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Abstract
Purpose – The recent COVID-19 outbreak and severe natural disasters make the design of the humanitarian supply chain network (HSCN) a
crucial strategic issue in a pre-disaster scenario. The HSCN design problem deals with the location/allocation of emergency response facilities
(ERFs). This paper aims to propose and demonstrate how to design an efficient HSCN configuration under the risk of ERF disruptions.
Design/methodology/approach – This paper considers four performance measures simultaneously for the HSCN design by formulating a
weighted goal programming (WGP) model. Solving the WGP model with different weight values assigned to each performance measure
generates various HSCN configurations. This paper transforms a single-stage network into a general two-stage network, treating each HSCN
configuration as a decision-making unit with two inputs and two outputs. Then a two-stage network data envelopment analysis (DEA)
approach is applied to evaluate the HSCN schemes for consistently identifying the most efficient network configurations.
Findings – Among various network configurations generated by the WGP, the single-stage DEA model does not consistently identify the top-ranked HSCN
schemes. In contrast, the proposed transformation approach identifies efficient HSCN configurations more consistently than the single-stage DEA model. A
case study demonstrates that the proposed transformation method could provide a more robust and consistent evaluation for designing efficient HSCN
systems. The proposed approach can be an essential tool for federal and local disaster response officials to plan a strategic design of HSCN.
Originality/value – This study presents how to transform a single-stage process into a two-stage network process to apply the general two-stage
network DEA model for evaluating various HSCN configurations. The proposed transformation procedure could be extended for designing some
supply chain systems with conflicting performance metrics more effectively and efficiently.

Keywords Humanitarian supply chain network, Weighted goal programming, General two-stage network process, Data envelopment analysis,
Emergency response facility

Paper type Research paper

1. Introduction

The humanitarian supply chain network (HSCN) plays a
critical role in providing disaster relief items such as medicine,
drinking water, food and daily commodities to alleviate
people’s suffering. The year 2017 became a historic year of
weather and climate disasters for the United States, which, in
total, was impacted by 16 separate billion-dollar disaster
events, including three tropical cyclones, two inland floods,
eight severe storms, a crop freeze, drought and wildfire. In early
2019, Alaska, the coldest state in the US, posted its warmest
March on record by a landslide and the powerhouse storm in
the central US became the second billion-dollar weather
disaster of 2019. The year 2020 set the new annual record of 22
events, breaking the previous record of 16 events in 2011 and
2017. During 2020 and 2021, the US experienced a very active
year of weather and climate disasters (see Figure 1), including
the COVID-19 pandemic. According to the data developed by
the NOAA’s National Climatic Data Center, the US, on

average, faces ten severe weather events yearly exceeding one
billion dollars in damage (see Figure 2). A comparison with an
annual average of only two such events throughout the 1980s
clearly may force us to speculate that a warming climate could
make these disasters more frequent and intense. In this respect,
an HSCN design has become an important strategic decision
due to the significant damage inflicted by several natural
disasters (Petrudi et al., 2020). Moreover, COVID-19 and its
variants have brought issues of emergency relief planning
through theHSCN again.
The HSCN is defined as the flow of relief aid and related

information between people from disaster-stricken areas and
donors to alleviate the suffering of vulnerable people. Indeed,
after emergencies, it is critical for emergency response facilities
(ERFs) to distribute humanitarian aid to the affected areas

The current issue and full text archive of this journal is available onEmerald
Insight at: https://www.emerald.com/insight/2042-6747.htm

Journal of Humanitarian Logistics and Supply Chain Management
13/1 (2023) 74–90
Emerald Publishing Limited [ISSN 2042-6747]
[DOI 10.1108/JHLSCM-06-2022-0069]

© Jae-Dong Hong. Published by Emerald Publishing Limited. This article
is published under the Creative Commons Attribution (CC BY 4.0)
licence. Anyone may reproduce, distribute, translate and create derivative
works of this article (for both commercial and non-commercial purposes),
subject to full attribution to the original publication and authors. The full
terms of this licence may be seen at http://creativecommons.org/licences/
by/4.0/legalcode

Received 3 June 2022
Revised 31 August 2022
20 October 2022
Accepted 16 November 2022

74

http://creativecommons.org/licences/by/4.0/legalcode
http://creativecommons.org/licences/by/4.0/legalcode
http://creativecommons.org/licences/by/4.0/legalcode


efficiently and effectively to save human lives and alleviate
suffering and rapid recovery. Van Wassenhove (2006)
emphasizes that since disaster relief is 80% logistics, it would
follow that the only way to operate theHSCN system efficiently

and effectively is through efficient, effective and slick logistics
operations, and more precisely, supply chain management.
Logistics planning in emergencies involves the quick and
efficient distribution of emergency supplies from the ERFs to

Figure 1 US billion-dollar weather and climate disasters (2021)

Figure 2 Billion-dollar disasters by type, from 1980 to 2021
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the affected areas via supply chains. Several authors (Boonmee
et al., 2017; Cao et al., 2018; Hong and Jeong, 2019; Petrudi
et al., 2020; Sarma et al., 2020) have considered various HSCN
design models. Zhang et al. (2019) and Liu et al. (2019) have
reviewed the papers on theHSCN design problems. Gress et al.
(2021) present a methodology for designing an HSCN to
distribute COVID-19 vaccines in Mexico. Malmir and Zobel
(2021) propose a sustainable HSCN design model considering
theCOVID-19 outbreak.
The ERFs considered in this paper are three distinctive ones.

They are (1) central warehouses (CWHs) or distribution
warehouses, where emergency relief commodities are stored,
(2) intermediate response facilities termed relief distribution
centers (RDCs) or commodity distribution points and (3)
neighborhood sites (NBSs), which are affected areas in need of
humanitarian items. These ERFs are depicted in Figure 3 by
modifyingHabib et al. (2016).
As mentioned above, an HSCN design problem is inherently

strategic and long-term. The main objective of the strategic
level is to strengthen emergency preparedness as well as to
select the most cost/distance-effective location of CWHs and
RDCs among a set of candidate locations, to establish the
distribution of emergency supplies throughout the HSCN and
to assign NBSs to RDCs and RDCs to CWHs. Making such a
decision is a critical area in designing an effective HSCN.
However, traditional cost-based facility location-allocation
models implicitly assume that located facilities will always be in
service or available and do not consider an associated risk of
disruption. But all facilities are susceptible to natural/weather
disasters, strikes, or pandemics. A lack of flexibility and
interdependency in the HSCN could aggravate the effects of
disruptions. Snyder et al. (2016) review nearly 150 articles
related to the OR/MS literature on supply chain disruptions to
take stock of the research and provide an overview of the
research questions. They predict that the literature on supply
disruptions will continue to increase over the coming years,
identifying seven topics as avenues for future research. Li et al.
(2020) investigate supply chain network characteristics that can
better understand supply chain resilience under disruption risk
propagation. Aldrighetti et al. (2021) review more than 220
articles on the quantitative models of supply chain network
design under disruption risks in industrial supply chain
management and logistics, highlighting drawbacks and missing
aspects in the related literature and discussing future research

directions. Ganesh and Kalpana (2022) point out that though the
research on supply chain risk management (SCRM) remains for
an extended period; industries still face difficulties managing
supply chain risks. Also, supply chain managers have begun to
focus on decision-making based on numerous data sources for
predicting uncertainties more accurately to achieve a proactive
and predictive intelligent risk management mechanism. These
characteristics make artificial intelligence (AI) and machine
learning (ML) suitable SCRM techniques. Emphasizing that
these AI techniques are in an emerging stage in SCRM, they
(2022) provide unexploded and missing aspects in current
research, challenge on implementing AI technologies and
describe promising avenues for the future after reviewing 127
papers on SCRM.
The typical multi-objective programming model allows the

