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Abstract
Purpose – The importance of robotics and automation (R&A) in delivering a safe built environment
cannot be overemphasised. This is because R&A systems can execute a hazardous job function that
the construction workforce may not execute. Based on this knowledge, this study aims to present the
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result of an assessment of the impediments to the deployment of R&A for a safe and healthy
construction environment.

Design/methodology/approach – This study adopted a post-positivist philosophical stance, using
a quantitative research approach and a questionnaire administered to construction professionals in
South Africa. The data gathered were analysed using frequency, percentage, mean item score,
Kruskal–Wallis H-test, exploratory factor analysis and partial least square structural equation
modelling (SEM).

Findings – This study revealed that the impediments to the deployment of R&A could be grouped into:
industry, technology, human and cost-related factors. However, SEM assessment showed that only the
industry, human and cost-related factors would significantly impact attaining specific health and safety-
related outcomes.

Practical implications – The findings offer valuable benefits to construction organisations as the careful
understanding of the identified impeding factors can help lead to better deployment of R&A and the
attainment of its inherent safety benefits.

Originality/value – This study attempts to fill the gap in the shortage of literature exploring the
deployment of R&A for a safe construction environment, particularly in developing countries like South
Africa, where such studies are non-existent. This paper, therefore, offers a theoretical backdrop for future
works on R&Adeployment, particularly in developing countries where such a study has not been explored.

Keywords Health, Automation, Construction, Safety, Robotics, South Africa

Paper type Research paper

Introduction
The construction industry has been criticised for its poor delivery of sustainable
construction, specifically in relation to health and safety (H&S), which is a key aspect of
social sustainability. Everyday, construction workers are put in harm’s way by executing
jobs that pose the danger of fatal and non-fatal injuries (Cai et al., 2018). Maryania et al.
(2015) noted that construction is ranked as one of the most dangerous and high accident-risk
industries worldwide. With the increased complexity of construction works, the life risk to
site workers has increased, and in so doing shortage of construction workers is becoming
evident. As such, it is the responsibility of the construction employers or managers to ensure
the safety of their working crew, particularly those on site. Oke et al. (2018) submitted that
for developing countries with an increasing need for construction products to meet society’s
needs, it is important to adopt innovative approaches that will ensure workers’ safety and
accident-free projects. To achieve this feat, technological advancements in robotics and
automation (R&A) have been proposed (Aghimien et al., 2020; Delgado et al., 2019; Yap et al.,
2021).

Past studies have mentioned that the use of R&A proposes a solution to the age-long
problem of the construction industry, particularly in terms of time, cost and quality delivery
of projects (Bock, 2015). It has also been noted that the technology offers safer delivery of
projects and can help cushion the effect of the labour shortage that has affected the industry
in recent times (Kamaruddin et al., 2013). The adoption of R&A systems offers the
construction industry a way out of the high site accidents rate that has plagued the industry
(Yap et al., 2021). These robotic systems are important in off-site production and on-site
lifting (Pan and Pan, 2020). To this end, studies on R&A systems in the construction
industry of both developed and developing countries have continued to emerge. Some of
these studies have explored the implementation (Akinradewo et al., 2018; Strukov�a and
Líška, 2013), the barriers to its implementation (Delgado et al., 2019; Oke et al., 2021; Trujillo
and Holt, 2020), its overarching impact on the industry (Akinradewo et al., 2021; Cropp,
2021), the trends in R&A advancement (Balaguer and Abderrahim, 2008; Pan and Pan, 2020;
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Son et al., 2010) and its adoption for solving specific industry-related issues (Cai et al., 2018;
Jung et al., 2013).

In spite of the existence of these studies on R&A in construction, there is a paucity of
research on the impediments of R&A adoption to ameliorate H&S in the South African
construction industry. This becomes important as the industry in South Africa, like its
counterparts in other developing countries, is bedevilled with poor H&S and issues of site
accidents is a prevailing occurrence (Aghimien et al., 2018). More so, the industry has been
noted as a slow adopter of beneficial digital and physical technologies that could help
improve its service delivery (Pärn and Edwards, 2019). Therefore, understanding the
deterring factors to the use of R&A for effective H&S is important to the proper adoption of
the technology. To this end, this research identified the factors impeding R&A deployment
in the construction industry from existing studies. These factors were then empirically
tested in the South African context, and their significant impact on specific H&S outcomes
was determined. This was done to proffer possible guidelines that will help improve the use
of R&A systems. The study provides practical direction for construction organisations
seeking to improve their H&S delivery through ubiquitous emerging technologies. The
findings should help shape the policies surrounding the use of R&A and its related
technologies in these organisations and the South African construction industry at large.
Much more, the findings will serve as theoretical background for future studies seeking to
explore this area of study, particularly in countries where such research has not been
conducted.

