The effect of uncertainty on the

information content of term

spread and its components

Jun Sik Kim Division of International Trade, Incheon National University, Incheon, Republic of Korea

JDQS 29,1

Received 21 August 2020 Revised 5 October 2020 2 November 2020 Accepted 3 November 2020

Abstract

Purpose – This paper aims to investigate the impact of uncertainty on the predictive power of term spread and its components for future stock market returns and economic activity in Korea and the USA. This paper finds that the stock market's expected excess return and growth of economic activity are positively related to the risk-neutral expectation, one of the term spread's components, particularly during high uncertainty periods. These findings are consistent with the importance of the monetary policy by the central bank in a high uncertainty environment created by unexpected shocks. The results are robust to alternate definitions of high uncertainty periods.

Keywords Term structure of interest rate, Economic policy uncertainty, Monetary and interest rate policies, Stock market, Economic activity

Paper type Research paper

1. Introduction

The Fed's Message: The Money-Printing Presses Are Fired Up and Ready to Go

[...] It's really two distinct crises the Fed is trying to solve, with overlapping tools. One is an already-underway crisis in which financial markets are breaking down, failing in some of the same ways they did in the 2008 financial crisis – and thus threatening to make the economic crisis worse. The other is the threat of widespread business failures that could create mass bankruptcies, leaving millions of Americans jobless even once the virus is contained. The Fed's new open-ended quantitative easing – signaling it will buy Treasury bonds and mortgage-related securities in whatever quantities are needed – is aimed at the first goal, of making financial markets function more like usual. [...] Irwin (2020, 3.23, The New York Times)

Recently, the COVID-19 pandemic has had a negative influence on the global economy, and the uncertainty about the continued spread of the coronavirus has made people fear for their lives and economic activities. To alleviate the adverse impact of the COVID-19 pandemic, many central banks have introduced new monetary policy measures. For example, the Federal Reserve has lent to support households, employers, financial markets and state and

Journal of Derivatives and Quantitative Studies: 선물연구 Vol. 29 No. 1, 2021 pp. 2-28 Emerald Publishing Limited e-ISSN: 2713-6647 p-ISSN: 1229-988X DOI 10.1108/IDQS-08-2020-0021

JEL classification – E37, E44, G12, G14, G17

This work was supported by the Incheon National University Research Grant in 2018.

[©] Jun Sik Kim. Published in *Journal of Derivatives and Quantitative Studies*: $\Delta \Xi \mathcal{O} \rightarrow$. Published by Emerald Publishing Limited. This article is published under the Creative Commons Attribution (CC BY 4.0) licence. Anyone may reproduce, distribute, translate and create derivative works of this article (for both commercial and non-commercial purposes), subject to full attribution to the original publication and authors. The full terms of this licence maybe seen at http://creativecommons.org/ licences/by/4.0/legalcode

local government up to \$2.3tn and has cut the target for federal funds rate (Cheng *et al.*, 2020). In addition, the European Central Bank announced to buy an additional $\in 120$ bn under the Asset Purchase Program on March 12, 2020 and has offered forward guidance on the future path of its key interest rate (Belz *et al.*, 2020). These represent clear examples of how the central banks establish interest rate policy, suggest forward guidance and supply the liquidity through quantitative easing based on securities purchases or asset purchases to support their respective economies.

Given that the central banks use the monetary and interest policies to reduce the impact of unexpected events on the economy, the term spread – which reflects the market expectations with regard to these monetary and interest policies – has important information about the future state of financial markets and economy, especially during high uncertainty periods. Previous literature on the term spread reveals the informativeness of the term spread on future economic state [1] or stock markets [2]. Estrella and Hardouvelis (1991) confirm that a positive slope of the yield curve is associated with a future growth in real economic activity. Plosser and Rouwenhorst (1994) find empirical evidence that the long end of the term structure has information about future growth of industrial production beyond expectations about future monetary policy. Furthermore, Chen (1991) confirms that the term spread is an important determinant of future stock market returns, and Hjalmarsson (2010) shows that the term spread is a robust predictor of stock returns in developed markets.