decision-maker to decide weights for the objective function’s
deviational variables. It mainly reflects the importance and
desirability of deviations from the various goals. However, the
actual efficiency of the resulting HSCN is not known. Ragsdale
(2018) states that there is no standard procedure for assigning
values to the weight factors to guarantee finding the most
desirable solution. He suggests that it will be necessary for the
decision-makers to follow an iterative procedure. Decision-
makers could try a particular set of weights, solve the problem,
analyze the solution and then refine the weights and solve it
again. He concludes that it is essential for the decision-makers
to repeat this process several times to find the most desirable
solution. Thus, it is unavoidable for decision-makers to use
some of their subjective judgment.
Then, a challenging question is how the best alternative option

can be selected if the most desirable solution is different among
the decision-makers. It would be imperative to evaluate the
efficiency of all alternatives generated by the model and select the
most desirable one(s) with an optimized objective function or
without any subjective judgment. Following this vein, Hong and
Jeong (2019) apply a single-stage network data envelopment
analysis (SSN-DEA) method for evaluating the various HSCN
schemes generated by solving the multi-objective programming
models formulated for theHSCNdesign problem.
For the SSN process, the conventional DEA (C-DEA)

method proposed by Charnes et al. (1978) has been widely
accepted as an effective performance evaluation tool for assessing
the relative efficiency of a set of peer entities called decision-
making units (DMUs). C-DEA determines which DMUs make
efficient use of their inputs and produce most outputs and which
do not. Thus, the C-DEA model classifies DMUs into two
groups, i.e. separating efficient DMUs from inefficient DMUs,
using efficiency score (ES). The analysis indicates where an
inefficient DMUmight look for benchmarking help to search for
ways to improve. Each DMU is evaluated with its most favorable
weights due to the DEA’s nature of self-evaluation, ignoring
unfavorable inputs or outputs to raise self-efficiency. As a result,
C-DEA’s critical weakness of a lack of discrimination is caused
because it classifies a considerable number of DMUs out of the
set ofDMUs as efficient, with an ES equal to 1.
Sexton et al. (1986) propose a cross-evaluation concept to do

the peer evaluation rather than the C-DEA’s pure self-evaluation
to remedy this deficiency. Doyle and Green (1994) suggest a
cross-evaluation matrix for ranking the units by applying the
cross-efficiency DEA (CE-DEA) model. Generally, the CE

Figure 3 Distribution framework of humanitarian supply chain
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evaluation can provide a full ranking for the DMUs. But, as
Doyle and Green (1994) find, the non-uniqueness of cross-
efficiency scores (CESs) and non-consistent rankings have been
critical issues for applying the CE-DEA. Another concept for
peer evaluation is the super-efficiency DEA (SE-DEA), which is
introduced to compensate for the weaknesses of C-DEA andCE-
DEA. A DMU under evaluation is excluded from the DEA
models’ reference set. The resulting model is called a SE-DEA
model that has significance for discriminating among efficient
DMUs. Charnes et al. (1992) use the SE model to study the
efficiency classification’s sensitivity. Anderson and Peterson
(1993) propose the SE model to rank the efficient DMUs. But
the critical issue of using the model is that the adjacent DMUs
decide the super efficiency score (SEC) of an efficientDMU, so it
would be awkward forDMUs to be ranked by the SESs.
As big data research becomes an essential area of operations

analytics, DEA has evolved into a tool for big data analysis. As
Cook and Zhu (2014) mention, an important development area
in the DEA applications has been devoted to applications
wherein DMUs represent network processes. In fact, a network
DEA has been significant steam that controls efficiencies of
various sub-stages in a complex structure. A substantial body of
DEA research has focused on the network DEA since the
network DEA can satisfy three defining properties of big data,
volume, variety and velocity (Zhu, 2022). DMUs may consist of
two or more stage network structures with intermediate
measures. Monfared and Safi (2013) state that the SSN-DEA
model considers a DMU as a “black box” and neglects
intervening processes, i.e. different series or parallel functions.
Thus, the “black box” approaches for the single-stage process
provide no insights regarding the inter-relationships among the
components’ inefficiencies and cannot offer specific process
guidance toDMUmanagers to improveDMU’s efficiency.
Out of the literature on the optimization models for HSCN,

Hong and Jeong (2019) consider four performance measures
simultaneously using the multi-objective programming (MOP)
model. Then, they apply the SSN-DEA method to find the
efficient configurations out of the various HSCN configurations
generated by the MOP model. Their work (2019) would be the
first attempt to combine the MOP model with the SSN-DEA
method in the literature on the design of HSCN. Monfared and
Safi (2013), Cook and Zhu (2014) and Zhu (2022) state the
strengths of the TSN-DEA in contrast to the weaknesses of the
SSN-DEA.
Many authors have considered the single-stage HSCN design

problem using multi-objective programming models. Single-
stage network DEA (SSN-DEA) models have recently been
applied to evaluate the efficiency of designedHSCN schemes. As
mentioned, the SSN-DEA methods show several intrinsic
weaknesses, such as ignoring the intervening processes and
producing inconsistent rankings. The SSN-DEA model’s most
critical weakness lies in its inconsistent efficiency score (ES),
which depends on the DMUs under evaluation in the reference
sets. For example, the top-ranked DMU based on the ESs when
all DMUs are evaluated shouldmaintain the top-ranking position
even though some lower-ranked DMUs are not assessed
together. But the SSN- DEA models frequently allow the
previously lower-rankedDMU to overtake the top-rankedDMU
to become a new #1DMU if some lower-ranking DMUs are not

evaluated together. Thus, the research questions on the SSN-
DEA’s weaknesses have been raised by various authors.
There is a research gap in evaluating DMUs with a single-stage

network process since, as mentioned above, SSN-DEA methods
do not consider the intervening processes. Moreover, these SSN-
DEA methods do not rank the efficient DMUs consistently.
Thus, the research question is how to transform the single-stage
HSCN system into a general two-stage network (GTSN) process
system so that GTSN-DEA (GTSN-DEA) model is applied to
compensate for the weaknesses of the SSN-DEA models for the
HSCN design problem. To answer these questions, this paper
proposes transforming a single-stage HSCN design problem into
a two-stage network (TSN) process to apply the GTSN-DEA
model. See Figure 4, depicting the SSN-GTSN-DEA structures.
We identify efficient HSCN configurations among the schemes
generated by solving theWGPmodel for various weight set values
for the transformed TSN process. Using the case study, we
demonstrate that the proposed approach shows a better analysis
of the efficiency of the designed HSCN configurations and
produces more consistent and robust rankings after evaluating
efficient HSCN configurations. Thus, the contribution of this
paper is to reveal the could-be hidden network schemes, if SSN-
DEA is only applied, that the decision-makers would not consider
as the candidate schemes for their final decision.
The proposed two-stage network design problem differs from

the two-stage stochastic programming model with the high
uncertainty in the decision environment, such as uncertainty of
inputs and outputs at each stage. The paper considers a decision
environment with no uncertainty, such as given inputs and
outputs. After GTSN-DEA is applied, an additional research
question is how to investigate whether the GTSN-DEA ranks the
top-rated DMUs more consistently. In fact, this study would be
the first attempt to answer these kinds of research questions for the
HSCNdesign problem in a pre-disaster scenario, which consists of
finding the optimal ERFs under the risk of facility disruption.