Review of literature
Construction site accidents can occur from different forms of activities, and as such,
different advancements have been introduced to help deliver these activities safer. For
instance, demolition robots have been designed to handle equipment more effectively. As a
result, the operator of this machine can be at a safe distance from the debris while carrying
out demolition activities. This makes them safer than handheld devices (Ruggiero et al.,
2016). Similarly, activities such as continuous bending, lifting of heavy objects, incorrect
posture stance and repetitive tasks of a bricklayer may cause them to experience lower back
pain. As such, bricklaying robots can substitute a worker for the tedious task and, in the
process, reduce the chances of the worker experiencing lower back pain or injury (Adams
and Dolan, 2007). Also, Jung et al. (2013) submitted that in a robotic beam assembly system,
most of the work is performed by a robotic bolting device installed on a cabin that functions
as a control station. A graphical user interface system is positioned inside the cabin, and its
operator can safely manage the steel beam assembly process. This increases steel beam
assembly safety as site workers are not needed to work on high and risky steel beam
structures. Instead, the workers will operate the robotic beam assembly system from the
safe cabin.

Furthermore, advancement in the form of exoskeletons allows injured or disabled
workers to work in construction and lift and transport heavier objects (Mone, 2014). Forklift
robots can also help relieve workers from carrying heavy objects or even humans from
controlling a forklift to transport the objects (Ruggiero et al., 2016). Also, painters are
continuously exposed to hazardous ingredients when painting buildings (Tharshanapriya
et al., 2017). For example, paints that contain lead may cause serious health problems to
painters and roofers who have been exposed to the toxic solvent for a long period (Santti
et al., 2009). Therefore, workers can be moved to safer, less risky positions and allow the
robots to work in those harmful environments (Bock and Linner, 2017). Robotic excavation
can also be performed using robotic teleoperation. According to Melchiorri (2013), robotic
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teleoperation is a system that enables a human operator to interact with objects that are
placed at a certain distance. Teleoperated excavators can be used in activities that may pose
a danger to humans, such as excavating around buried utilities.

Like every other technology, the adoption of R&A for attaining these aforementioned
H&S benefits is challenged by several factors. Several studies have attempted to unearth
these factors and categorise them based on their severity for clarity. For instance, in the
USA, Trujillo and Holt (2020) categorised the barriers to using robotics into three main
groups, namely, cultural, technical and teams’ issues. It was noted that while literature has
placed focus on the technical aspect of this technology as key deterrents to its usage, the
culture at the organisational level and the team needed to handle this technology are key
factors to consider. In the Slovak construction industry, Strukov�a and Líška (2013) noted
that the high cost of acquiring, maintaining and updating R&A systems and its
unavailability in local communities are the major barriers to its adoption. A similar
observation was made by Delgado et al. (2019) in a study conducted among architecture,
engineering and construction specialists in European countries. The high initial capital
needed for R&A was rated as the top factor affecting its usage. Huang et al. (2021) also
noticed the issue of cost deterring the use of R&A in the Chinese construction industry.
Mahbub (2012) mentioned that it is expensive to acquire and maintain these R&A systems,
which discourages their adoption in Malaysia. This high cost of acquiring technology is a re-
occurring problem, particularly in developing countries filled with small and medium
enterprises (SMEs) struggling to stay afloat (Hampson et al., 2014; Oke et al., 2018).

Also, Delgado et al. (2019) mentioned that lack of government incentives plays a major
factor in the slow adoption of R&A. This assertion was based on the fact that government is
a major client of the construction industry and, as such, can impact on the use or non-use of
certain technologies on public projects. The public sector in countries around the world
plays a crucial factor in adopting digital technologies by creating incentives, policies and
regulations (Jensson, 2017). More so, it has been stated that because of the “lowest bid”
concept adopted in most countries, when contractors decide to adopt innovative approaches
to improve H&S on their project, they stand the chance of losing tenders or negotiations to
competitors that are less committed to H&S (Smallwood, 2004). Therefore, the contractors
are not encouraged to adopt innovative methods and technologies in the quest for safe
project delivery (Aghimien et al., 2018). Another issue that creates challenges for adopting
R&A is the nature of the construction industry and its activities. The fragmented nature of
the industry, the existing construction practices and operations as well as aversion of the
industry to change are key issues that have been noted in past studies (Delgado et al., 2019;
Trujillo and Holt, 2020; Vähä et al., 2013). Balaguer and Abderrahim (2008) have earlier
noted that the unstructured nature of the construction industry makes it difficult to adopt
R&A. The fear of changing existing practices that work leads to an aversion to change,
which deters the use of beneficial technologies (Oke et al., 2018; Yahya et al., 2019). Dimick
(2014) has noted distrust in new technologies in most organisations. This distrust emanates
from the fact that change can be challenging for humans. The resultant effect of this distrust
is the aversion to change, which is evident at every level of these organisations, from
workers to executive decision makers.

The advent of emerging technologies has received significant resistance from construction
workers and unions because of the fear of job loss. For an industry that has been dependent on
human input for a long time, the fear of robots taking over jobs is a key deterrent to the smooth
adoption of these technologies (Aghimien et al., 2021). While studies have noted that the
adoption of emerging technologies such as R&A systems will usher in demand for new skill
sets and not necessarily take away jobs (Lawrence et al., 2017; Muro et al., 2017), there is still
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resistance to change within the construction industry (Aghimien et al., 2021; Akinradewo et al.,
2018; Cai et al., 2018; Mahbub, 2012). The fact that the construction industry in most developing
countries (South Africa inclusive) is characterised by skill shortage (Windapo and Cattell, 2013)
and workers need to be trained and retrained to use these technologies does not help their
adoption (Delgado et al., 2019; Kamaruddin et al., 2013). For most technologies to be
successfully implemented, organisations will have to get new talent, train the few existing ones
or collaborate with other organisations with the required talents (Sacks and Barak, 2010). This
can strain these construction organisations’ meagre available financial resources, most of
whom are SMEs with little financial capabilities (Hampson et al., 2014). Trujillo and Holt (2020)
have also noted that the diffusion of existing knowledge and practice with R&A systems can
be barriers to their adoption. In most cases, these technologies are either unknown, new or not
fully tested in the construction industry. Therefore, poor knowledge and understanding of
R&A in the industry and the benefits it proposes for H&S and construction services, in general,
can deter its adoption. Other notable issues include the difficulty in using R&A systems
(Golizadeh et al., 2019; Mahbub, 2012), lack of mechanical flexibility, fear of robotic failure
causing harm to workers (Dimick, 2014; Yang et al., 2018) as well as the fact that there is no
evidence of its effectiveness for H&S delivery in the construction industry (Delgado et al., 2019;
Lavikka, 2018).

