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Abstract
Risk parity, also known as equal risk contribution, has recently gained increasing attention as a portfolio
allocation method. However, solving portfolio weights must resort to numerical methods as the analytic
solution is not available. This study improves two existing iterative methods: the cyclical coordinate descent
(CCD) and Newton methods. The authors enhance the CCD method by simplifying the formulation using a
correlation matrix and imposing an additional rescaling step. The authors also suggest an improved initial
guess inspired by the CCD method for the Newton method. Numerical experiments show that the improved
CCD method performs the best and is approximately three times faster than the original CCD method, saving
more than 40% of the iterations.
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1. Introduction
Optimal portfolio selection is an important question in academia and the financial
industry. While there are several traditional allocation methods, such as mean-
variance, minimum variance and equally weighted (1/N) portfolios, the risk parity (or
equal risk contribution) model has recently gained popularity in the asset
management industry. Under the risk parity model, the portfolio weights are
selected in such a way as to equalize the contribution of each asset to the portfolio
volatility. Like the 1/N portfolio, risk parity aims to diversify and overcome the
concentration or sensitivity issues found in the mean-variance or minimum variance
portfolios. However, risk parity is the 1/N portfolio in terms of risk allocation, rather
than capital allocation.

While it is unclear who started using the risk parity strategy in the financial industry,
Maillard et al. (2010) and Qian (2011) are widely cited as references that have introduced
this strategy to academia. There is a growing body of literature on various aspects of the
risk parity allocation method. For example, see Chaves et al. (2011) and Clarke et al. (2013)
for a comparison of risk parity with other asset allocation methods. Kim et al. (2020)
studied the risk parity model where the covariance is estimated from the XGBoost
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algorithm. Kim and Kim (2021) studied the risk parity under the covariance estimation
error. The actual performance of funds implementing this strategy is controversial (see
Corkery et al., 2013, for more details).

Among the academic research topics related to the risk parity model, this study is
primarily concerned with numerical methods to solve risk parity portfolio weights.
Solving the portfolio weight for a given return covariance matrix is challenging
because an analytical solution is not available. One must resort to numerical methods,
and several methods are currently available. Maillard et al. (2010) formulate the risk
parity problem using a sequential quadratic programming (SQP) method. Chaves et al.
(2012) used the Newton method to solve the multidimensional root, taking advantage
of the analytical Jacobian matrix. Although the original Newton method cannot
guarantee the weights to be positive, Spinu (2013) resolved this issue by introducing
damped iteration steps. A competing method is the cyclical coordinate descent (CCD)
algorithm (Griveau-Billion et al., 2013). Because the CCD method uses quadratic
iteration steps, it does not rely on a Jacobian matrix. Bai et al. (2016) proposed the
alternating linearization methods (ALMs) for solving the risk parity weight in a
generalized setting.

According to the literature, the performances of the CCD and Newton methods are
comparable. Griveau-Billion et al. (2013) claimed that the CCD method outperforms the
Newton method when the number of assets is larger than 250. Bouzida (2014) reports that,
while the CCDmethod is faster than Spinu (2013)’s Newtonmethod, it lacks the robustness for
a pool of assets.

This study reviews and improves two algorithms for solving the risk parity
portfolio allocation: the CCD and Newton methods. We improve the CCD method by
simplifying it to a numerically efficient form. Furthermore, we improve the Newton
method by suggesting a new initial guess. Numerical experiments with
randomly generated covariance matrices show that our improved CCD method
outperforms the other methods in terms of speed and stability for a wide range of
portfolio sizes.

The remainder of this paper is organized as follows. Section 2 introduces the risk parity
portfolio and its properties. Section 3 presents the improved root-finding method and Section 4
demonstrates the computational gain of the new methods using numerical experiments.
Finally, Section 5 concludes this paper.

2. Risk parity portfolio
2.1 Notations and conventions
We define several notations and operations regarding vectors and matrices to be used in the
remainder of this study.

(1) For vector x (in boldface), the ith element is denoted by xi or (x)j.

(2) For matrix A (in boldface), the (i, j) element is denoted by Aij or (A)ij.

(3) Vectors are assumed to be column vectors unless otherwise specified.

(4) 1N is the N 3 1 column vector filled with 1s. IN is an N 3 N identity matrix.

(5) The operations, * and /, between vectors x and y are defined to be the element-wise
multiplication and division, respectively:

x * y ¼ ðx1y1; . . . ; xNyN ÞT and y=x ¼ ðy1=x1; . . . ; yN=xN ÞT

Iterative
methods for
solving risk

parity

115



(1) The operation * between a (column) vector x and matrix A is defined as

x *A ¼ A *x ¼
x1A11 � � � x1A1N

..

.
1 ..