2. Formulation of humanitarian supply chain
design problem

The following nomenclature is used throughout the paper to
formulate amulti-objective mathematical model (see Hong and
Jeong, 2019):

Figure 4 Single-stage vs. general two-stage network DEA structure
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The first goal is minimizing the related logistics costs, which is
the traditional objective of most FLA models. Given this
problem set, the total logistics cost (TLC) consists of the
expenses for CWHs (construction, operation and distribution
of items from CWHs to RDCs) and the costs for RDCs
(building and development as well as distribution of relief items
fromRDCs toNBSs):

TLC ¼
�X

i2I
fiWi 1

X
i2I

X
j2G

�X
g2G

Hg

�
a1ijdijwij rjg 1

X
j2G

bjCj

1
X
j2G

X
g2G

Hga2jgdjgrjg

�
: (1)

The next goal is related to the demand-oriented objective,
which focuses on measuring the “closeness” of the ERFs. In
other words, ERFs should be located at a place close to
the covered sites to deliver the relief item as quickly as possible.
The second goal is to minimize the maximum coverage
distance (MCD) such that each NBS is covered by one of the
RDCs, and each RDC is covered by one of the CWHs within

the endogenously determined distance. This goal minimizes
the longest delivery distance between CWHs and RDCs, and
RDCs and NBSs. As the MCD increases, it will cause
ineffectiveness to the resultingHSCN.Now,MCD is given by

MCD ¼ Maxfdjgrjg; dijwijg; 8i; j; and g: (2)

The ERFs should be located at the least likely locations to be
disrupted to enhance supply chain resilience to inevitable
disasters. The third goal related to the least likely locations to
be disrupted is to maximize the expected amount of covered
demands (ECD) by the ERFs, which is expressed as

ECD ¼
X
i2I

X
j2G

�X
g2G

ð1� qiÞð1� pjÞðzijgHgÞ
�
1

X
i2I

ð1� qiÞðHiWiÞ;

(3)

where
pj ¼ the probability that the RDCj is disrupted (or risk

probability);
qi ¼ the probability that the CWHi is disrupted (or risk

probability).

Sets
I index set of candidate locations for CWHs ði51; 2; . . . ; vÞ
N index set of NBSs n ðn51; 2; . . . ;h Þ
G G5fN; Ig, index set of NBSs and CWHs ðg51; 2; ::h; h1 1; . . . ; h1vÞ
J index set of candidate locations for RDCs ðj51; 2; h; h1 1; . . . ; h1vÞ
Parameters
fi fixed cost for constructing and operating CWHi
bj fixed cost for constructing and operating RDCj
a1ij shipping cost per mile per one unit of demand from CWHi to RDCj
a2jm shipping cost per mile per one unit of demand from RDCj to NBSm
dij distance between CWHi and RDCj
djg distance between RDCj and NBSg
Cmax maximum number of RDCs can be built
CAPmax

i capacity of CWHi
CAPmax

j capacity of RDCj
Hg demand of NBSg (can be either NBS or RDC or CWH)
Wmax maximum number of CWHs can be built
ki minimum number of RDCs that CWHi can handle
Ki maximum number of RDCs that CWHi can handle
lj minimum number of NBSs that RDCj can cover
Lj maximum number of NBSs that RDCj can cover

Decision variables
Cj binary variable deciding whether neighborhood j is selected as RDCj
Wi binary variable deciding whether a candidate CWHi is selected
wij binary variable deciding whether RDCj is covered by CWHi
rjg binary variable deciding whether location g is covered by RDCj
zijg binary variable deciding whether location g is covered by CWHi through RDCj

Assumption
(i) When an ERF, RDC, or CWH is damaged or disrupted by natural or environmental occurrences, it can’t cover any demand that it is supposed to cover
(ii) RDCs can be located at any NBSs and potential CWH locations, while a CWH can be built in one of the potential CWH locations only since CWH locations
must satisfy some realistic location requirements
(iii) An RDC must cover any unselected CWH locations and must not be located at the selected CWH location
(iv) An RDC covers the demands of the NBSs it covers, including its demand
(v) A CWH covers its demand and demands from its covered RDCs
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In case of emergency, each resident should be within a certain
distance of the nearest centers to be served. Also, some
environmental difficulties or constraints, such as weather issues
and road damage, may limit the maximum coverage distance of
MCD in (2). Thus, themaximum effective coverage distance in
case of emergency, denoted by Dc, would be shorter than
MCD. In addition, it is desirable to maximize the covered
demands within Dc, while minimizing MCD. The next goal is
to maximize the covered demands in case of emergency, CDE,
which is expressed as

CDE ¼
X
g2G

X
j2J

Hgkjgrjg 1
X
i2I

HiWi (4)

where an indicator parameter, kjg, is

kjg ¼
1; if djg � Dc

0; otherwise:

(
(5)

Let the nonnegative deviation variables, d1
TLC; d

1
MCD; d

�
ECD;

and d�CDE; represent the amounts by which each value of TLC,
MCD, ECD and CDE deviates from the target values. Using
a 5 {a1, a2, a3, a4} and

P4
k¼1 ak ¼ 1 denote relative weights

attached to the corresponding goal, the following weighted goal
programming (WGP)model can be formulated:

MinZa ¼ a1
d1
TLC

TLCmin
1a2

d1
MCD

MCDmin
1a3

d�ECD
ECDmax

1a4
d�CDE

CDEmax
;

(6)

subject to

TLC in ð1Þ � d1
TLC ¼ TLCmin; (7)

MCD in ð2Þ � d1
MCD ¼ MCDmin; (8)

ECD in ð3Þ1 d�ECD ¼ ECDmax; (9)

CDE in ð4Þ1 d�CDE ¼ CDEmax: (10)

X
i2I

Wi � Wmax; (11)

Wi 1Ch1 i � 1; 8i 2 I (12)

Wi 1
X
j2M

rjðh1 iÞ ¼ 1; 8i 2 I (13)

X
j2G

rjn ¼ 1; 8n 2 N (14)

Wi ki �
X
j2G

wij � WiKi ; 8i 2 I (15)

X
i2I

wij ¼ Cj ; 8j 2 G (16)

X
j2G

Cj � Cmax; (17)

rjg � Cj ; 8j and 8g 2 G (18)

Cj ∙lj �
X
g2G

rjg � Cj ∙Lj ; 8j 2 G (19)

X
g2G

Hgrjg � CAPmax
j ; 8j 2 G (20)

X
j2G

X
g2G

Hgzijg 1HiWi � CAPmax
i ; 8i 2 I (21)

Constraints (11) define the upper bound of the number of
CWHs that can be built. Here at most Wmax is allowed.
Constraints (12) ensure that the potential CWH location will
not be selected simultaneously as both CWH and RDC.
Constraints (13) ensure that if a potential CWH location i is
not selected ði:e:; Wi ¼ 0Þ; its demand must be satisfied by an
RDC or a CWH. Constraints (14) make certain that each NBS
(n 2 N) is assigned to either an RDC or a CWH. Constraints
(15) limit the minimum and maximum number of RDCs to be
covered by each CWH. Constraints (16) ensure that CWHs
only supply the selected RDCs. Constraints (17) limit the total
number of selected RDCs to be less than or equal to a user-
specified number, Cmax. Constraints (18) ensure that NBSs or
unselected CWH locations can only be assigned to the selected
candidate RDCs. Constraints (19) ensure that the chosen
candidate RDCjmust cover a minimum number of lj NBSs and
can only cover a maximum of Lj NBSs. Constraints (20) and
(21) show the shipping capacity of RDCs and CWHs,
respectively. Solving the above WGP model in (6)–(21) for a
given set of weights would generate an HSCN network scheme.
Thus, by changing the weight set, various HSCNs could be
developed. Each network scenario could be treated as a DMU
for the DEAmethod to be applied to evaluate all scenarios with
two inputs, TLC andMCDand two outputs, ECD andCDE.
As shown in Eq. (6), the objective function of WGP is to

minimize the weighted sum of the percentage deviations.
The aboveWGPmodel is an extension of theGPmodel, whose
objective is to minimize the sum of the deviations. The above
weighted GP model differs from the epsilon ð«Þmulti-objective
optimation method, where one objective will be used as the
objective function, and the remaining objectives will be used as
constraints using the epsilon. Lexicographic GP is another
version of GP when a specific goal is strictly preferable to the
other goals, or the decision maker has a clear preference order
for achieving the goals.