The implementation of R&A promises significant benefits to the construction
industry. Yap et al. (2021) noted that using technologies such as R&A would lead to
easy hazard identification, support safety planning, inspection, monitoring and raise
safety awareness. Bahrin et al. (2016) also submitted that using R&A for construction
work will lead to a safer construction environment as robots will reduce human inputs
and associated fatalities. Evidently, the adoption of R&A will lead to better H&S for the
construction workforce. Furthermore, wearable devices with embedded sensors can
help monitor workers’ health issues and detect problems early. Early detection of
issues around workers’ overworking, stress and subsequent absenteeism allows
measures to be implemented before these issues can affect the overall project outcome
(Salento, 2017). This, in turn, will increase the productivity of construction workers and
overall project success (Kamaruddin et al., 2016). Siderska (2021) has noted that the
adoption of R&A by organisations offers a better competitive advantage. Aghimien
et al. (2019) and Kamaruddin et al. (2016) have noted that the introduction of digital and
physical technologies offers construction organisations the opportunity to be more
competitive and possibly attain a competitive advantage over other organisations that
are yet to adopt these technologies. Also, considering the possibility of R&A offering
better H&S on construction projects (Ruggiero et al., 2016; Yap et al., 2021), these
organisations will be known for their ability to deliver safe projects, thereby increasing
their competitiveness.

Based on the various studies reviewed, Table 1 reproduced the impediments to the
deployment of R&A in construction. These variables were assessed against the expected
outcomes of R&A, leading to better H&S for construction workers, improved workers’
productivity, better competitive advantage derived through effective H&S and achieving
overall project success.

Research methodology
The study adopted a post-positivist philosophical stance using a quantitative approach to
gather data from construction professionals in Gauteng province through a survey
technique. A questionnaire was used as the research instrument because of its ability to
offer quantifiable data within a short period (Tan, 2011). The choice of conducting the study
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in Gauteng was premised on the notion that the province has the highest number of
construction output, organisations and professionals compared to other provinces (CIDB,
2020; Galal, 2020). The questionnaire was designed in sections and distributed through
electronic means to be self-administered by the respondents. The first section of the
questionnaire sought answers to the demographic characteristics of the respondents to
ascertain their suitability for the study. The second section sought answers to the
impediments of R&A deployment within the South African construction industry and the
possible impact the use of these systems will have on H&S-related outcomes. This section
was assessed on a five-point Likert scale, with one being “very low significance/very low
impact” and five being “very high significance/very high impact”. The variables measured
in this section were gathered from existing related studies and are given in Table 1. For
participants to be involved in the study, they must be professionals (architects, engineers,
construction managers, quantity surveyors and safety officers) with at least five years of
working experience in the South African construction industry and currently actively
involved in a project within the province. However, because of the difficulty in getting the
exact number of professionals with the set years of experience and practising within the
province at the time of the research, a snowball sampling approach was adopted. This is
because the sampling approach can significantly increase the sample size of a study because
it is based on referral (Heckathorn, 2011). Based on the approach adopted, 134 professionals
participated in the study.

Data analysis was done using percentages and frequency on the demographic
characteristics of the respondents. In addition, the mean item score (X ) was used to rank the

Table 1.
Summary of the

impediments of R&A
deployment in
construction

Code Impeding factors Citations

IMP1 High investment cost Delgado et al. (2019), Manzo et al. (2019); Mistri
and Rathod (2015); Strukov�a and Líška (2013)

IMP2 High cost of maintenance Mahbub (2012); Strukov�a and Líška (2013)
IMP3 Lack of government incentives to use R&A for

H&S
Delgado et al. (2019), Huang et al. (2021)

IMP4 Incompatibility with existing construction
practices and operations

De Looze et al. (2016); Strukov�a and Líška (2013)

IMP5 Fragmented nature of the construction industry Balaguer and Abderrahim (2008), Chen et al.
(2018)

IMP6 Aversion to change in the industry Akshatha et al. (2017), Delgado et al. (2019); Oke
et al. (2018), Yahya et al. (2019)

IMP7 Poor knowledge and understanding of R&A in
the industry

Aghimien et al. (2021), Mahbub (2012); Trujillo
and Holt (2020)

IMP8 Resistance by workers and unions Aghimien et al.,(2021); Akinradewo et al. (2018),
Cai et al. (2018); Mahbub (2012)

IMP9 Insufficient skilled personnel Li and Liu (2019), Oke et al. (2018)
IMP10 Need for training or retraining Delgado et al. (2019), Kumar et al. (2016); Sacks

and Barak (2010); Vähä et al. (2013)
IMP11 Fear of robot failure causing harm to workers Dimick (2014), Yang et al. (2018)
IMP12 Difficulty to acquire Strukov�a and Líška (2013)
IMP13 Difficulty to use Bock (2015), Golizadeh et al. (2019); Huang et al.