For the Korean economy and stock markets, Ji and Park (2002) find that the information on the term spread is useful in predicting the future business cycle. Kim *et al.* (2018) show that the term spread in the USA has predictive power for future Korean real economic activity. Yoon (2018) finds empirical evidence that the term spread predicts the growth of the industrial production index, and the predictive power of the term spread in the USA. In addition, Kim and Yoon (2020) confirm the profitability of the strategy based on the term spread, the term premium and the risk-neutral expectation in Korea and the USA.

In this study, we investigate the effect of uncertainty on the predictive power of the term spread and its components (i.e. the term premium and risk-neutral expectation) for future stock market returns and economic activity in Korea and the USA. Uncertainty can gauge the reaction of the constituents in the financial markets and the economy to unexpected shocks. Baker Bloom, and Davis (2016) show that policy uncertainty is associated with stock return volatility, reduced investment and employment in policysensitive sectors and innovations in policy uncertainty foreshadow decrements in investment, output and employment in the USA and 12 major economies. Thus, when the level of uncertainty increases, the government and central bank execute the policies to increase investment, stabilize the financial markets and minimize any adverse effect on the unemployment rate. The monetary and interest rate policies are included in these policies of the government and central bank. As the central bank's use of the monetary and interest rate policies is intended to lessen the negative effect of unexpected shocks on the financial markets and the economy, we conjecture that the predictive power of the term spread, as well as its components, are varying depending on the level of uncertainty. Rosenberg and Maurer (2008) suggest that the risk-neutral expectation among the term spread's components is related with the monetary policy cycle, and that the role of the risk-neutral expectation in the prediction of future stock market returns and economic activity is more important with the emphasis of the central banks' monetary and interest rate policies than without urgent monetary and interest rate

Information content

policies of the central banks. Thus, we expect that the predictive power of the riskneutral expectation for future stock market returns and economic activity would be significant during high uncertainty periods.

We find that the risk-neutral expectation has a significant predictive power for future stock market returns and economic activity during high uncertainty periods in Korea and the USA. When the policy-related economic uncertainty is increasing, the risk-neutral expectation is positively and significantly related with the future stock market returns and the growth in future economic activity. On the other hand, there is no significant pattern in the predictive power of the term spread and the term premium depending on varying levels of uncertainty in Korea and the USA. These results are robust to alternate measures for the level of uncertainty.

This study contributes to the financial literature by providing evidence that uncertainty plays a key role in the usefulness of the information in the bond markets for the prediction of movements in the stock markets and economic activity. Some studies document the relation between the term spread's components and uncertainty. Rosenberg and Maurer (2008) expect the term premium to decline as investor uncertainty about long-term productivity improves and as inflation expectations become more stable. On the other hand, Bekaert *et al.* (2009) suggest that the risk-neutral expectation implies the link between uncertainty and term spread. To the best of our knowledge, this study is among the first to document the role of uncertainty in the predictive power of the term spread and its components. In this respect, it sheds an important light on the information in the term spread and its components concerning future stock market returns and economic activity based on the linkage between the monetary and interest rate policies and the term structure of interest rate.

The remainder of the paper is organized as follows. Section 2 describes the term spread, its components and uncertainty measure. Section 3 describes the data and empirical findings. Section 4 discusses our robustness check. Finally, Section 5 provides concluding remarks.

2. Term spread, its components and uncertainty

2.1 Term spread and its components

To decompose the term spread into its components, the term premium and the expectation on future short-term interest rates (risk-neutral expectation), we use the model of Adrian *et al.* (2013) (ACM model hereafter). Adrian *et al.* (2013) estimate the term premium using a three-step linear regression approach, and show that the ACM model outperforms the Cochrane and Piazzesi (2009) four-factor specification in out-of-sample exercises.

Following Adrian *et al.* (2013), we find five pricing factors as state variables to explain the term structure based on the principal component analysis. Assume the dynamics of state variables X_t (5 × 1 vector) below, we decompose the state variables into the predictable component and factor innovation:

$$X_{t+1} = \mu + \phi X_t + \nu_{t+1}, \, \nu_{t+1} | \{X_s\}_{s=0}^t \sim N(0, \Sigma), \tag{1}$$

where $\{X_s\}_{s=0}^t$ denotes the history of state variables. $rx_{t+1}^{(n-1)}$ is the log excess holding return of a bond with maturity $n, P^{(n)}$:

$$rx_{t+1}^{(n-1)} = \ln P_{t+1}^{(n-1)} - \ln P_t^{(n)} - r_t,$$
(2)