.

xNAN1 � � � xNANN

0
B@

1
CA

2.2 Condition for risk parity portfolio
Let σ and C be the standard deviation vector and covariance matrix, respectively, of the
return on N assets in a unit time period. The covariance C is symmetric and positive semi-
definite, and its diagonal elements are related to σ by Cii ¼ σ2i . The portfolio of N assets
invested with weight w has return volatility:

VðwÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wTCw

p
:

From Euler’s homogeneous function theorem, volatility V(w) can be decomposed into the
sum of the contributions of each asset as

VðwÞ ¼
X
i

viðwÞ where viðwÞ ¼ wi

vV ðwÞ
vwi

¼ wiðCwÞi
V ðwÞ :

Let bi, such that
P

ibi 5 1 and bi > 0, be the relative contributions of the ith asset to portfolio
volatility. Then, we aim to determine the weight w that satisfies

viðwÞ ¼ V ðwÞ bi for all i:

The risk parity portfolio is a special case of the problem above, where the risk contributions
are equally divided among the assets:

bi ¼ 1=N for all i:

Although we deal exclusively with the risk parity case, we use bi to avoid losing generality.
Therefore, the risk parity portfolio weight must satisfy the condition

wiðCwÞi ¼ V 2ðwÞ bi ¼
�
wTCw

�
bi subject to wi ≥ 0: (1)

Here, we impose wi ≥ 0 because we are concerned with a long-only portfolio. We refer to Bai
et al. (2016) for the risk parity with an unconstrained portfolio.

The solution is not unique because of the homogeneous property of the condition. Ifw is a
solution, then μw for μ > 0 is also a solution. The degrees of freedom can be fixed by settingP

kwk 5 1. The normalized weight �w is obtained by

�w ¼ w

λ
for λ ¼

X
k

wk:

2.3 Risk parity condition with correlation matrix
The condition for the risk parity portfolio can be equivalently stated in terms of the
correlation matrix (Spinu, 2013). Let R be the correlation matrix whose element is computed
from the covariance matrix C:
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Rij ¼ Cij

σiσj

¼ Cijffiffiffiffiffiffiffiffiffiffi
CiiCjj

p Rii ¼ 1ð Þ: (2)

Then, the risk parity condition with the correlation matrix is given by

wiðRwÞi ¼
�
wTRw

�
bi subject to wi ≥ 0: (3)

If w is the solution to the correlation condition in Eq. (3), then w/σ is the solution to the
covariance condition in Eq. (1).

Moreover, Spinu (2013) removes the degree of freedom inw by taking advantage of the fact
that wTRw is scalar although the value is unknown. Without loss of generality, by setting

wTRw ¼ 1; (4)

We arrive at the simple risk parity condition:

wiðRwÞi ¼ bi subject to wi ≥ 0: (5)

Once we find the unique rootw in Eq. (5), we can obtain the normalized portfolio weight �w by

�wi ¼ wi

λσi
for λ ¼

X
k

wk

σk

:

Note that Eq. (4) is consistent with Eq. (5) because it can be obtained by summing Eq. (5)
for all i,

wTRw ¼
X
i

wiðRwÞi ¼
X
i

bi ¼ 1: (6)

We will use both Eqs (4) and (5) in Section 3.1 to improve the original CCD method.

2.4 A special case solution and initial guess for iterative methods
A general solution to the risk parity portfolio is not analytically available. However, an
analytical solution exists for a special case in the correlation matrix. When the correlation
matrix has the same row sum,X

j
Rij ¼ r for all i and some constant r;

the constant vector, w 5 1N, satisfies Eq. (3), where bi 5 1/N. Note that a special case is
typically achieved when the assets have a uniform correlation, that is, Rij 5 ρ for i ≠ j and
some ρ. This is also the case forN5 2; thus,w5 1N is the general solution for allocating the
two assets. In terms of the simple condition, Eq. (5), wi ¼ 1=

ffiffiffiffiffiffi
Nr

p
is the corresponding

solution for the special case. The actual portfolio weights satisfying the original condition in
Eq. (1) are given by weights that are inversely proportional to the standard deviation:

�wi ¼ 1=σiP
k1
�
σk

: (7)

Even in general cases where the row sums ofR are different, the special case solution serves
as a first-order approximation. Chaves et al. (2012) and Griveau-Billion et al. (2013) use Eq. (7)
as the initial guess for the iterative methods. Spinu (2013, Theorem 3.4) further improves the
initial guess for the simple condition, wi ¼ 1=

ffiffiffiffiffiffi
Nr

p
, to
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wi ¼ 1
. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

j;k
Rjk

q
for all i: (8)

Note that
P

j;kRjk ¼ 1T
N R 1N > 0 if R is positive definite.