(2021), Mahbub (2012)
IMP14 Product complexity Huang et al. (2021)
IMP15 Unproven effectiveness for R&A for H&S in

construction
Delgado et al. (2019), Lavikka (2018)
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identified impediments based on their level of significance as rated by the respondents. The
premise for ranking these variables was that the variable with the highest X is ranked first
and all others follow in descending order. Furthermore, because the construction
professionals were drawn from different types of organisations (contracting, consulting,
government), there is a possibility that they might view the significance of the identified
variables differently. Therefore, the Kruskal–Wallis (K–W) H-test, which is used to
ascertain the significant difference in the view of three or more groups of respondents
(Pallant, 2011), was used to ascertain the significant difference in the view of respondents in
this study. The K–W test gives a chi-square (x2) and a p-value. When the p-value is>0.05, it
implies no significant difference in the perspective of the different groups of respondents.

To further re-group the identified impeding factors into a more manageable sub-scale,
exploratory factor analysis (EFA) was adopted. This first-generation multivariate data
analysis has been favoured in recent R&A studies (Delgado et al., 2019; Yap et al., 2021;
Huang et al., 2021). In conducting EFA, past studies have favoured the use of a sample size
of above 150 (Tabachnick and Fidell, 2013). However, it has been noted that as long as a
communality of 0.5 and above is attained (as in the case of this current study), researchers
need not emphasise the size of the sample (Field, 2009; Preacher and MacCallum, 2002;
Tabachnick and Fidell, 2013). Before conducting EFA, the factorability of the data was also
tested using Kaiser–Meyer–Olkin (KMO) and the Bartlett test of sphericity (BTS). Ideally, a
KMO value� 0.6 and a significant p-value < 0.05 for the BTS are needed for the data to be
considered factorable. The data for this study met the set thresholds, and EFA was
conducted using principal component analysis (PCA) with varimax rotation. PCA was
adopted because it can easily identify and reduce a large set of variables into small coherent
sub-scales (Tabachnick and Fidell, 2013). These tests were conducted using Statistical
Package for Social Sciences version 27. Based on the result from EFA, partial least square
structural equation modelling (PLS-SEM) – a second-generation multivariate data analysis –
was used using SmartPLS version 3.0. This was done to confirm the variables grouped from
EFA and ascertain the structural relationship between these groups and the H&S-related
outcomes of R&A deployment. The choice of PLS-SEM was premised on its ability to give a
clear view of the cause–effect relationship in a phenomenon irrespective of the distribution
of the data (Wong, 2013). Hedaya and Saad (2017) have earlier described PLS-SEM as an
extended standardised regression modelling, which is useful in determining how some sets
of variables are affected by other variables. The use of PLS-SEM has garnered significant
attention in recent studies because of its ability to accommodate small samples in a study
(Chin, 1998; Hwang et al., 2010). Unlike the covariance-based SEM (CB-SEM), which needs a
large sample size for it to be conducted, the PLS-SEM can be conducted for a sample as low
as 50 responses (Benitez et al., 2020; Hair et al., 2019; Hwang et al., 2010; Marcoulides and
Saunders, 2006; Wong, 2013). More so, unlike CB-SEM, which is mainly adopted to confirm
or reject theories, PLS-SEM is most ideal for developing theories in exploratory research (as
in the case of this current study).

Findings and discussion
Demographic characteristics
The demographic characteristics of the respondents revealed that more quantity surveyors and
engineers participated in the survey with 32.1% (f = 43) and 22.4% (f = 30) representation,
respectively. This is followed by construction managers (14.9%, f = 20) and construction project
managers (15.7%, f = 21). Architects (8.2%, f = 11) and safety officers (6.7%, f = 9) had the least
representation. Half of the respondents (50%, f= 67) have bachelor’s degrees, whereas 30.6% (f=
41), 15.7% (f = 21) and 3.7% (f = 5) have a national diploma, master’s degree and doctorate,
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respectively. These respondents were drawn from contracting (39.6%, f= 53), consulting (36.6%,
f = 49) and government organisations (23.9%, f = 32). In terms of years of experience, 56% (f =
75) have the minimum threshold of five years, whereas the remaining 44% (f = 59) have above
five years of working experience. These background results show that the respondents for this
study are eligible both in terms of academic background and years of experience to give
reasonable answers to the questions under study.

Impediments of robotics and automation deployment for a safe working environment
Table 2 shows the rating of the 15 impeding factors and the K–W test conducted. The K–W
test result revealed a disparity in how the respondents rated product complexity (IMP14) as
this variable had a significant p-value of 0.044, which is less than the 0.05 threshold.
However, there is a consensus in the view of the respondents regarding the significance of
the remaining 14 variables, as they all gave a p-value of above 0.05. From the table, it is
evident that all the assessed factors impede the adoption of R&A because they all have a
Xof the above-average of 3.0. This implies that careful attention must be given to these
identified factors for R&A to be effectively deployed for safer construction in South Africa.
Chief of these factors are high investment costs (IMP1, X= 4.10), aversion to change in the
industry (IMP6, X= 4.06), resistance by workers and unions (IMP8, X = 3.99), insufficient
skilled personnel (IMP9, X= 3.97), need for training or retraining (IMP10, X= 3.94) and poor
knowledge and understanding of R&A in the industry (IMP7,X= 3.91).

