�06%. It provided rationality of increasing the healthcare budget to reduce the death
rate per million population from such pandemics. Another important finding of this study
was that it quantified the effects of several human health-related factors. This study
found that if a person was old (OLD), it increased the mortality rate due to COVID-19 by
1.63*10�04% compared to the young with COVID-19 (p < 0.01). The predicted confidence
interval of the effect of variable OLD increased gradually from 10 to 50% quantiles; the
confidence interval gradually fanned out after reaching the 75% quantiles and above, which
can be seen in Figure 1. Similarly, another health-related variable, obesity (OBE) was
significant in contributing to an increase in the mortality rate per million in this study. The
result shows that obesity has led to an increase in the mortality rate per million by 8.09*10�
04%. This OBE variable also behaves with a similar pattern to OLD variables when the
quantiles of the dependent variable MRT moves from 10 to 50% quantiles, and beyond, its
predicted confidence level fanned out after reaching the 75th quantile.

Besides the human health-related variables, this study also tested the effect of
urbanization (URB), which is a human-related activity in a developing society. This study
found that the URB variable was significant at 5% with a positive sign suggesting that the
effect of living in an urban environment resulted in an increase ofmortality rate permillion by
3.25*10�05% as compared to the person living in a nonurban setting (suburban or
countryside). The effect of urbanization in increasing the mortality rate was almost
significant in all quintiles except for the 25% quantile. This consistent result in the majority
of quantiles revealed that people in urban areas were being infected by COVID-19 at a higher
rate, either due to not maintaining medically recommended social distancing or due to
clustering without maintaining medically recommended distance.

In order to check the robustness of our study, we also estimated themodel by replacing the
dependent variablemortality rate permillionwith the CFR (death as a percentage of infected).
The estimated result was consistent with our results in Table 1 with the exception that the
variable OBE was not statistically significant in explaining the CFR. As in the case of our
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previous estimation, the proportion of the population over 65 and urbanization were
statistically significant in explaining the CFR.

Discussion
The estimated results above suggest that obesity (OBE) is a significant variable explaining
the COVID-19 mortality rate. Over the past four decades, obesity has developed into its own
global epidemic [9]. In 2016, there were nearly two billion adults over the age of 18 who were
clinically overweight, defined as a BMI ≥25, an early three-fold increase since 1975 [10]. The
statistical significance of the OBE variable in COVID-19 mortalities corroborates previous
studies identifying clinical obesity, defined as a BMI ≥30 in adults, as a critical factor in
COVID-19 mortality rates [10–12]. Of the three most common clinical comorbidities identified
in patients hospitalized with COVID-19 – obesity, hypertension and diabetes [13] – obesity
was the most preventable at the individual and population levels. Obesity is linked to higher
mortality rates in numerous diseases, including influenza viruses, which pose a significant
threat to become a future epidemic or pandemic. A large-scale effort to reduce global obesity
rates is critical for minimizing mortality rates during future pandemics. Pragmatic policies
designed to encourage healthy lifestyle practices should be adopted by nations with high
obesity rates.

A common government intervention method used at local and national levels is the use of
public health campaigns. These campaigns should avoid emphasizing an ideal body size or
shape, thereby unintentionally stigmatizing overweight and obese populations. Instead, they
should advocate for health and wellness by promoting nutritious food options and
encouraging regular exercise. Oftentimes, well-intended public health campaigns
unknowingly feature stigmatizing images of overweight or obese people. Analysis of
stigmatizing campaigns compared to neutral campaigns suggest that stigmatization does not
lead to an increase in motivation [14]. Research suggests that public health campaigns, a
common strategy to reduce and prevent obesity, are not an effective means of motivating
long-term lifestyle changes [9].

Contrary to the long-held belief that high-fat foods are the primary driver of obesity,
recent studies have linked excess sugar consumption to rising obesity rates. Sugar is a
significant driver of obesity in the United States, which has the 11th highest obesity rate out
of 196 countries analyzed by theWHO [10]. The United States consumesmore than 300% of
the recommended amount of added sugar on a daily basis [15]. Sugar can be listed as an
ingredient using a variety of names such as, but not limited to dextrose, glucose, maltose,
xylose or evaporated cane juice. The various names for sugar used by food manufacturers
create an added challenge in the effort to reduce obesity rates. Furthermore, a 2017 meta-
analysis on the effects of mandatory calorie disclosure to consumers dining at restaurants
found that consumers across all demographics consumed an average of 27 fewer calories
per meal. However, calorie disclosure on menus had a greater effect on obese consumers.
Obese consumers chose meal options with an average of 67 fewer calories [16]. Policy
changes at the regulatory level that increase consumer transparency may be necessary and
a more effective means of obesity prevention. For example, labels on food and drink items
containing added sugar could be mandated to state a message such as “This product
contains added sugar, which may be linked to obesity and other health problems” [17].
Similar labels on cigarette packages are effective in educating smokers on the negative
health effects of smoking [18].