3. Methods for solving risk parity
This section reviews and improves the CCD and Newton methods. As stated in Section 1,
there exist other methods, such as the SQP algorithm (Maillard et al., 2010) and ALM (Bai
et al., 2016). Although such methods may handle risk parity in a more generalized setting,
they have been reported to be slower than the CCD and Newton methods in handling the
standard long-only risk parity model. Therefore, we focus on these two methods.

3.1 The improved CCD method
The original CCD method (Griveau-Billion et al., 2013) aims to solve

wiðCwÞi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wTCw

p
bi ¼ V ðwÞ bi for all i: (9)

Note that this condition is different from the covariance condition in Eq. (1) as V2(w) is
replaced with V(w). Although the intention is not explicitly stated in the reference, the
purpose of the replacement seems to break the homogeneous property ofw; ifw is a root, μw
for μ>0 is no longer a solution except for μ5 1. Therefore, CCD iterations eventually lead to a
unique root.

The equation for the ith component can be written in the quadratic form of wi:

Ciiw
2
i þ

X
j≠i
Cijwj

� �
wi � VðwÞ bi ¼ 0;

and we use the root formula as an iteration step for wi (Griveau-Billion et al., 2013, Eq. 4):

wi ←

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2i þ CiiV ðwÞ bi

p � ai

Cii

for ai ¼ 1

2

X
j≠i

Cijwj ¼ ðCwÞi � Ciiwi

2
: (10)

We select the positive one among the two roots of the quadratic equation to ensure thatwi≥ 0.
In the CCDmethod, one iteration involves cyclically updatingwi for i5 1, . . .,N. Updatingwi,
therefore, uses wj for 1 ≤ j < i, which was previously updated in the same iteration step.
Therefore, the CCD method is known to be more effective than batch coordinate descent.
Griveau-Billion et al. (2013) starts the iterations with the initial guess in Eq. (7).

We improve the original CCD method in two ways. First, we formulate the CCD with the
simple condition in Eq. (5). The equation for the ith component in Eq. (5) can be written in the
simpler quadratic form of wi:

w2
i þ

X
j≠i
Rijwj

� �
wi � bi ¼ 0:

The corresponding iteration step is simplified to

wi ←

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2i þ bi

q
� ai for ai ¼ 1

2

X
j≠i

Rijwj ¼ ðRwÞi � wi

2
: (11)

This new iteration has two advantages because V(w) disappears in the new CCD method.
One obvious advantage is the reduced computation time for V(w). The calculation can be
time consuming in the original CCD method because V(w) requires O(N2) operations and
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must be updated when wi is updated. The other advantage is not obvious but is more
important. In the original CCD, the new wi on the left-hand side depends on the old wi

through V(w) on the right-hand side of Eq. (10). The updated wi is not the true root of Eq.
(10). However, in the new CCDmethod, the newwi is the exact root of Eq. (11) because the old
wi does not appear on the right-hand side. Therefore, we expect the convergence to be faster
in the improved CCD iteration.

Second, we rescale w by

w ←

wffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wTRw

p : (12)

at the end of each iteration to ensure Eq. (4). This rescaling step is expected to make the
convergence faster by adjusting w on average. The new CCD method uses a generalized
initial guess, Eq. (8), from Spinu (2013). In fact, this can be understood as the result of
rescaling from an equal weight w 5 1N.

Finally, we summarize the improved CCD algorithm in Algorithm 1.

3.2 Newton method with an improved initial guess
Chaves et al. (2012) and Spinu (2013) use themultidimensional Newtonmethod to find the risk
parity portfolio. From Eq. (5), the objective function is set as

F ðwÞ ¼ Rw � b

w
or FiðwÞ ¼

X
j

Rijwj � bi

wi

:

Then, the root of F(w)5 0 is the risk parity weight. The Jacobian of F(w) is readily available
as follows:

∇F ðwÞ ¼ R þ I N *
b

w2
or

vFiðwÞ
vwj

¼ Rij þ δij
bi

w2
i

;

where δij is the Kronecker delta. Therefore, the iteration under the Newtonmethod is given by

w ← w þ Δw for Δw ¼ − ∇F ðwÞ½ �−1F ðwÞ (13)

However, unlike the CCD method, the Newton method iteration cannot guarantee that the
converged weights are positive. Spinu (2013) overcomes the problem with the damped
Newton method,

w ← w þ ηΔw
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where η ≤ 1 is a function ofw and Δw. Although we do not discuss the exact procedure, the
basic idea is to use η < 1 in the early stage whenw is away from the solution to ensure wi > 0
and η5 1 later whenw is close enough to the solution for faster convergence. Spinu (2013) use
Eq. (8) for the initial estimation of the Newton method.

Our enhancement of the Newton method is based on the initial estimation. Using an
initial guess closer to the solution, we aim to use η 5 1 throughout the iteration, without
converging to a negative weight. If this can be achieved, one can use generic Newton
method routines available in many numerical analysis packages that are highly optimized
for the system.