Exploratory factor analysis. Table 3 shows the result from the KMO and BTS conducted
to determine the factorability of the data. KMO gave a value of 0.825, which is above the 0.6
thresholds set for this test. More so, a significant p-value of 0.000 was derived for the BTS.
The communalities, which show the relationship of each variable with other variables, gave
values ranging from 0.633 to 0.831. Again, these values are above the 0.5 thresholds
suggested (Field, 2009; Preacher and MacCallum, 2002; Tabachnick and Fidell, 2013). EFA
was conducted using PCA with varimax rotation based on these preliminary estimates. The
analyses revealed four principal components with eigenvalues> 1.0 and a total cumulative
variance of 75.6%. This implies that the assessed impeding factors account for a large

Table 2.
Ranking of the

impediments of R&A
deployment for

construction H&S

Impeding factors X Rank
K–W

x2 p-value

IMP1 4.10 1 1.928 0.381
IMP6 4.06 2 3.002 0.223
IMP8 3.99 3 1.074 0.584
IMP9 3.97 4 1.276 0.528
IMP10 3.94 5 1.350 0.509
IMP7 3.91 6 3.174 0.204
IMP5 3.77 7 3.597 0.166
IMP4 3.72 8 3.397 0.183
IMP2 3.72 8 0.562 0.755
IMP11 3.68 10 1.469 0.480
IMP12 3.60 11 1.771 0.413
IMP15 3.59 12 4.019 0.134
IMP3 3.57 13 5.822 0.054
IMP14 3.55 14 6.230 0.044*
IMP13 3.47 15 2.962 0.227

Notes: *Significant at p< 0.05, X=Mean item score, K–W=Kruskal–Wallis H-test, x2 = Chi-square
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amount of the issues deterring the deployment of R&A in the South African construction
industry. The remaining 24.4% accounts for other factors not measured in this current
study. Further evaluation of the scree plot in Figure 1 confirms the retaining of these four
principal components as a clear change in the elbow is evident at the fourth component
(Pallant, 2011).

Table 3 also shows that the first principal component accounts for 43.5% of the total
variance extracted and has four factors loading on it. These factors are an aversion to

Table 3.
EFA principal
extraction

Code
Component

Comm. % var.1 2 3 4

IMP6 0.822 0.763 43.5
IMP7 0.808 0.725
IMP4 0.807 0.734
IMP5 0.765 0.633
IMP14 0.865 0.831 15.0
IMP15 0.844 0.781
IMP13 0.834 0.834
IMP12 0.635 0.753
IMP10 0.828 0.809 10.0
IMP9 0.749 0.712
IMP11 0.718 0.770
IMP8 0.605 0.694
IMP1 0.871 0.715 7.1
IMP3 0.768 0.806
IMP2 0.652 0.706
KMO 0.825
BTS
Approx. x2 1,317.92
df 105
Sig. 0.000

Figure 1.
Scree plot
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change in the industry (IMP6), poor knowledge and understanding of R&A in the industry
(IMP7), incompatibility with existing construction practices and operations (IMP4) and
fragmented nature of the construction industry (IMP5). Based on the latent similarity in
these factors, this group was named “industry-related factors”. This naming is guided by
the suggestions of Williams et al. (2010) that the naming of factors must be theoretical,
subjective and inductive, following the researchers’ judgements in line with the literature.
The second component accounts for 15% of the total variance extracted and has four factors
loading on it. These factors are product complexity (IMP14), unproven effectiveness for
R&A for H&S in construction (IMP15), difficulty to use (IMP13) and difficulty to acquire
(IMP12). This component was subsequently named “technology-related factors”. The third
extracted component accounts for 10% of the total variance extracted and has four variables
also loading on it. These variables include the need for training or retraining (IMP10),
insufficient skilled personnel (IMP9), fear of robot failure causing harm to workers (IMP11)
and resistance by workers and unions (IMP8). The component was named “human-related
factors”. The last extracted component accounts for 7.1% of the total variance and has a
high investment cost (IMP1), lack of government incentives to use R&A for H&S (IMP3) and
high cost of maintenance (IMP2) loading on it. This component was subsequently named
“cost-related factors”.

Reflective measurement model assessment. The first step in the reflective measurement
model assessment is to examine the factor loading of the different variables grouped
from EFA. Past studies have favoured the use of 0.70 as the cut-off for an acceptable
factor as this means that such a variable will explain more than 50% of the variance in
the indicator (Hair et al., 2019; Wong, 2013). Table 4 shows that all the assessed
impeding factors met this 0.70 cut-off. More so, the four outcome variables, namely,
better construction workers H&S (OUT1), improving workers’ productivity (OUT2),
better competitive advantage derived through effective H&S (OUT3) and overall
project success (OUT4) against which these grouped impeding factors were measured,
also had a factor loading of above the cut-off.