Our empirical findings also suggest that senior citizens are more prone to COVID-19
death compared to the young population. In the European Union, the percentage of the
population over 65 is over 20% [19]. In the United States, citizens over 65 comprise 16.2% of
the total population [20], with some states such as Florida, Maine, Vermont and West
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Virginia at or above 20%. In Japan, citizens over 65 comprise 30% of the population,
expected to further increase in the future. The populations of Asia, Africa and Latin
America are relatively young compared to Europe, Japan and other industrialized
countries. This age discrepancy may be one reason why the COVID-19 mortality rate is
lower in Asian and African countries relative to Europe and North America. Considering
that an older population is more vulnerable to death from COVID-19 and other similar
respiratory diseases such as influenza, the policy implication we can derive is that the
central, state and local governments in every nation should prioritize the safety of this age
group, particularly during epidemics and pandemics. Interestingly, Japan has the largest
percentage of elderly citizens among its population. Despite that, it has one of the lowest
COVID-19 mortality rates. The percentage of COVID-19 deaths occurring in Japanese
nursing homes is 14% compared to 40% in the United States. In the long-term care center,
the density of beds per 1000 elderly people is 53 in the United States and 12 in Japan [21].
Greater density facilitates the transmission of diseases. Also, Japanese culture, which
emphasizes respect for elders, prioritizes minimizing or eliminating other infectious
diseases from nursing homes and other long-term care facilities and also consequently
minimized COVID-19 deaths. Japan serves as a role model to the rest of the world on how to
protect the elderly.

Another variable that was statistically significant to COVID-19 mortality rates is a
nation’s degree of urbanization, which captures population density pockets. The recent
outbreak of COVID-19 in India, Brazil and South Africa demonstrate that the majority of
COVID-19 deaths have been in dense urban areas such as New Delhi, Mumbai, Sao Paolo
and Johannesburg. Similar results were seen in the United States; high-density pockets of
NewYork City, Miami and NewOrleans have a high COVID-19 mortality rate. If we analyze
these fatalities carefully, we see that the living conditions of people in these areas include
three or more people living in a small space, often a single room with poor sanitation
conditions. These living conditions are conducive to community spread and high
transmission rates. The situation is more critical in the favelas and slums of Sao Paolo
andMumbai. In theMumbai slum of Dharavi, 67%of households rely on community toilets,
while soap and clean water are scarce, and social distancing is impossible. Consequently,
40–60% of people living in Mumbai’s slums were infected in mid-July 2020 [22]. However,
some cities such as Trivandrum, the capital city of the Indian state of Kerala, acted quickly
to increase testing and contact tracing which resulted in one of the lowest infection and
mortality rates in India, despite thousands of people returning from international locations
[22]. Hong Kong, Tokyo and Ho Chi Minh City were also able to manage COVID-19 through
lessons learned from the 2003 SARS experience. Widespread testing and contact tracing,
quarantines and, if necessary, lockdowns were quickly implemented, successfully
minimizing COVID-19 transmission rates. Similar policies that emphasize the quick
implementation of evidence-based infectious disease mitigation tactics should be instituted
in nations around the world.

Our estimated regression result suggests that the per capita income is negatively related to
COVID-19mortality rates. Higher-income countries have greater access tomodern health-care
systems whereas the poorest countries lack such facilities. The few facilities that do exist are
typically reserved for the wealthiest citizens. A healthy population, regardless of
socioeconomic standing, is necessary for a healthy nation. Governments must pass
legislation that prioritizes building strong health-care infrastructure and maximize funding
for multiple aspects of public health and disease prevention. Legislative items include a
greater number of hospitals and primary care clinics, modern diagnostic and therapeutic
technology, strong emphasis on healthcare and medicine during secondary education,
equitable access to healthcare, health and nutrition education, better sanitation, a national
stockpile of personal protective equipments (PPE) and technology for efficient contact tracing.
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Conclusion
This paper estimates and analyzes the factors affecting the COVID-19 mortality rate and
suggests policy recommendations based on the results. A model, using cross-sectional data
from 184 countries, was developed in which the per capita income, education, availability of
doctors per thousand population, life expectancy at birth, urbanization, the proportion of the
population over the age of 65 and obesity were the dependent variables explaining the
COVID-19 death rate per million. Since the data were not balanced, quantile regression was
used, and the results derived from this estimation were used to infer the findings for analysis.
The estimated results suggest that obesity, the proportion of the population over the age of 65
and urbanization as a measure of density had a statistically significant positive effect on the
COVID-19 mortality rate. Per capita income, however, had a negative and statistically
significant effect on the COVID-19 mortality rate.