3. Single-stage vs. general two-stage network
model

First, as shown in Figure 5, the SSN model is applied. DMUs,
equivalent to theHSCN schemes generated by solving theWGP
model for different weight values assigned to each goal, can be
evaluated by applying the DEA method. The mathematical
model of the SSN-DEAmodel forDMUv, is given by
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maxuv ¼ ½u1ECDv 1 u2CDEv�; (22)

subject to

v1TLCv 1 v2MCDv ¼ 1: (23)

ðu1ECDk 1 u2CDEkÞ � ½v1TLCk 1 v2MCDk� � 0; 8k (24)

ur ; vi � 0; r ¼ 1; 2; i ¼ 1; 2;

where ur is a weight or coefficient assigned by DEA to output
r, and vi is the weight or coefficient assigned by DEA to input
i. Let u�v; efficiency score (ES), represent the optimal value
of the objective function in (22) corresponding to the
optimal solution (u�, v�). DMUv is said to be efficient with
u�v of 1.
The CE-DEAmethod consists of two phases. The first phase

is self-evaluation, where DEA scores are calculated using the
model by (22)–(24). In the second phase, the weights arising
from the first phase are applied to all DMUs to get the cross-
efficiency score (CES) for each DMU. Let Evv represent the
DEA score for DMUv and u�rv and v�iv denote the optimal
solution obtained from solving (22)–(24). Now, the cross
efficiency ofDMUj using a ratingDMUv is

Evj ¼ u�1v ECDj 1 u�2v CDEj

½v�1vTLC2j 1 v�2vMCDj � ; v 6¼ j: (25)

By averagingEjv in (25), the CES ofDMUv is given by

Ev ¼ 1
X

XX
j¼1

Ejv: (26)

A super-efficiency DEA (SE-DEA) would generate a super-
efficiency score (SES) obtained from the C-DEA model after a
DMU under evaluation is excluded from the reference set.
Thus, the SESs of efficient DMUs can have higher values than
1, the maximum value of the ES obtained by other DEA
methods. The SE-DEAmodel is given by

maxuv ¼ ½u1ECDv 1 u2CDEv�; (27)

subject to

v1TLCv 1 v2MCDv ¼ 1; (28)

ðu1ECDk 1 u2CDEkÞ � ½v1TLCk 1 v2MCDk� � 0; 8k 6¼ v;

ur; vi � 0; r ¼ 1; 2; i ¼ 1; 2: (29)

The SSNmodel can be decomposed into an equivalent GTSN
model, as shown in Figure 6. In other words, an HSCN
network scheme is decomposed into two stages, i.e. stage 1
represents the flows from CWHs to RDCs, while stage 2
represents the flows of items from RDCs to NBSs. The two
inputs, TLC and MCD, are split into TLC1 and MCD1 for
stage 1 and TLC2 and MCD2 for stage 2, respectively. An
output ECD is divided into ECD0 and ECD1 for stage 1 and
ECD2 for stage 2. The ECD0 denote the ECD for the sites
where CWHs are located, while ECD1 becomes an
intermediate measure that flows from stage 1 to stage 2. Now,
the split inputs and outputs are expressed as

TLC1 ¼
�X

i2I
fiWi 1

X
i2I

X
j2G

�X
g2G

Hg

�
a1ijdijwij

�
; (30)

TLC2 ¼
�X

j2G
bjCj 1

X
j2G

X
g2G

Hga2jgdjgrjg

�
; (31)

MCD1 ¼ Maxf dijwijg; 8i and j; (32)

MCD2 ¼ Maxfdjgrjg g; 8j and g; (33)

ECD0 ¼
X
i2I

ð 1� qiÞðWiHiÞ; (34)

ECD1 ¼
X
i2I

X
j2G

ð1� qiÞðwijHjÞ; (35)

ECD2 ¼ ECD� ECD0

¼
X
i2I

X
j2G

�X
g2G

ð1� qiÞð1� pjÞðzijgHgÞ
�
; (36)

where the expression of ECD is given in (4). Since each stage in
Figure 4 works together to achieve the best performance of the

Figure 5 Single-stage network (SSN) DEA structure for HSCN system
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HSCN, a centralized model is applied to analyze the converted
two-stage network.

u1v ¼ l1ECD0v 1h1ECD1v
v1TLC1v 1 v2MCD1v

; (37)

u2v ¼ u1ECD2v 1 u2CDEv

h1ECD1v 1 ½Q1TLC2v 1Q2MCD2v � : (38)

where u1v and u2v are ESs of stages 1 and 2 for DMUv,
respectively, and the weights for each input, output and
intermediate one are fv1; v2; Q1; Q2; l1; u1; u2; h1g � 0:
Now, the overall centralized ES, ucenv , can be given by:

ucenv ¼ Maxfu1vin ð37Þ � u2v in ð38Þg; (39)

subject to

l1ECD0k 1h1ECD1k
v1TLC1k 1 v2MCD1k

� 1;8k (40)

u1ECD2k 1 u2CDEk

h1ECD1k 1 ½Q1TLC2k 1Q2MCD2k � � 1; 8k (41)

Let u1max
v be the maximum efficiency score of stage 1, then

the following LP model for the model in (39)–(41) is
formulated:

u1max
v ¼ maxfl1ECD0v 1h1ECD1vg; (42)

subject to

v1TLC1v 1 v2MCD1v ¼ 1: (43)

l1ECD0k 1h1ECD1k � ðv1TLC1k 1 v2MCD1kÞ � 0;8k
(44)

ðu1ECD2k 1 u2CDEkÞ � w1ECD1k � ½Q1TLC2k 1Q2MCD2k�
� 0;8k (45)

v1; v2; l1; h1; u1; u2;w1; Q1; Q2 � 0

From (42)–(45), the optimal value of (42), an estimator u1v
for the first stage, is a variable whose maximum value is
u1max
v . Now, the overall (centralized) ES for the two-stage
model, ucen�

v , is a function of u1v and can be formulated as:

ucen�v ¼ maxfu1v � ½u1ECD2v 1 u2CDEv�g; (46)

subject to

l1ECD0k 1h1ECD1k � ðv1TLC1k 1 v2MCD1kÞ � 0;8k
(47)

ðu1ECD2k 1 u2CDEkÞ � h1ECD1k � ½Q1TLC2k 1Q2MCD2k�
� 0;8k (48)

Q1TLC2v 1Q2MCD2v 1w1ECD1v ¼ 1; (49)

l1ECD0v 1h1ECD1v � u1vðv1TLC1v 1 v2MCD1vÞ ¼ 0;

(50)

u1v � u1max
v : (51)

v1; v2; l1; h1; u1; u2;w1; Q1; Q2 � 0

Li et al. (2012) propose an iteration method by setting
u1v ¼ u1max

v � zD«, where D« is a step size and

z ¼ 0; 1; 2; . . . ; zmax1 1, zmax � u1max
v

D«

h i
:. The optimal global

efficiency of the system under evaluation is estimated as
u cen�
v ¼ max zucen;1v ðzÞ. Now the formal procedure can be stated

as follows:
Procedure

1 Step 1: [Identifying efficient DMUs for SSN-DEAModel]
� Using the m-DEA method, evaluate all DMUs by

solving an LP given in (22)–(24).
� Identifying efficient DMUs where their ESs are equal

to 1, uv ¼ 1 and stratify them into a setG1.
� Using (25)–(26) and (27)–(29), obtain the CESs and

SESs for the DMUs in H1 and rank them based on
these two ESs.

2 Step 2: [Decomposing and Applying GTSN-DEAModel]

� For DMUs in H1, decompose the SSN model into a
GTSNmodel.

� Setting u1v ¼ u1max
v � zD«, z ¼ 0; 1; 2; . . . ; zmax 11,

zmax � u1max
v

D«

h i
, set ucen�v ¼ max zucen;1v ðzÞ.

� Rank the DMUs inG1 based on ucen�v in (v).