Table 4.
Summary of the

reflective
measurement model

assessment

Construct Variables Loading a rA rc AVE VIF

Industry IMP4 0.836 0.865 0.876 0.908 0.711 1.969
IMP5 0.832 1.967
IMP6 0.876 2.507
IMP7 0.827 2.301

Technology IMP12 0.834 0.899 0.907 0.930 0.768 2.193
IMP13 0.913 3.707
IMP14 0.899 4.219
IMP15 0.857 3.172

Human IMP8 0.809 0.841 0.860 0.892 0.674 1.753
IMP9 0.864 2.187
IMP10 0.863 2.937
IMP11 0.743 2.215

Cost IMP1 0.865 0.768 0.833 0.859 0.671 1.422
IMP2 0.813 1.666
IMP3 0.776 1.738

Outcome OUT1 0.910 0.920 0.924 0.944 0.809 3.830
OUT2 0.935 4.858
OUT3 0.939 4.991
OUT4 0.808 1.916
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The internal consistency of the groups of impeding factors was also tested using Cronbach’s
alpha (a), Rho coefficient (r A) and composite reliability (r c) with a cut-off of 0.7 as
suggested in past studies (Hair et al., 2019; Henseler et al., 2016; Wong, 2013; Wu et al., 2019).
Table 4 revealed that cost-related factors gave the lowest a value of 0.768, rc value of 0.859
and r A value of 0.833. These derived values are above the cut-off of 0.70 set for all three
tests, implying that assessed impeding factors are reliable in measuring their respective
groups. Furthermore, the convergent validity of these variables was measured using
average variance extracted (AVE). AVE is designed to ensure that measurement variables
are free from systematic error of measurement and the ideal cut-off for this test is 0.5 (Fornell
and Larcker, 1981; Hair et al., 2019). The result also showed that the variables met this
criterion with an AVE of between 0.671 and 0.809.

It is also important to assess the collinearity in the model before determining the
structural relationship that exists (Hair et al., 2019). In testing collinearity in PLS-SEM,
Henseler et al. (2016) suggested checking the variance inflation factor (VIF) values of all
predictor constructs. The derived VIF value should be higher than 0.2 and lower than 5.0 for
the collinearity issue not to exist (Hair et al., 2019). The VIF column in Table 4 reveals that
all the variables were within the acceptable range of below 5.0. This implies that there is no
multicollinearity issue with these variables, as such, the structural model assessment can be
conducted.

The discriminant validity, which is the extent of empirical distinction of a construct from
others in the model, was tested using heterotrait–monotrait (HTMT) with a cut-off of#0.85
(Hair et al., 2019; Henseler et al., 2016). It has been suggested that an HTMT value lower than
1 (preferably<0.85) must be achieved for clear discrimination between two factors (Franke
and Sarstedt, 2019). However, the result in Table 5 shows that all the grouped impeding
factors and the outcome had values below 0.85, implying that each group is unique and the
variables measuring them are different.

Model approximate and absolute fit. The approximate fit for the developed model was
assessed using standardised root mean square residual (SRMR) as suggested in Henseler
et al. (2016). While Byrne (2005) suggested that an SRMR of less than 0.05 is considered an
acceptable fit, other studies have proven that the SRMR of a complete, correctly specified
model can be above this threshold (Henseler et al., 2014). Therefore, an SRMR of 0.08 has,
over time, been assumed to be adequate (Bagozzi and Yi, 2012; Henseler et al., 2014). Values
of 0.1 for SRMR have also been noted to be acceptable for an approximate fit (Aigbavboa,
2013). For this study, an SRMR of 0.082 was derived and was deemed acceptable. The
Bentler–Bonett normed fit index (NFI) was also adopted to determine the model’s
approximate fit (Henseler et al., 2016). Singh (2009) noted that the value of an acceptable NFI
should range from 0.6 to 0.9. The NFI derived for this study was 0.742, and was within the
given threshold.

To determine the absolute fit of the model, the out-of-sample prediction procedure was
first conducted using PLSpredict (Ringle et al., 2015). This test gives cross-validation, also

Table 5.
Discriminant validity

Construct Cost Human Industry Outcome

Cost
Human 0.503
Industry 0.575 0.588
Outcome 0.460 0.478 0.526
Technology 0.504 0.723 0.423 0.361
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known as the k-fold, for the outcome variables. The k-value was set at ten and run multiple
times, as suggested by Shmueli et al. (2019). The analysis gives the root mean squared error
(RMSE) for both the PLS and linear regression model (LM). While there is no agreed cut-off
for interpreting this analysis in past studies (Hair et al., 2019), Shmueli et al. (2019) suggested
that the Q2

predict derived for the PLS should be positive as a negative value will imply that
the model lacks predictive power. Furthermore, the RMSE derived for the PLS should be
compared against the LM using four scenarios, namely, if all the derived PLS values are
greater than the LM values, then the model lacks predictive power; if most of the derived
PLS values are greater than the LM values, then the model has low predictive power; if few
or the same number of the derived PLS values greater than the LM values, then the model
has a medium predictive power; and if none of the derived PLS values is greater than the LM
values, then the model has high predictive power. Based on the result in Table 6, it is evident
that the model has a high predictive power as the derived Q2

predict are positive, and none of
the derived PLS RMSE values was greater than the LM values.