There are considerable limitations to any study employing data aggregated to the country
level. Ours is no exception. Such data will likely not capture factors relevant to our research
question that more refined data would reveal. We tried to mitigate this weakness to some
degree by using the quantile estimation approach. Still, estimates borne from cross-sectional,
country-wide data should be considered with caution. In the case of the coronavirus
pandemic, caution is also called for due to the continuing spread across the globe. The data
revealed today may be different in two months. We recognize these shortcomings in our
analysis. Despite these limitations, we hope that this study will serve as the basis for future
research in this area.

Conflict of interest: There is no conflict of interest.

References

1. Muccari R, Chow D, Murphy J. Coronavirus timeline: tracking the critical moments of COVID-19.
NBCNews. [updated 2020 March; cited 2020 September]. Available from: https://www.nbcnews.
com/health/health-news/coronavirus-timeline-tracking-critical-moments-covid-19-n1154341.

2. World Health Organization [WHO]. Addressing human rights as key to the COVID-19: response, 21
April 2020. [cited 2020 September]. Available from: https://apps.who.int/iris/handle/10665/331811.

3. Stojkoski V, Utkovski Z, Jolakoski P, Tevdovski D, Kocarev L. The socio-economic determinants
of the coronavirus disease (COVID-19) pandemic. [updated 2020 April; cited 2020 September].
Available from: https://papers.ssrn.com/sol3/papers.cfm?abstract_id53576037.

4. Chaudhry R, Dranitsaris G, Mubashir T, Bartoszko J, Riazi S. A country level analysis measuring
the impact of government actions, country preparedness and socioeconomic factors on COVID-19
mortality and related health outcomes. EClinicalMedicine. 2020 Aug; 25: 100464. doi: 10.1016/j.
eclinm.2020.100464.

5. Liang LL, Tseng CH, Ho HJ, Wu CY. Covid-19 mortality is negatively associated with test number
and government effectiveness. Sci Rep. 2020 Jul; 10(1): 12567. doi: 10.1038/s41598-020-68862-x.

6. Baum CF. Quantile regression. [cited 2020 September]. Available from: http://fmwww.bc.edu/EC-
C/S2016/8823/ECON8823.S2016.nn04.slides.pdf.

7. Gould W. Interquartile and simultaneous-quantile regression. Stata Technical Bulletin. 1998; 7(38):
1-35.

8. Del Giudice V, Salvo F, De Paola P. Resampling techniques for real estate appraisals: testing the
bootstrap approach. Sustainability. 2018; 10(9): 3085. doi: 10.3390/su10093085.

9. Walls HL, Peeters A, Proietto J, McNeil JJ. Public health campaigns and obesity - a critique. BMC
Publ. Health. 2011 Feb; 11: 136. doi: 10.1186/1471-2458-11-136.

10. World Health Organization [WHO]. Prevalence of obesity among adults, BMI ≥ 30, age-
standardized: Estimates by country. [updated 2017 September; cited 2020 September]. Available
from: https://apps.who.int/gho/data/node.main.A900A?lang5en.

JHR
36,1

174

https://www.nbcnews.com/health/health-news/coronavirus-timeline-tracking-critical-moments-covid-19-n1154341
https://www.nbcnews.com/health/health-news/coronavirus-timeline-tracking-critical-moments-covid-19-n1154341
https://apps.who.int/iris/handle/10665/331811
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3576037
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3576037
https://doi.org/10.1016/j.eclinm.2020.100464
https://doi.org/10.1016/j.eclinm.2020.100464
https://doi.org/10.1038/s41598-020-68862-x
http://fmwww.bc.edu/EC-C/S2016/8823/ECON8823.S2016.nn04.slides.pdf
http://fmwww.bc.edu/EC-C/S2016/8823/ECON8823.S2016.nn04.slides.pdf
https://doi.org/10.3390/su10093085
https://doi.org/10.1186/1471-2458-11-136
https://apps.who.int/gho/data/node.main.A900A?lang=en
https://apps.who.int/gho/data/node.main.A900A?lang=en


11. Hussain A, Mahawar K, Xia Z, Yang W, El-Hasani S. Obesity and mortality of COVID-19. Meta-
analysis. Obes Res Clin Pract. 2020 Jul - Aug; 14(4): 295-300. doi: 10.1016/j.orcp.2020.07.002.