4. Case study and observations

A case study uses major disaster declaration records in South
Carolina (SC). We cluster forty-six (46) counties based on
proximity and populations into twenty (20) counties. Then,
one location from each clustered county based on a centroid
approach is chosen by assuming that all population within the
grouped county exists in that location. Federal Emergency
Management Agency (FEMA) database shows that SC has
experienced sixteen (16) major natural disaster declarations,
such as tornadoes, hurricanes, floods, etc., from 1964 to 2017.
The database also lists counties where a major disaster was
declared. This paper assumes that the county’s emergency
facility is disrupted and shut down when a major disaster is
declared. Based on the historical record and the assumption,
each neighborhood’s risk probability (a county or a clustered
county) is calculated in Table 1 by dividing the years withmajor
natural disasters by the total years. The five potential locations
for CWHs are selected based upon population, the proportion
of area that each site would potentially cover and the proximity
to Interstate Highways in SC.
The number of RDCs and CWHs to be built are pre-

specified in most cases. We simplify the TLC function given by
Eq. (1) by excluding the fixed cost terms for RDCs and CWHs.
If the actual data are available for the fixed cost terms, we can
readily lift such restrictions to obtain more revealing results.
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Also, the following parameters are pre-determined for our case
study. The maximum numbers of RDCs and CWHs that can
be built, Cmax and Wmax, are set to 5 and 2, respectively. The
minimum and maximum number of RDCs that a CWH must
handle, ki and Ki, are set to 1 and 10, respectively. Each RDC
must handle at least 2 (‘j ¼ 2) and at most 7 (Lj ¼ 7) NBSs.
The capacities of RDCs and CWHs, CAPmax

j and
CAPmax

i ; 8j and 8i, are set to 1,500 K and 2,500 K in terms of
the number of humanitarian items.
The WGP model is solved for various values of weight,

a ¼ fa1; a2; a3; a4g. Each weight alters between 0 and 1 with
an increment of 0.1, subject to

P4
k¼1 ak ¼ 1. We use the

’Gurobi’ Solver Engine of Analytic Solver software. Two
hundred eighty-six (286) configurations arising out of the
combinations of the setting of a are solved on an IntelVR XeonVR

Gold 5122 HP Z4 Workstation PC (2 processors) with 32 GB
of RAM installed using a 64-bit version ofWindows 10. It takes
10,238 s (approximately 2.84 h) to solve all 286 sets of the GP
model. On average, it takes 35.8 s to solve one weight set of the
GP. The 286 configurations are reduced to sixty-eight (68)
consolidated structures since several cases yield the same values
of the four-performance metrics. Each of the 68 configurations
is considered a DMU, representing the optimal locations and
allocations of ERFs.
As Step 1 in the procedure proposes, we apply the C-DEA

model in (22)–(24) for the SSN, as shown in Figure 5, to find
efficient DMUs with a perfect ES of 1.000. Twenty-six (26)
DMUs with ES equal to 1.000 identified from the 68
consolidated DMUs are reported in Table 2, as the ES in the
last column indicates. Using Eqs (30)–(36), we decompose the
inputs and outputs of those 26 efficient DMUs (see Figure 6)
and also list them in Table 2, starting with TLC1 from the 3rd
column. Now, we apply CE- and SE-DEA of the SSN-DEA to
compute the cross-efficiency score (CES) and super-efficiency

score (SES) for each efficient DMU.We also apply the GTSN-
DEA in Step 2 using the decomposed inputs and outputs listed
in Table 2. These efficiency scores for the SSN- and GTSN-
DEA are reported in Table 3 where u1v and u2v denote ESs of
stages 1 and 2, respectively, and the overall centralized ES, ucenv ,
are reported along with the corresponding rank, [R], based on
each efficiency score. Table 3 shows that each approach finds a
different DMU as the top-ranked one. DMU133 and DMU87

are ranked #1 byCES and SES, respectively, for the SSN-DEA
model. The GTSN-DEA ranks DMU174 as #1, based on the
overall efficiency, ucen�v . We observe that DMU133, ranked #1
by CES, is surprisingly ranked #4 and #17 by SES and ucen�v .
We also note that DMU87, ranked #1 by SES, is ranked #17
and #26 by the other two methods. The GTSN’s #1 ranked
DMU174 is ranked #24 and#3 byCES and SES.
Table 2 compares these three top-ranked DMUs and shows

each DMU has dominating inputs or outputs. For example,
DMU87 with a perfect ES, i.e. u287 ¼ 1; at stage 2, as shown in
Table 3, has the smallest two inputs to stage 2, TLC2 and
MCD2, and the greatest output from stage 2, CDE, whereas
DMU174, with a perfect ES, u1174 ¼ 1 at stage 1, has the
smallest two inputs to stage 1, TLC1 and MCD1, and the
greatest outputs, ECD0, ECD1 and ECD2, but the lowest
CDE among these three top DMUs. Inputs and outputs for
DMU133 ranked #1 by CES, are listed between the other two
top-rankedDMUs,DMU87 andDMU174.
To investigate the robustness of ranks generated by each

method, we select eighteen (18) DMUs out of twenty-six (26)
efficient DMUs shown in Tables 2 and 3 These 18 DMUs
ranked at least #9 by any efficiency score are evaluated and
reported in Table 4. For comparison purposes, besides the new
ranking, [R], based on the current efficiency score, the
expected ranking, E[R], based on the rankings in Table 3,
where 26 DMUs are ranked, is also reported in Table 4. For

Table 1 Data for locations of ERFs

No City County Population (K) Risk probability

1 Anderson Anderson/Oconee/Pickens 373 0.125
2 Beaufort Beaufort/Jasper 187 0.063
3 Bennettsville Marlboro/Darlington/Chesterfield 96 0.375
4 Conway Horry 269 0.375
5 Georgetown Georgetown/Williamsburg 93 0.438
6 Greenwood Greenwood/Abbeville 92 0.125
7 Hampton Hampton/Allendale 33 0.188
8 Lexington Lexington/Newberry/Saluda 318 0.313
9 McCormick McCormick/Edgefield 35 0.250
10 Moncks Corner Berkeley 178 0.313
11 Orangeburg Orangeburg/Bamberg/Calhoun 123 0.375
12 Rock Hill York/Chester/Lancaster 321 0.313
13 Spartanburg Spartanburg/Cherokee/Union 367 0.313
14 Sumter Sumter/Clarendon/Lee 157 0.375
15 Walterboro Colleton/Dorchester 135 0.250
16 Aiken† Aiken/Barnwell 184 0.313
17 Charleston† Charleston 350 0.250
18 Columbia† Richland/Fairfield/Kershaw 461 0.375
19 Florence† Florence/Dillon/Marion 203 0.438
20 Greenville† Greenville/Laurens 521 0.125

Note: †Potential locations for CWH
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example, DMU87, ranked #17 among 26 DMUs by CES,
shown in Table 3, is expected to be ranked #14 for the selected
18 DMUs. For comparison between [R] and E[R], the
absolute rank difference (ARD) between these two ranks,
ARD 5 j[R] – E[R]j, is computed to measure each method’s
rankings’ robustness and is also reported in Table 4. For
example, DMU87, whose expected rank is #14 out of 18
DMUs, turns out to be #16, so its ARD is 2. Table 4 shows that
the CES finds DMU #81 a new top-ranked one out of 18
DMUs, initially ranked #3 among 26 efficient DMUs, while
the SES ranks DMU205 as a new top-ranked one, which is
expected to be ranked #11. In addition, the columns of ARDs
of CES and SES under the SSN-DEAmodel exhibit theDEAs’
critical weakness, i.e. the inconsistency of ranking DMUs. Out
of 18 DMUs, the CES and SES generate 14 DMUs and 17
DMUs with positive ARDs, respectively, with a maximum
ARD of 14. In contrast, the proposed GTSN-DEA finds the
same ranks for 9 DMUs, including the top-three DMUs,
DMU174, DMU180 and DMU143. Table 5 reports each
approach’s total ARD, mean ARD and maximum ARD. The
results shown in Table 5 assert that the proposed GTSN-DEA
method dominates in all three measures and generates more
consistent and robust rankings than the two approaches, CES
and SES, of the SSN-DEA.
For further investigation, eleven (11) DMUs ranked at least