JDQS 29,1

4

where $P_t^{(n)}$ denotes the zero coupon Treasury bond price with maturity *n* at time *t* and $r_t = \ln P_t^{(1)}$ is the continuous compounded risk-free rate. To estimate the exposure of predictable component and factor innovation, we regress excess returns on a constant, contemporaneous pricing factor innovations and lagged pricing factors:

$$rx = \alpha I'_T + \beta' \hat{V} + \gamma X_- + E, \tag{3}$$

where *rx* is an *N* (number of maturity) × *T* (number of state variables' observations) matrix of excess bond returns, I_T is a $T \times 1$ vector of ones, \hat{V} is a matrix of factor innovations (5 × *N* matrix), $X_- = [X_0X_1 \cdots X_{T-1}]$, *E* is the $N \times T$ residual matrix and $\beta = \left[\beta^{(1)}\beta^{(2)}\cdots\beta^{(N)}\right](5\times N \text{ matrix})$. With an estimator of the state variables variance-covariance matrix[^] = $\hat{V}\hat{V}'/T$, an estimator of the residuals variance $\hat{\sigma}^2 = tr\left(\hat{E}\hat{E}'\right)/NT$ and $B^* = \left[vec\left(\beta^{(1)}\beta^{(1)'}\right)\cdots vec\left(\beta^{(N)}\beta^{(N)'}\right)\right]'(N\times 5^2 \text{ matrix})$, we estimate the price of risk parameters λ_0 and λ_1 , which are related to the expected return of log excess holding period bond returns, based on cross-sectional regression [3]. Based on the exponentially affine model, we can express the logarithm of the bond prices as the linear equation of the state variables:

$$\ln P_t^{(n)} = A_n + B'_n X_t + u_t^{(n)}, \tag{4}$$

where A_n and B_n are calculated based on λ_0 and λ_1 , respectively. With the estimated λ_0 and λ_1 , we can calculate the term spread. Additionally, the risk-neutral expectation of the term spread can be calculated by setting λ_0 and λ_1 to zero.

Following Rosenberg and Maurer (2008), the relation between the term spread and its components and the factors contained in each component of the term spread are as follows:

Term Spread = Term Premium + Risk-neutral Expectation

Term Premium = Inflation Risk Premium + Real Rate Risk Premium

Risk-neutral Expectation = Inflation Expectation + Real Rate Expectation

The risk-neutral expectation measures the sum of the difference in expected average inflation over long and short horizons and the difference in expected average real rates over long and short horizons. Additionally, the term premium is associated with interest rate risk and risk aversion [4].

Previous literature investigates the information on each component of the term spread. Ang *et al.* (2006) suggest that to predict gross domestic product (GDP) growth, the riskneural expectation contained in the term spread is contaminated by the term premium, and that the term premium blurs the GDP forecasts. Rosenberg and Maurer (2008) provide empirical evidence that the risk-neutral expectation is a leading indicator of recession, while the term premium is not. In addition, Aye *et al.* (2019) find that the probit model incorporating the risk-neutral expectation and economic policy uncertainty (EPU) is the best forecasting model for recessions of South Africa in out-of-sample analysis. On the other hand, Hamilton and Kim (2002) show that the term premium and the risk-neutral expectation are relevant for predicting real GDP growth, but their respective contributions

5

Information content JDQS 29.1

6

differ depending on the predictive horizon. Rudebusch *et al.* (2007) suggest that a decline in the term premium has been associated with the shock to real economic activity. Based on the term premium and risk-neutral expectation estimated by the ACM model, we analyze the predictive power of the term spread and its components for future stock market returns and economic activity depending on the level of uncertainty.