Further evaluation of the predictive relevance of the model using the PLS blindfolding
process revealed a Q2 of 0.226. As a rule of thumb, Q2 values should be greater than 0 for an
endogenous construct to depict predictive accuracy (Hair et al., 2019). Using Chin’s (1998)
submission that Q2 of 0.02, 0.15 and 0.35 are weak, medium and high, the model is
considered to have medium predictive relevance. The predictive power measured using R2

revealed an acceptable fit of 0.298, following Cohen (1992) submission that R2 of 0.26, 0.13
and 0.02 are considered acceptable, moderate and weak. Hair et al. (2019) have earlier
suggested that the acceptable value of R2 is based on the context of the discipline wherein
the model is being applied, and R2 values of as low as 0.1 have been considered satisfactory
in some research fields. Finally, the global criterion of goodness-of-fit (GoF) index, which is
the geometric mean of the average communality and the average of R2, was calculated using
equation (1) (Tenenhaus et al., 2005). A GoF below 0.1 is small, 0.25 is moderate and above
0.36 is good (Akter et al., 2011). GoF for this study was calculated as 0.465, which is above
the 0.36 cut-off for a good GoF:

GoF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AVE � R

2
q

(1)

AVE = 0.727
R2 = 0.298

GoF =H0.727� 0.298 = 0.465
Considering the diverse acceptable model fits achieved, the level of impact of the
grouped factors on the outcomes was assessed. It has been noted that in cases where the
researcher intends to generalise from a sample to a population (like in the case of this
current study), the path coefficient (b) must be examined (Henseler et al., 2016).
Tabachnick and Fidell (2013) have earlier noted that the b is a measure of multiple

Table 6.
Out-of-sample

prediction

PLS LM PLS-LM
RemarkRMSE Q2 predict RMSE RMSE

OUT1 0.890 0.182 0.940 –0.050 High
OUT2 0.829 0.229 0.850 –0.021 High
OUT3 0.846 0.184 0.901 –0.056 High
OUT4 0.877 0.173 0.937 –0.061 High
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correlation coefficients between the outer model (grouped factors) and the inner model
(outcome), and according to Abbasi (2011), the value of b is examined in terms of its
sign, its magnitude and its significance. This test was conducted through
bootstrapping with 4,999 bootstrap samples. The significance of the b is based on the t-
values derived, which should be at least 1.96 for a 95% confidence interval (p-value <
0.05) (Keil, 2000; Wu et al., 2019).

Figure 2 shows that if better workers’ H&S, improved workers’ productivity, better
competitive advantage through safe working approaches and overall project success
are to be achieved in the South African construction industry, then careful attention
must be given to industry, human and cost-related factors. These three groups were
significant, with p-value < 0.05 and t-values of 3.058, 1.992 and 2.137. Furthermore, the
figure shows that industry-related factors will have the highest impact as it accounts
for about 27.6% (b = 0.276) of the outcomes measured. Human and cost factors account
for 18.1% and 17.4%, respectively. Technology-related factors have no significant
relationship with the expected outs as a p-value of 0.550 and t-values of 0.598 was
derived. Aside from not being significant, this group also have the least impact of about
4.8% (b = 0.048).

Figure 2.
Partial least square
structural equation
model
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Discussion
The findings revealed that deployment of R&A for safer construction worksites in
South Africa is impeded by four major groups of industry, technology, human and cost-
related factors. These grouped factors are consistent with existing literature that have
grouped the barriers to the use of R&A and related technologies in both developed and
developing countries worldwide (Delgado et al., 2019; Huang et al., 2021; Oke et al., 2021;
Trujillo and Holt, 2020). However, while Oke et al. (2021) submitted that cost and technology-
related issues are the major barriers to the use of robotics in the construction industry in
Nigeria, this current study found that the barriers exceed these two groups to include
industry and human-related factors. More so, it was discovered that only the industry,
human and cost factors would significantly affect the attainment of better H&S, improved
productivity, competitive advantage and overall project success delivered through improved
H&S, as seen in Figure 3. Past studies have emphasised the role of industry-related factors in
the adoption of R&A in the construction industry. For instance, Huang et al. (2021) noted that
factors related to the industry, like its fragmented nature and its conservative nature, play a
crucial role in deterring the use of R&A in the Chinese construction industry. Delgado et al.
(2019) have also noted that the work culture of the construction industry in European
countries significantly influences the industry’s adoption of technologies. In most cases, a
weak innovative culture is evident. In addition, poor knowledge and understanding are also
key industry-related issues for construction organisations in the USA (Trujillo and Holt,
2020). The South African construction industry is not an exception to these industry-related
issues. While the country has the capability to be technologically advance (Dall’Omo, 2017),
its construction industry still struggles with the use of beneficial technologies such as R&A
(Aghimien et al., 2019; Akinradewo et al., 2018).