We improve the original initial guess, Eq. (8), by updating it through the one-step CCD
iteration, Eq. (11). However, instead of a slow cyclical update, we use the batch update, where
the old wi values are used on the right-hand side:

wi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2i þ bi

q
� ai for ai ¼

P
j≠iRij

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

j;kRjk

q :

This new initial guess is more efficiently computed in the vectorized form,

w ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a *a þ b

p
� a for a ¼ R1N � 1Nð Þ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1T
NR1N

q : (14)

The numerical experiments in the next section demonstrate that our new initial guess is
effective such that the method converges to a positive weight for almost all randomly
generated test cases.

4. Numerical experiment
We tested the numerical performance of the improved algorithms [1]. For comparison, we
implemented the following three algorithms:

(1) The original CCD method, Eq (10).

(2) The improved CCD method, Algorithm 1.

(3) The Newton method, Eq (13), with the improved initial guess, Eq (14).

All methods were implemented in Python. For the Newton method, we used the generic root
solver scipy.optimize.root function [2] in the Python SciPy package. For all methods, we
consistently use the error tolerance « 5 10–6.

In the test, we solved the risk parity portfolio for the correlation matrices randomly
generated with the scipy.stats.random_correlation class [3] using the Python SciPy package.
The routine takes nonnegative eigenvalues as inputs. Subsequently, it uses the algorithm of
Davies and Higham (2000) to generate a random correlation matrix. We used two methods to
generate eigenvalues to test both positive definite and positive semi-definite correlation
matrices:

(1) Test 1: all eigenvalues sampled from independent uniform random variables between
0 and 1.

(2) Test 2: 80% of eigenvalues sampled from independent uniform random variables
between 0 and 1, and 20% set to zero.

While prior studies (Griveau-Billion et al., 2013; Bai et al., 2016) typically test only positive
definite case (i.e. Test 1), we think that the positive semi-definite case (i.e. Test 2) is also
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Note(s): The values are the averages of 200 tests for each N

Figure 1.
The computation time
in linear (top) and log-
log scales (middle), and

the number of
iterations (bottom) for
randomly generated

positive definite
correlation matrices

(Test 1)
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Note(s): The values are the averages of 200 tests for each N

Figure 2.
The computation time
in linear (top) and log-
log scales (middle), and
the number of
iterations (bottom) for
randomly generated
positive semi-definite
correlation matrices
(Test 2)
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important because it is often encountered in practice when the covariance is estimated
from a time series. When the covariance between N assets is estimated from M time
periods with M < N, the estimated covariance matrix has at most M strictly positive
eigenvalues.

Figure 1 shows the computation time and number of iterations for Test 1. Several
observations are in order. First, our improved CCDmethod performs the best in terms of both
CPU time and iterations. Although the Newton method is marginally faster than the
improved CCD method for N ≤ 150, the required computation time is very short anyway for
those small N.

Second, our improved CCD method is three to four times faster than the original
CCD, saving approximately 6.5 iterations on average. Although not reported in the
figure, we also ran the improved CCD method without the rescaling step in Eq. (12) to
measure the gain from rescaling. The rescaling step saves about 1.5 iterations on
average.

Third, the Newton method successfully converges to positive weights in all cases.
This confirms that the damped Newton method is unnecessary with an improved initial
guess, Eq. (14). Nevertheless, the Newton method is inferior to the improved CCD
method. The log-log plot clearly shows that the computation time scales as O(N3) for the
Newton method, but scales as O(N) for both CCD methods. The O(N3) scale of the
Newton method appears to be related to the computation of the Jacobian inversion,

∇F ðwÞ½ �−1. In the optimized multidimensional Newton method, inversion is not
computed in every iteration. In our test, inversion is typically computed only once, that
is, at the initial guess. However, Jacobian inversion still slows the Newton method for a
large N.

Figure 2 shows the results for Test 2. While the relative performance between
the three methods is similar, the overall computation becomes slower than Test 1,
requiring more iterations. This indicates the difficulty of solving the risk parity
portfolio against the positive semi-definite covariance matrices. Moreover, the Newton
method shows instability. It fails in convergence for two cases and converges to
negative weights for 13 cases. Conversely, the CCD methods stably converge to positive
weights for all cases.

We believe from the numerical tests that our improved CCD method is a fast and stable
method for solving risk parity weights.

5. Conclusion
With the growing popularity of the risk parity model, several numerical methods
have been proposed to solve portfolio allocation. We present improvements to two
existing methods based on iterations: the CCD and Newton methods. Numerical
experiments show that the improved CCD method performs the best in terms of speed
and stability.

Notes

1. The tests are performed in Python on a computer running theWindows 10 operating systemwith an
Intel Core i5–6500 (3.2 GHz) CPU.

2. See https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.root.html. We used
method5“hybr” (default) option.

3. See https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.random_correlation.html.
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