2.2 Economic policy uncertainty

To measure uncertainty induced by unexpected shocks, we use the EPU developed by Baker et al. (2016)^{[5],[6]}. Previous literature on uncertainty uses EPU as the measure of policy- or economic-related uncertainty. Gulen and Ion (2016) find a strong negative relationship between firm-level capital investment and the level of EPU and Mueller et al. (2017) reveal that the profitability of the trading strategy using exchange rates increases with respect to the EPU as a proxy for uncertainty about monetary policy. Additionally, Sharif et al. (2020) analyze the connectedness between the recent spread of COVID-19, oil price volatility shock, stock market, geopolitical risk and EPU of the USA to measure the effect of COVID-19 on the US economy, and Baker et al. (2020) explain the unprecedented stock market reaction to the COVID-19 pandemic based on the EPU. For Korea economy and Korean stock markets, Kim and Lee (2018) analyze the effect of the Korean EPU on the macroeconomic and financial variables-based VAR model. In addition, Kim (2018) compares the predictive power of uncertainty implied by the options market and EPU for future stock market returns in Korea and the USA. Based on the EPU of the USA and Korea, we investigate the varying predictive power of the term spread and its components for future stock market returns and economic activity in the USA and Korea depending on the level of uncertainty.

3. Data and empirical analysis

We analyze the explanatory power of the term spread, term premium and risk-neutral expectation for future stock market returns and economic activity with the EPU in Korea and the USA. First, we describe the data for the term spread and its components, stock market returns, economic activity and the EPU in Korea and the USA. Second, we check the movements of the term spread, its components, stock market returns and economic activity with varying EPU. After that, we conduct the predictive regressions to evaluate the effect of the EPU on the predictive power of the term spread and its components for future stock market returns and economic activity.

3.1 Data description

Our data set consists of the interest rate variables, stock market returns, economic variables and the EPU. Our data set covers the period from January 2004 to April 2018, and the frequency of the data set is monthly. We use the difference between interest rates of 10-year and 1-year treasury bonds as the term spread [7]. Based on the ACM model, we decompose the term spread into the term premium and risk-neutral expectation. To construct the term spread, term premium and the risk-neutral expectation in Korea, the daily data of the treasury bonds' interest rate is provided by KIS Pricing [8]. For US interest rate variables, we obtain the term spread, the term premium and the risk-neutral expectation constructed based on ACM model from Federal Reserve Bank of New York [9].

We use the KOSPI200 index and the S&P500 indices to measure Korea and US stock market returns, respectively. The monthly data of the KOSPI200 and the S&P500 indices are obtained from Korea Exchange and Chicago Board Options Exchange, respectively. We use the growth of industrial production index and coincident economic activity index to measure economic activity. For the Korean economic activity, we obtain the industrial

production index and coincident economic activity index from the Korean Statistical Information Service. In addition, the industrial production index and coincident economic activity index of the USA are provided by the Federal Reserve Bank of St. Louis [10]. EPU is taken from the EPU website [11].

Table 1 presents the summary statistics of the stock market returns and economic variables in Korea and the USA. The average KOSPI200 index returns is 59.94 bps and the average S&P500 index returns is 50.70 bps. As these are monthly values, they translate to an annualized return of 7.19% and 6.08%, respectively. The standard deviation of KOSPI200 index returns are larger than the standard deviation of S&P500 index returns. In addition, the differences between the maximum and minimum of KOSPI200 index returns are 36.37% and 28.79%, respectively. These values suggest that Korean stock market has a higher expected return and volatility than the US stock market over our sample period. The S&P500 index returns are more negatively skewed than the KOSPI200 index returns, and the distributions of the two stock market returns are leptokurtic.

While the average growth of the industrial production index in Korea is larger than that of the USA, the average growth of coincident economic activity index in Korea is smaller than that of the USA. As the coincident economic activity index is constructed based on production, consumption and employment and, as the industrial production index only takes into account of the production side, the two proxies for economic activity reveal different aspects of the economic activity, which may, in turn, account for such patterns between the two countries. The differences between the maximum and minimum of the growth of industrial production index and coincident economic activity index and the standard deviations of two economic variables in Korea are larger than those in the USA. These patterns indicate that the economic activity in the USA is more stable than that in Korea. The Jarque-Bera statistics of all variables in Table 1 are very high and significant at the 1% level, indicating non-normality in the distributions of all variables. In addition, the statistics of the Augmented Dickey-Fuller test for all variables in Table 1 confirm the rejection for the null hypothesis that a unit root is present in a time-series of the variable.

Table 2 reports the summary statistics of the term spread, its components and EPU in Korea and the USA. The averages of the term spread and its components in the USA are larger than those in Korea. In addition, the term spread and its components in the USA are more volatile than those in Korea. However, the EPU in Korea has a larger average and standard deviation than the EPU in the USA, Korea is more uncertain by political and financial events than the USA [12].