#5 by any efficiency scores are selected, evaluated and reported

in Table 6. The results of ARDs in Table 6 are summarized in
Table 7, just like Tables 4 and 5 The CES continues to rank
DMU81 again as a top-ranked one, while the SES, which ranks
DMU205 No. 1 with 18 DMUs under evaluation, surprisingly
identifies DMU87 as a No. 1 DMU. Out of these 11 DMUs,
the CES approach ranks the original top 6 DMUs differently,
while the SES ranks DMU133 and DMU205 so differently, with
ARDs of 3 and 5, respectively. As shown in Tables 6 and 7, the
proposed method’s performance, which is similar to what is
observed in Tables 4 and 5, shows its better consistency in
ranking theDMUs than the SSN-DEA.
Tables 8–10 summarize changes in the top-five DMUs for

each case generated by SSN- DEA and the transformed
GTSN-DEA. As Table 10 shows, it is pretty evident that the
rankings generated by GTSN-DEA do not change as
significantly as the rankings generated by SSN-DEA. These
results also support that the proposed GTSN-DEA method
generates more robust rankings than the traditional SSN-DEA.
The five top-ranked DMUs by any of the three methods are
DMU81, DMU87, DMU133, DMU174 andDMU205, which are
depicted in Figure A1, where each DMU represents the
humanitarian supply chain network (HSCN) configuration,
including locations and allocations of ERFs.
Both DMU81 by CES and DMU174 ranked #1 by GTSN-

DEA find {Greenville, Charleston} for the CWH locations.
DMU81 finds {Anderson, Columbia, Spartanburg} for RDCs

Table 2 Efficient DMUs, their performance metrics and efficiency scores

TLC1 MCD1 ECD0 (K) ECD1 (K) TLC2 MCD2 ECD2 (K) CDE (K)
No DMU # Input (1,1) Input (1, 2) Output (1,1) Output (1,2) Input (2, 1) Input (2, 2) Output (2,1) Output (2,2) ES

1 25 $268,201 93.5 570 2,628 $125,179 97.3 1,913 3,092 1.000�

2 26 $269,775 93.5 570 2,628 $123,530 97.3 1,913 3,092 1.000�

3 28 $194,148 92.5 718 2,960 $177,303 92 2,357 2,038 1.000�

4 34 $271,081 93.5 570 2,628 $129,763 97.3 1,913 3,092 1.000�

5 35 $266,975 92.5 570 2,628 $131,582 92 1,950 2,852 1.000�

6 38 $221,122 92.5 718 2,962 $191,948 92 2,390 1717 1.000�

7 39 $313,022 97.3 240 2,550 $113,550 87 1,868 3,178 1.000�

8 40 $319,446 97.3 240 2,597 $125,339 95.7 1,951 3,178 1.000�

9 42 $218,580 85.6 744 2,619 $144,874 82.2 1,979 2,185 1.000�

10 43 $187,169 85.6 744 2,619 $158,082 82.2 2,011 2,139 1.000�

11 81 $229,285 104 718 2,965 $102,438 82.9 2,093 2,827 1.000�

12 87 $279,656 104 402 2,280 $105,574 92 1,697 3,361 1.000�

13 88 $259,611 92.5 570 2,628 $121,145 97.3 1,881 3,092 1.000�

14 89 $204,337 98.6 744 2,614 $138,925 97.3 1,903 2,889 1.000�

15 91 $169,518 92.5 718 2,942 $172,186 92 2,291 2,038 1.000�

16 97 $174,738 85.6 744 2,619 $155,965 80.7 1,976 2,139 1.000�

17 98 $179,818 85.6 744 2,619 $155,251 80.7 1,990 2,139 1.000�

18 101 $298,931 97.3 240 2,573 $114,594 87 1,867 3,178 1.000�

19 125 $183,432 107 718 2,965 $127,733 124 2,150 2,736 1.000�

20 133 $201,061 98.6 744 2,568 $128,915 96.8 1,841 2,889 1.000�

21 143 $143,106 54 744 2,619 $158,739 87.1 1,893 2,094 1.000�

22 168 $155,884 125 744 2,572 $148,921 163 1,871 2,837 1.000�

23 170 $181,095 104 718 2,965 $125,989 124 2,108 2,736 1.000�

24 174 $144,353 54 718 2,965 $173,092 124 2,278 2,049 1.000�

25 180 $147,118 97.9 718 2,965 $169,082 101 2,186 2,226 1.000�

26 205 $138,227 98.6 744 2,572 $156,329 163 1,857 2,725 1.000�

Note: �A perfect ES of 1.000
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Table 3 Comparison of rankings for the efficient 26 DMUs

 

No DMU # Single-Stage DEA General Two-Stage Network DEA 
CES [R] SES [R] 1  2  ∗ [R] 

1 25 0.9049 10 1.0000 25 0.5016 0.9100 0.4564 21 
2 26 0.9050 9 1.0000 23 0.5016 0.9156 0.4592 20 
3 28 0.8772 16 1.0145 7 0.7430 1.0000 0.7430 8 
4 34 0.8988 11 1.0000 24 0.5016 0.9018 0.4523 22 
5 35 0.8967 12 1.0136 8 0.5070 0.9354 0.4742 18 
6 38 0.7962 23 1.0107 9 0.6525 1.0000 0.6525 13 
7 39 0.8331 22 1.0000 26 0.4204 1.0000 0.4204 25 
8 40 0.8338 21 1.0052 14 0.4276 1.0000 0.4276 23 
9 42 0.8907 14 1.0015 21 0.6539 0.9582 0.6266 15 
10 43 0.9053 8 1.0049 16 0.7591 0.9691 0.7356 11 
11 81 0.9352 3 1.0216 6 0.6296 1.0000 0.6296 14 
12 87 0.8550 17 1.0471 1 0.3782 1.0000 0.3782 26 
13 88 0.9104 6 1.0082 12 0.5070 0.9097 0.4612 19 
14 89 0.9370 2 1.0049 15 0.6934 0.8701 0.6033 16 
15 91 0.8931 13 1.0291 2 0.8485 0.9799 0.8315 4 
16 97 0.9131 4 1.0018 19 0.8107 0.9650 0.7823 6 
17 98 0.9114 5 1.0011 22 0.7888 0.9710 0.7659 7 
18 101 0.8423 20 1.0031 17 0.4240 1.0000 0.4240 24 
19 125 0.8537 18 1.0016 20 0.7870 0.9382 0.7383 9 
20 133 0.9400 1 1.0242 4 0.7024 0.8557 0.6010 17 
21 143 0.9098 7 1.0026 18 1.0000 0.8849 0.8849 3 
22 168 0.7057 25 1.0099 10 0.8867 0.8207 0.7278 12 
23 170 0.8513 19 1.0094 11 0.7971 0.9254 0.7376 10 
24 174 0.7654 24 1.0244 3 1.0000 0.8999 0.8999 1 
25 180 0.8840 15 1.0225 5 0.9812 0.9083 0.8913 2 
26 205 0.6989 26 1.0070 13 1.0000 0.8146 0.8146 5 

Notes:     : ES at Stage 1,     : ES at Stage 2,        : Overall ES, [R]: Ranking

Table 4 Comparison of actual ranks vs. expected ranks for the top-nine DMUs by each DEA method

No DMU 
#

Single-Stage DEA General Two-Stage DEA
CES [R] E[R] ARD SES [R] E[R] ARD 1 2 ∗ [R] E[R] ARD