12. Tartof SY, Qian L, Hong V, Wei R, Nadjafi RF, Fischer H, et al. Obesity and mortality among
patients diagnosed with COVID-19: results from an integrated health care organization. Ann
Intern Med. 2020; 173(10): 773-81. doi: 10.7326/M20-3742.

13. Puhl R, Luedicke J, Peterson JL. Public reactions to obesity-related health campaigns: a
randomized controlled trial. Am J Prev Med. 2013 Jul; 45(1): 36-48. doi: 10.1016/j.amepre.2013.
02.010.

14. Rebello CJ, Kirwan JP, Greenway FL. Obesity, the most common comorbidity in SARS-CoV-2: is
leptin the link?. Int J Obes (Lond). 2020 Sep; 44(9): 1810-7. doi: 10.1038/s41366-020-0640-5.

15. Richardson S, Hirsch JS, Narasimhan M, Crawford JM, McGinn T, Davidson KW, et al. Presenting
characteristics, comorbidities, and outcomes among 5700 patients hospitalized with COVID-19 in
the New York City area. JAMA. 2020 May; 323(20): 2052-9. doi: 10.1001/jama.2020.6775.

16. Faruque S, Tong J, Lacmanovic V, Agbonghae C, Minaya DM, Czaja K. The dose makes the
poison: sugar and obesity in the United States - a review. Pol J Food Nutr Sci. 2019; 69(3): 219-33.
doi: 10.31883/pjfns/110735.

17. Zlatevska N, Neumann N, Dubelaar C. Mandatory calorie disclosure: a comprehensive analysis of
its effect on consumers and retailers. J. Retailing. 2018; 94(1): 89-101. doi: 10.1016/j.jretai.2017.
09.007.

18. Hammond D, Fong GT, McNeill A, Borland R, Cummings KM. Effectiveness of cigarette warning
labels in informing smokers about the risks of smoking: findings from the International Tobacco
Control (ITC) Four Country Survey. Tob Control. 2006; 15(Suppl 3): iii19-25. doi: 10.1136/tc.2005.
012294.

19. Eurostat. Elderly population across EU regions. [updated 2020 April; cited 2020 September].
Available from: https://ec.europa.eu/eurostat/web/products-eurostat-news/-/DDN-20200402-1.

20. Federal Reserve Bank of Saint Louis. Population ages 65 and above for the United States.
[updated 2020 July; cited 2020 September]. Available from: https://fred.stlouisfed.org/series/
SPPOP65UPTOZSUSA.

21. Ribbe MW, Ljunggren G, Steel K, Topinkov�a E, Hawes C, Ikegami N, et al. Nursing homes in 10
nations: a comparison between countries and settings. Age Ageing. 1997 Sep; 26(Suppl 2): 3-12.
doi: 10.1093/ageing/26.suppl_2.3.

22. Bai X, Nagendra H, Shi P, Liu H. Cities: build networks and share plans to emerge stronger from
COVID-19. Nature. 2020 Aug; 584(7822): 517-20. doi: 10.1038/d41586-020-02459-2.

Corresponding author
Kamal Upadhyaya can be contacted at: Kupadhyaya@newhaven.edu

For instructions on how to order reprints of this article, please visit our website:
www.emeraldgrouppublishing.com/licensing/reprints.htm
Or contact us for further details: permissions@emeraldinsight.com

Factors
affecting

COVID-19
mortality

175

https://doi.org/10.1016/j.orcp.2020.07.002
https://doi.org/10.7326/M20-3742
https://doi.org/10.1016/j.amepre.2013.02.010
https://doi.org/10.1016/j.amepre.2013.02.010
https://doi.org/10.1038/s41366-020-0640-5
https://doi.org/10.1001/jama.2020.6775
https://doi.org/10.31883/pjfns/110735
https://doi.org/10.1016/j.jretai.2017.09.007
https://doi.org/10.1016/j.jretai.2017.09.007
https://doi.org/10.1136/tc.2005.012294
https://doi.org/10.1136/tc.2005.012294
https://ec.europa.eu/eurostat/web/products-eurostat-news/-/DDN-20200402-1
https://fred.stlouisfed.org/series/SPPOP65UPTOZSUSA
https://fred.stlouisfed.org/series/SPPOP65UPTOZSUSA
https://doi.org/10.1093/ageing/26.suppl_2.3
https://doi.org/10.1038/d41586-020-02459-2
mailto:Kupadhyaya@newhaven.edu

	Factors affecting COVID-19 mortality: an exploratory study
	Introduction
	Methodology
	Ethical considerations

	Results
	Discussion
	Conclusion
	References