The correlations among stock market returns, proxies for economic activity, term spread and its components and EPU in Korea and the USA are reported in Table 3, respectively. As the growth of the industrial production index and the growth of coincident economic activity index are different but related measures of economic activity, it is not surprising that the correlations between two variables in both Korea and the USA are positive and significant at the 1% level.

Furthermore, in Korea, the stock market returns are significantly positively correlated with the growth of industrial production index, term spread and risk-neutral expectation. While the EPU is significantly positively correlated with the term premium, the EPU is significantly negatively correlated with the risk-neutral expectation. In the USA, the stock market returns are significantly positively related with the growth of the coincident economic activity index and significantly negatively related with the term premium. Interestingly, EPU is significantly positively correlated with the term spread and riskneutral expectation. Thus, while the risk-neutral expectation is significantly negatively Information content

7

JDQS 29,1 8	US growth of coincident economic activity index	0.1845 0.2267 0.0051 -0.0054 0.0018 -2.0522 7.5751 -2.0522 -2.5666***	SPI200 index returns and n index is log change in activity action economic activity variable $x_0, x_t = \alpha + \beta x_t$, ce at the 5 and 1% levels,
	US growth of industrial production index	$\begin{array}{c} 0.0705\\ 0.1565\\ 0.1565\\ 0.0151\\ -0.0443\\ 0.0073\\ -2.1001\\ 12.5416\\ 778.8994^{****}\\ -10.0142^{****}\end{array}$	orea and the USA. KOS of industrial production seasonally adjusted coin in the regression of each *** represent significan.
	S&P500 index returns	0.5070 1.0527 0.1023 -0.1856 0.0390 -1.0420 6.2937 108.8728**** -10.9864****	mic variables of K pectively. Growth ex is log change in s a <i>t</i> -statistic on β procedure. ** and 018
	KOR growth of coincident economic activity index	-0.0070 0.0000 0.0110 -0.0121 0.0028 -0.2207 5.9827 65.1541**** -8.6327****	market returns and econo of Korea and the USA, res ident economic activity ind mented Dickey-Fuller) test i sing Ng and Perron (1995)'s ers February 2004 to May 2
	KOR growth of industrial production index	0.2469 0.2114 0.0496 -0.0455 0.0138 0.0779 4.6120 18.7968**** -17.5178****	tistics of monthly stock in stock market index (n index. Growth of coinc ormality and ADF (Aug order p is selected by u 1. The sample period cov
	KOSPI200 index returns	0.5994 0.7208 0.1285 0.1285 -0.2352 0.0514 -0.6684 5.4986 57.5494***	orts summary sta s are log change : dustrial productio tistic verifies nonn $_{1}\Delta v_{ij+1} + \varepsilon_{i}$. Lag bles are monthlized
Table 1. Summary statistics of stock market returns and economic variables		Mean (%) Median (%) Max Min SD Skewness Kurtosis Jarque-Bera Statistic ADF test	Notes: The table rep. S&P500 index returns seasonally adjusted in index. Jarque-Bera Stat $1 + \delta_1 \Delta x_{i,1} + \ldots + \delta_p$ respectively. All varial