1 26 0.8774 12 9 3 1.0034 15 18 3 0.5016 0.9624 0.4827 16 17 1

2 28 0.9078 10 13 3 1.0145 9 7 2 0.7430 1.0000 0.7430 9 8 1
3 35 0.8753 13 10 3 1.0142 10 8 2 0.5070 0.9779 0.4958 15 15 0
4 38 0.8339 15 16 1 1.0107 11 9 2 0.6525 1.0000 0.6525 11 11 0
5 43 0.9222 8 8 0 1.0057 13 13 0 0.7591 0.9727 0.7384 10 10 0
6 81 0.9385 1 3 2 1.0216 8 6 2 0.6296 1.0000 0.6296 14 12 2
7 87 0.8112 16 14 2 1.0471 3 1 2 0.3782 1.0000 0.3782 18 18 0
8 88 0.8831 11 6 5 1.0082 12 10 2 0.5070 0.9500 0.4816 17 16 1
9 89 0.9285 6 2 4 1.0049 14 12 2 0.6934 0.9131 0.6332 12 13 1

10 91 0.9260 7 11 4 1.0291 4 2 2 0.8485 0.9822 0.8334 5 4 1
11 97 0.9310 3 4 1 1.0018 17 15 2 0.8107 0.9663 0.7834 6 6 0
12 98 0.9291 5 5 0 1.0011 18 17 1 0.7888 0.9720 0.7667 7 7 0
13 125 0.8701 14 15 1 1.0492 2 16 14 0.7870 0.9624 0.7574 8 9 1
14 133 0.9310 4 1 3 1.0242 6 4 2 0.7034 0.8973 0.6312 13 14 1
15 143 0.9316 2 7 5 1.0026 16 14 2 1.0000 0.8984 0.8984 3 3 0
16 174 0.8051 17 17 0 1.0244 5 3 2 1.0000 0.9624 0.9624 1 1 0
17 180 0.9124 9 12 3 1.0225 7 5 2 0.9812 0.9293 0.9119 2 2 0
18 205 0.7141 18 18 0 1.0521 1 11 10 1.0000 0.8761 0.8761 4 5 1

Notes: ARD: Absolute Rank Difference = |[R] – E[R]|
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covered by the CWH {Greenville} and identifies {Walterboro,
Conway} for RDCs covered by the CWH {Charleston}.
DMU174 has the edge over DMU81 regarding TLC
(5TLC1 1 TLC2), whereas DMU81 has a greater CDE than
DMU174. In terms of MCD, DMU174 is more efficient than
DMU81 except for the coverage distance from RDC {Moncks
Corner} to NBS {Bennettsville}. The top-ranked DMU by
SES, DMU87, finds two CWH locations in themiddle of South
Carolina, {Columbia, Florence}. As mentioned before,
DMU87 has the highest CDE among all 26 efficient DMUs.
DMU133, ranked #1 by CES, finds two CWH locations,
{Greenville, Columbia}, far from the coastal area and looks
more balanced regardingMCD, ECD and CDE than the other
three top-rankedDMUs by the SSN-DEA-basedmethods.
To investigate the effects of disruption risks, we perform a

sensitivity analysis by changing the risk probability for the
CWH location {Charleston} of DMU81, which is the largest
city in South Carolina and is regarded as the most susceptible
to the weather among the five CWH candidate locations. If the
risk probability for the location gets lower, the CWH location
will not change. Thus, we gradually increase the risk
probability, q2, for {Charleston}, by 0.05 from the current
probability of 0.250 and solve theWGPmodel with a weight set
given to DMU81. We check if the optimal CWH location is
shifted from {Charleston} to a different location. The
experiment results are summarized in Table A1, showing that
the CWH location {Charleston} does not change until q2 rises
from 0.250 up to 0.295. We observe that only the performance
measures related to ECD, such as ECD0, ECD1 and ECD2,
decrease as long as the CWH location is not changed. When we
increase q2 from 0.295 to 0.300, the optimal CWH location is
changed to {Columbia} with a higher risk probability of 0.375.
Consequently, all the performance measures are also changed.
Considering all five performance measures, the WGP model

changes the optimal CWH location despite having a higher risk
probability.
To see the effects of disruption risks more on the ERF

location-allocation, we set all the probabilities of facility
disruptions equal to zero, i.e. pj ¼ qi ¼ 0; 8j and i: Solving the
WGP model for all 286 weight sets generates only eight (8)

Table 5 Summary of rank differences for top-nine DMUs

Single-Stage DEA General Two-Stage DEA
CES SES ∗

Total ARD 40 54 10
Mean ARD 2.22 3.0 0.56
Maximum ARD 5 14 2

Notes: ARD: Absolute Rank Difference = |[R] – E[R]|

Table 6 Comparison of actual ranks vs. expected ranks for the top-five DMUs

No DMU 
#

Single-Stage DEA General Two-Stage DEA
CES [R] E[R] ARD SES [R] E[R] ARD 1 2 ∗ [R] E[R] ARD

1 81 0.9619 1 3 2 1.0278 6 6 0 0.6296 1.0000 0.6296 10 8 2

2 87 0.8393 9 9 0 1.1030 1 1 0 0.3782 1.0000 0.3782 11 11 0
3 89 0.9474 3 2 1 1.0096 8 8 0 0.6934 0.9188 0.6371 8 10 2
4 91 0.9192 8 7 1 1.0448 3 2 1 0.8485 1.0000 0.8485 5 4 1
5 97 0.9264 6 4 2 1.0018 11 10 1 0.8107 0.9783 0.7931 6 6 0
6 98 0.9232 7 5 2 1.0044 9 11 2 0.7888 0.9847 0.7767 7 7 0
7 133 0.9543 2 1 1 1.0242 7 4 3 0.7024 0.9030 0.6343 9 9 0
8 143 0.9372 4 6 2 1.0026 10 9 1 1.0000 0.9120 0.9120 3 3 0
9 174 0.8335 10 10 0 1.0279 4 3 1 1.0000 0.9785 0.9785 1 1 0

10 180 0.9264 5 8 3 1.0279 5 5 0 0.9812 0.9458 0.9280 2 2 0
11 205 0.7836 11 11 0 1.0739 2 7 5 1.0000 0.8854 0.8854 4 5 1

Table 7 Summary of rank differences for top-five DMUs

Single-Stage DEA General Two-Stage DEA 
CES SES ∗

Total ARD 14 14 6
Mean ARD 1.27 1.27 0.54
Maximum ARD 3 5 2

Table 8 Top five DMUs for each case by CES of SSN-DEA

Rank Case 1: All 26 efficient 
DMUs under evaluation

Case 2: Top-nine DMUs 
under evaluation

Case 3: Top-five DMUs 
under evaluation

1 DMU #133 DMU #81 DMU #81
2 DMU #89 DMU #143 DMU #133
3 DMU #81 DMU #97 DMU #89
4 DMU #97 DMU #133 DMU #143
5 DMU #98 DMU #98 DMU #180

Table 9 Top five DMUs for each case by SES of SSN-DEA

Rank Case 1: All 26 efficient 
DMUs under evaluation

Case 2: Top-nine DMUs 
under evaluation   

Case 3: Top-five DMUs 
under evaluation

1 DMU #87 DMU #205 DMU #87
2 DMU #91 DMU #125 DMU #205
3 DMU #174 DMU #87 DMU #91
4 DMU #133 DMU #91 DMU #133
5 DMU #98 DMU #174 DMU #180

Table 10 Top five DMUs for each case by GTSN DEA

Rank Case 1: All 26 efficient 
DMUs under evaluation

Case 2: Top-nine DMUs 
under evaluation   

Case 3: Top-five DMUs 
under evaluation

1 DMU #174 DMU #174 DMU #174
2 DMU #180 DMU #180 DMU #180
3 DMU #143 DMU #143 DMU #143
4 DMU #91 DMU #205 DMU #205
5 DMU #205 DMU #91 DMU #91
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different configurations. See Table A2. Due to zero disruption
probabilities, a significant performance measure, ECD would
not differ among DMUs for the single-stage process. For the
two-stage network process, there are only slight differences
among DMUs for ECD0 and ECD1 at stage 1 and ECD2
at stage 2. We apply CE- and SE-DEA methods for the single-
stage process and the GTSN-DEA for the transformed two-
stage network process. Three methods identify three different
top-ranked DMUs; DMU87 by CE-DEA, DMU101 by SE-
DEA and DMU27 by GTSN-DEA. Note that DMU87,
depicted in Figure A1, is selected as a top-ranked one by SE-
DEA with disruption risks. FromDMU87 in Figure A1 and the
other two top-DMUs, DMU101 and DMU27, depicting
Figure A2, a significant effect of disruption risks is that all three
top-rated DMUs have the common CWS location {Florence}.
Note that the common CWS{Florence} has the highest
disruption risk, and all three top-ranked DMUs choose the
same RDCs {Rock Hill, Conway, Moncks Corner} for
{Florence}.