Aside from industry-related issues, human factors in terms of training and retraining,
insufficient skilled personnel, fear of robot failure causing harm to workers and resistance
by workers and unions are also significant to deploying R&A for safe construction.
Evidently, the proper implementation of R&A requires human input to drive and monitor
these technologies. However, the need to train and retrain workers on using these
technologies might discourage organisations from adopting them (Delgado et al., 2019;

Figure 3.
Summary of the

impeding factors to
R&A deployment for

safe construction

PLS-SEM
assessment

471



Kamaruddin et al., 2013). In the case of South Africa, the construction industry is littered
with SMEs who find it difficult to fund construction works without upfront payment from
clients (Construction Industry Development Board, 2020). Using their limited resources to
train workers on the use of emerging technologies might discourage the adoption of such
technology. Furthermore, the South African construction industry has been characterised
by skills shortage (Windapo and Cattell, 2013), which significantly affects technology usage
in the country (Oke et al., 2018). The fear of the available workforce losing their jobs to
robots has led to the resistance to technological advancement that has been noticed in the
country (Aghimien et al., 2021; Mzekandaba and Pazvakav, 2018). Aghimien et al. (2021)
have earlier warned that the introduction of technologies that can be seen as a threat to
workers’ job security must be carefully planned and introduced strategically and
systemically to avoid resistance.

Studies have continued to emphasise the impact of cost on the adoption of R&A systems
in Slovakia (Strukov�a and Líška, 2013), China (Huang et al., 2021), Malaysia (Mahbub, 2012;
Yahya et al., 2019), Nigeria (Oke et al., 2021) and parts of Europe (Delgado et al., 2019). The
cost of investing in R&A is high (Rahman and Omar, 2006), which SMEs in the construction
industry might find difficult to afford. The government and financial institutes can assist in
giving soft loans that will help construction organisations in South Africa acquire these
R&A systems without the burden of cost weighing heavily on them. The government can
also support adjusting the cost of importation to assist organisations in acquiring these
technologies because they are scarce locally. Samari et al. (2012) hinted that the government
need to come to the aid of construction organisations through incentives that will promote
the use of R&A on public projects and attain proper H&S in the process.

Implication of findings
The findings of this study imply that certain industry, human and cost-related factors play a
significant role in the improvement of H&S within the construction industry. The findings
have also revealed that these three groups of factors will also significantly improve
productivity, competitive advantage and overall project success if given adequate
consideration. However, past studies have shown that the South African construction
industry, like its counterpart worldwide, has been slow in adopting technologies. This slow
adoption has been attributed to a lack of knowledge among industry practitioners and the
industry’s unwillingness to change old practices (Aghimien et al., 2021). Therefore, the
current structure and culture of the industry in the country is not supporting the use of
beneficial technologies such as R&A. If any improvement is to be visible, particularly
concerning how the industry delivers its project to specific H&S requirements through the
use of R&A, there must be a drastic change in the embrace and use of technologies in the
industry as a whole.

Also, the findings from this study imply that the holistic use of R&A for effective H&S in
the South African construction industry cannot be actualised if the people expected to
use these technologies are not sensitised to understand the benefits inherent in the use of
these technologies. More so, the use of these technologies will not be effective if there are no
well-trained individuals to manage them. Thus, construction organisations in the country
need to create avenues for their staff to be trained and retrained on the use of R&A and
expected safety guidelines needed for effective project delivery. Through this training, the
fear of workers regarding “robots taking over their jobs” can be alienated and the resistance
to using these technologies can be eliminated. H&S regulators can also play a crucial part in
ensuring that favourable regulations that require organisations to use machines for
dangerous works rather than humans are put in place and are followed correctly. More so,

JFM
22,3

472



these H&S regulators hold the duty to ensure that organisations do not just replace workers
with machines but can re-skill and optimise the potential of their workforce to carry out safe
jobs on site.

Conclusion
Based on construction professionals’ perspective, the study concludes that the actualisation
of enhanced H&S, workers’ productivity, better competitive advantage derived through
effective H&S and overall project success derived using R&A cannot be achieved if issues
relating to the industry, human and cost are not addressed. These three groups had the
highest significant impact on the aforementioned H&S-related outcomes. Evidently, with
the current wave of technological advancement, it is no longer about whether technology
should be adopted but how it should be adopted to improve the construction industry’s
service delivery. To this end, this study shows that if construction organisations are to
improve their project delivery and ensure the safety of their workers through the successful
deployment of R&A, factors relating to the nature of the industry, the workforce and cost
must be given thorough considerations. Practically, the findings can help shape construction
organisations’ technology adoption policies, particularly as it relates to R&A. More so, the
study shows the impact of the government on the deployment of R&A. The government can
champion this course through the provision of incentive policies for construction
organisations to be able to adopt these systems in the quest for a safe working environment.
Professional bodies also must sensitise their members regarding the importance of adopting
R&A systems rather than resisting their adoption. The study also offers a theoretical
platform for future studies seeking to explore this area of research, particularly in countries
where such a study has not been conducted.

While this study contributes to the existing body of knowledge, care must be taken in
generalising its findings as certain constraints limited the study. For instance, this study
was conducted in one province. Although Gauteng houses the majority of the construction
organisations and projects in the country, noteworthy contributions might also be derived
from exploring other provinces in the country, and their findings can be used to compare
those of this current study. Also, further studies are recommended in countries where such
research is absent. Other target populations, such as construction organisation owners and
policymakers, different from those adopted in this current study, can be used to get a wider
view of the topic. In terms of the methodology used, future studies can adopt other
approaches like the mixed method to gain further insights into the study. Also, this study
explored the impediments of R&A deployment for effective H&S-related outcomes using
PLS-SEM. Future studies can explore the use of other multivariate data analyses such as
CB-SEM andmultiple regression to test this relationship.
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