Information content	• USA. The using ACM y and ADF b is selected tary 2004 to	119.8335 108.8932 283.6656 44.7828 46.2130 0.9112 3.5897 26.2931**** -1.8728*	US EPU
9	y (EPU) of Korea and the spectation) are calculated atistic verifies nonnormalit $p_{p,1}\Delta x_{p,p+1} + \varepsilon_{p}$. Lag order i sample period covers Jam	0.9665 1.2700 1.6291 -0.5622 0.6307 -1.2967 3.3377 49.0150**** 49.0150****	US ACM risk-neutral expectation (10y-1y)
	oolicy uncertaint (Risk-neutral est) Jarque-Bera st: $\delta_1 \Delta x_{i,1} + \dots + \delta$ respectively. The	$\begin{array}{c} 0.8208\\ 0.5881\\ 0.5881\\ 2.9497\\ -0.3305\\ 0.7263\\ 0.4487\\ 2.0698\\ 11.9722^{****}\\ -1.8971^{*} \end{array}$	US ACM term premium (10y-1y)
	id economic p interest rates cer <i>et al.</i> (2016 $\alpha + \beta x_{t1} + \delta$ ad 1% levels, i	$\begin{array}{c} 1.7873\\ 1.8141\\ 3.7168\\ -0.3259\\ 1.0864\\ -0.1559\\ 2.1069\\ 6.4127^{**}\\ -1.4766\end{array}$	US term spread (10y-1y)
	components an ure short-term oposed by Bak ariable $x_t, x_t =$ e at the 10, 5 ar	130.0449 119.7630 391.7984 37.3066 59.8400 1.7354 7.5267 233.1793**** -2.1970**	KOR EPU
	onthly term spread, its of the expectation on fut blicy uncertainty index pr n the regression of each v **** represent significanc	0.0657 0.1775 0.9327 -1.1447 0.5892 -0.4459 2.0725 11.8661****	KOR ACM risk-neutral expectation (10y-1y)
	r statistics of m rm premiums ar y is economic pc f-statistic on β i cedure. *, ** and	$\begin{array}{c} 0.8024\\ 0.8975\\ 2.0799\\ -0.6458\\ 0.6510\\ -0.3122\\ 1.9930\\ 10.0619***\\ -1.4946\end{array}$	KOR ACM term premium (10y-1y)
	ports summary spreads, the ter licy uncertaint fuller) test is a <i>i</i> on (1995)'s proc	0.8680 0.7601 2.8231 -0.0911 0.6221 1.2977 59.8873**** -1.2794	KOR term spread (10y-1y)
Table 2.Summary statisticsof term spread, itscomponents andeconomic policyuncertainty	Notes: The table rel 10 year –1 year term s method. Economic po (Augmented Dickey-F by using Ng and Perr April 2018	Mean Median Max Max Min SD Skewness Kurtosis Larque-Bera Statistic ADF test	

US_RN	0.4344*** (6.289) nd growth s economic
US_TP	0.2784*** (3.779) 0.0749 0.0749 (0.980) 1 Korea and 0 indicatea 1 indicatea
ST_SU	0.8301*** (19.412) 0.726\$*** (15.568) 0.3023*** (4.135) 0.3023*** (4.135) 0.3023*** (4.135) 0.3023***
US_C	-0.3201**** (-4.406) (-0.4711*** (-0.4711*** (-0.063) (-0.033) (-0.117) (-0.117) (-0.117) (-2.365) (-2.365) (-2.365) at the 10, 5 and at the 10, 5 and
1 ⁻ Sn	0.4087**** (5.839) -0.0245 (-0.320) -0.0433 (-0.320) -0.0433 (-0.320) -0.0433 (-0.565) (0.100) -0.0764 (0.100) -0.0541 (-0.706) ead, its comp and ris mium and ris significance:
S_SU	0.0870 (1.138) 0.1531*** (2.019) -0.0510 (-0.666) -0.1329* (-1.748) (-1.748) (-1.748) (-1.748) (-1.748) (-1.748) (-1.748) (-1.748) (-1.748) (-1.235) -0.0180 (-0.235) *** represent
	US_I US_C US_TS US_TP US_RN * US_EPU * US_EPU * uS_EPU * us_ePU
KOR_RN	0.2653*** (3.588) (3.588) (3.581) (3.588) (3.5
KOR_TP	-0.5005**** -0.5005**** -0.2094**** (-2.792) market return narket return orted in pare
KOR_TS	0.5724*** (9.103) (9.103) (9.103) (9.103) (9.103) (1.420) (0.
KOR_C	* 0.1139 0.1139 (1.495) 0.0309 (0.403) 0.0309 (0.403) 0.0350 (-0.435) (-0.456) (-0.456) (-0.456) (-0.456) (-0.456) (-0.456) soft tions betw
KOR_I	0.4452^{****} (6.482) 0.0905 0.0905 (1.185) 0.0243 (0.216) 0.0243 (0.316) 0.0688 (0.899) -0.0667 (-0.872) orts correla orts correla orts correla d US indication
KOR_S	0.1597*** (2.110) 0.1106 (1.451) 0.1599*** 0.1599*** (1.451) 0.1599** (0.1337 (0.1337* (1.760) 0.03318 (0.039) 0.0030 (0.039) 1 0.0030 (0.039) 1 Y.KOR archoration the table rep by KOR archoration the teconomic ertainty. The
	KOR_I KOR_C KOR_TS KOR_TP KOR_RN KOR_BPL KOR_EPL respective

10

Table 3.