5. Summary and conclusions

The HSCN design has been a challenging problem whose goal
is to relieve and minimize the effects of disasters and
pandemics. For designing more balanced HSCN schemes
consisting of ERF location and allocation, a WGP model is
applied to generate various HSCN configurations. To evaluate
these developed supply chain network schemes to identify the
most efficient ones, the single-stage network (SSN) DEA
models have been applied by various authors. The traditional
C-DEA evaluates DMUs in terms of self-evaluation, allowing
each DMU to rate its efficiency score with the most favorable
weights. Consequently, problems related to weak
discriminating power have arisen as the C-DEA is applied. The
reason is that multiple DMUs frequently turn out to be
efficient, so the lack of discrimination power is the major
weakness of the C-DEA. Several methods based on the C-DEA
model have emerged to remedy this weakness and increase
discrimination. The cross-efficiency (CE) evaluation methods
and super-efficiency (SE) models are typical techniques for
ranking DMUs. Still, many studies reveal that these DEA
models frequently do not generate consistent and robust
rankings.
To overcome such shortcomings of SSN-DEA, this paper

proposes transforming SSN into TSN so that GTSN-DEA is
applied. The case study shows that the ranks generated by the
single-stage process’s CE- and SE-DEA models are not as
consistent or robust as the GTSN-DEA. We observe
that different HSCN configurations are ranked highly by the
proposed approach, and these highly ranked schemes
are ranked very low by the SSN-DEA method. In addition, the
rankings produced by GTSN-DEA are not affected by the
network schemes to be rated, while the ranks by the SSN-DEA
models depend upon them under evaluation. Thus, the
contribution of the proposed approach is to reveal the could-be
hidden network schemes, if SSN-DEA is only applied, that the
decision-makers would not consider as the candidate schemes
for their final decision. This study demonstrates that the
proposed GTSN-based approach would be an essential tool for
designing these kinds of supply chain network schemes.

Environmental or natural disasters are one of the most
challenging disruption risks that can cause one of the most
potentially damaging. Particularly as the impact of global
climate change continues to flow throughout the world, ERFs
are frequently entirely disrupted, as shown throughout the
world these days. Complete failure is the worst case of facility
disruptions, so it would be interesting to consider the effects of
partial failure of ERFs on the HSCN schemes and the ranks of
efficient HSCN configurations as a future research direction.
This paper considers the case of facility disruptions only.
Future research will significantly enhance this study if the
transportation disruptions, including route and transportation
mode disruptions, are integrated with this study.
Several authors suggest future research directions for better

performance of various supply chain systems. Fanoodi et al.
(2019) apply artificial neural networks (ANNs) and auto-
regressive integrated moving average (ARIMA) models to
predict blood platelet demands with the aim of reducing the
uncertainty in the supply chain. Goli and Malmir (2020)
present an integer linear model for routing relief vehicles and
using the covering tour approach, where the demand of
damaged areas is considered as a fuzzy member, and fuzzy
credit theory is used for optimization. With the emergence of
distributed ledger technology (DLT), Roeck et al. (2020)
provide the first empirical evidence of the impact of DLT on
supply chain transactions, which will enable managers to
improve their assessment of DLT usage in supply chains.
Baziyad et al. (2022) provide an overview of the internet of
Things (IoT) and investigate IoT applications and challenges
in the context of supply chains. They (2022) identify four
fundamental stages that should be considered in deploying IoT
across a supply chain to support the digitalization of future
supply chains. Khiabani et al. (2022) present a decision support
system (DSS) based on neural networks and statistical process
control charts for diagnosing and controlling myocardial
infarction (MI) and continuously monitoring the patient’s
blood pressure. Their proposed method can help physicians
make better decisions in diagnosing cardiovascular diseases. All
of these proposed techniques, models and methods could be
implemented to enhance the performance of the humanitarian
supply chain systems.
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Appendix. List of some acronyms

ARD Absolute Rank Difference
CDE Covered Demand in case of Emergency
CDP Commodity Distribution Point
CE Cross Efficiency
CES Cross Efficiency Score
CWH Central Warehouse
DEA Data Envelopment Analysis
C-DEA Conventional DEA

CE-DEA Cross Efficiency DEA
GTSN-DEA General Two-Stage Network DEA
SE-DEA Super Efficiency DEA
SSN-DEA Single-Stage Network DEA
DMU Decision-Making Unit
ES Efficient Score
ECD Expected Amount of Covered Demand
ERF Emergency Response Facility
HSCN Humanitarian Supply Chain Network
GP Goal Programming
MCD MaximumCoverage Distance
NBS Neighborhood Site
RDC Relief Distribution Center
SCRM Supply Chain RiskManagement
SES Super Efficiency Score
TLC Total Logistics Cost
WGP Weighted Goal Programming

Table A1 The effect of disruption risks on the CWH location of DMU81

TLC1 MCD1 ECD0 (K) ECD1 (K) TLC2 MCD2 ECD2 (K) CDE (K)
Risk probability (q2Þ CWH location Input (1,1) Input (1, 2) Output (1,1) Output (1,2) Input (2, 1) Input (2, 2) Output (2,1) Output (2,2)

0.250 {Charleston} $229,285 104 718 2,965 $102,438 82.9 2,093 2,827
. . . {Charleston} . . . . . . . . . . . . . . . . . . . . . . . .

0.295 {Charleston} $229,285 104 702 2,890 $102,438 82.9 2,040 2,827
0.300 {Columbia} $204,336 99 744 2,614 $138,925 97 1,902 2,889

Table A2 Efficient DMUs, their performance metrics and efficiency scores for the case of no disruption risks

TLC1 MCD1 ECD0 (K) ECD1 (K) TLC2 MCD2 ECD2 (K) CDE (K)
No DMU # Input (1,1) Input (1, 2) Output (1,1) Output (1,2) Input (2, 1) Input (2, 2) Output (2,1) Output (2,2) ES

1 27 $322,684 97.3 387 4,109 $109,153 87 4,109 3,178 1.000�

2 33 $306,960 97.3 387 4,109 $138,467 93 4,109 3,178 1.000�

3 34 $310,665 97.3 387 4,109 $121,956 95.7 4,109 3,178 1.000�

4 39 $312,731 97.3 387 4,109 $119,623 92 4,109 3,178 1.000�

5 40 $311,411 97.3 387 4,109 $130,072 93 4,109 3,178 1.000�

6 81 $279,656 104 664 3,832 $105,574 92 3,832 3,361 1.000�

7 101 $298,931 97.3 387 4,109 $114,594 87 4,109 3,178 1.000�

8 127 $155,884 125 982 3,514 $148,921 163 3,514 2,837 1.000�

Note: �A perfect ES of 1.000
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Figure A1 The five most efficient HSCN network schemes
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