Correlation of stock market returns, economic variables, term spread, its components and uncertainty correlated with the term premium in Korea, the risk-neutral expectation is significantly positively correlated with the term premium in the USA.

Figure 1 displays the time-series of the term spread, its components and stock market returns. Panel A reveals the time-series movements of the term spread, its components and stock market returns during high and low uncertainty periods in Korea. During high uncertainty periods, the risk-neutral expectation tends to co-move with the stock market returns. The correlation between them during high uncertainty periods is 0.3626 (*t*-statistics = 3.5658), while the correlation between the term premium and stock market returns during high uncertainty periods is -0.0050 (*t*-statistics = -0.4591). On the other hand, during low uncertainty periods, the risk-neutral expectation does not exhibit any strong pattern of co-movement with the stock market returns. The correlation between them during low uncertainty periods is -0.0869 (*t*-statistics = -0.7998). Analogously, Panel B reveals the time-series movements of the term spread, its components and stock market returns during high and low uncertainty periods in the USA. During high uncertainty periods, the co-movement of the

IS S

0.

0

KOR S

-0

KOR_S

Figure 1. Time-series of stock market returns, term spread and its components with uncertainty in Korea and the USA

Information content

12

risk-neutral expectation and stock market returns is consistent with the positive correlation (0.2620 with the *t*-statistics of 2.4885) between them [13].

Figures 2 and 3 illustrate the time-series of the term spread, its components and two proxies for economic activity in Korea and the USA. Panel A of Figures 2 and 3 show the time-series movements of the term spread, its components and 12-month growth of industrial production index and coincident economic activity index during high and low uncertainty periods in Korea, respectively[14]. Similar to the pattern in Korean stock market returns, the 12-month growth of the industrial production index and coincident economic activity index have a tendency to move more closely together with the risk-neutral expectation during high uncertainty periods than during low uncertainty periods. Panel B of Figures 2 and 3 plot the time-series movements of the term spread, its components and 12-month growth of industrial production index and coincident economic activity index during high uncertainty periods than during low uncertainty periods. Panel B of Figures 2 and 3 plot the time-series movements of the term spread, its components and 12-month growth of industrial production index and coincident economic activity index during high and low uncertainty periods in the USA, respectively. The patterns of co movement between the risk-neutral expectation and the two proxies for economic activity are more

Figure 2.

Time-series of growth of industrial production index, term spread and its components with uncertainty in Korea and the USA

Notes: This figure plots the time-series of 12-month growth of industrial production index,term spread, and its components during high (i.e., above the median value of the economic policy uncertainty index) and low (i.e., below the median value of the economic policy uncertainty index) uncertainty periods. All variable definitions are identical to those in Table 3. The left scale presents growth of industrial production index, and the right scale presents term spread and its components. (a) and (b) plot the time-series in Korea and the USA, respectively. The sample period covers January 2004 to April 2018, for a total of 172 monthly observations

Notes: This figure plots the time-series of 12-month growth of industrial production index, term Time-series of growth spread, and its components during high (i.e., above the median value of the economic policy uncertainty index) and low (i.e., below the median value of the economic policy uncertainty index) uncertainty periods. All variable definitions are identical to those in Table 3. The left scale presents growth of industrial production index, and the right scale presents term spread and its components, (a) and (b) plot the time-series in Korea and the USA, respectively. The sample period covers January 2004 to April 2018, for a total of 172 monthly observations

prominent during high uncertainty periods than during low uncertainty periods. For both Korea and the USA, the different patterns of the correlations during high and low uncertainty periods suggest that the predictive power of the risk-neutral expectation for future stock market returns and economic activity bears a close relation with the level of uncertainty as measured through the EPU.

3.2 Predictive regressions

In this section, we engage in predictive regressions to examine whether the EPU influences the information on the term spread and its components. As conjectured earlier, we expect the informativeness of the term spread and its components on future stock market returns and economic activity to vary strongly with the level of EPU.

We conduct the following regression models to check whether the EPU affects the relationships between the future stock market returns and the term spread and its components and between the economic activity and the term spread and its components:

Figure 3.

of coincident economic activity index, term spread and its components with uncertainty in Korea and the USA

$$R_{t,t+k}(or EA_{t,t+k}) = \alpha_1 + \beta_1 TS_t + \varepsilon_{t,t+k},$$
(5)

$$R_{t,t+k}(or EA_{t,t+k}) = \alpha_1 + \alpha_2 \times D_t + \beta_1 TS_t + \beta_2 TS_t \times D_t + \varepsilon_{t,t+k},$$
(6)

$$R_{t,t+k}(or EA_{t,t+k}) = \alpha_1 + \beta_1 T P_t + \varepsilon_{t,t+k}, \tag{7}$$

$$R_{t,t+k}(or \, EA_{t,t+k}) = \alpha_1 + \alpha_2 \times D_t + \beta_1 TP_t + \beta_2 TP_t \times D_t + \varepsilon_{t,t+k},\tag{8}$$

$$R_{t,t+k}(or EA_{t,t+k}) = \alpha_1 + \beta_1 R N_t + \varepsilon_{t,t+k}, \tag{9}$$

(12)

$$R_{t,t+k}(or EA_{t,t+k}) = \alpha_1 + \alpha_2 \times D_t + \beta_1 R N_t + \beta_2 R N_t \times D_t + \varepsilon_{t,t+k},$$
(10)

$$R_{t,t+k}(or EA_{t,t+k}) = \alpha_1 + \beta_1 T P_t + \beta_2 R N_t + \varepsilon_{t,t+k},$$
(11)

$$R_{t,t+k}(or EA_{t,t+k}) = \alpha_1 + \alpha_2 \times D_t + \beta_1 TP_t + \beta_2 TP_t \times D_t + \gamma_1 RN_t + \gamma_2 RN_t \times D_t + \varepsilon_{t,t+k},$$

where $R_{t,t+k}$ is the *k*-month log stock market return and $EA_{t,t+k}$ is the *k*-month growth in industrial production index or coincident economic activity index. TS_t is the term spread, TP_t is the term premium, RN_t is the risk-neutral expectation and D_t is an EPU dummy variable, the value of which equals 1 if month *t* is included in high uncertainty periods. A high uncertainty month is defined as a month in which EPU is higher than the median of the monthly EPU during the whole sample period. We estimate all regression models using ordinary least squares with the Newey and West (1987) *t*-statistics. In this paper, we analyze the regression results of one-, three-, six- and 12-month stock market returns or growth of industrial production index and coincident economic activity index in Korea and the USA.

3.3 Predictive power of the term spread and its components in Korea

In this subsection, we analyze the predictive power of the term spread and its components in Korea based on the Models (1) \sim (8) (i.e. equations (5) \sim (12)).

Table 4 reports the regression results for Korean stock market returns. In Panel A of Table 4, the coefficient estimate on the term spread is positive and significant at the 5% level across all predictive horizons. The significant predictive power of the term spread in the Korean stock market is consistent with Chen (1991) and Hjalmarsson (2010). In addition, the longer the predictive horizon is, the stronger the explanatory power (adjusted R^2) of the term spread for future stock market returns is. Similarly, the magnitude of the coefficient estimates on the term spread becomes bigger as the predictive horizon increases. However, in Model (2), the coefficient estimate on the term spread loses its significance, and the interaction term between the term spread and EPU dummy variable is also insignificant for all predictive horizons. In addition, the addition of D_t does not improve the adjusted R^2 for one-, three-, six- and 12-month stock market returns. Thus, EPU cannot improve the predictive power of the term spread for future stock market returns.

14

Adj . R^2	0.0775 0.0726 0.0931 0.0929	Adj. R^2	0.0009 0.0033	0.0576	0.0892	0.0269 0.0197	0.0258 0.0886	0:0930	ubles of dicates t (1987)	Information content
R_TS	8800 (191) 9767	0.583) N KOR_RN $\times D_{K_E}$		0.0757*(1.948)	0.0586 (1.176)		0.0632 (1.058)	0.0068 (0.093)	ummy varia . Horizon in y and West	
$KOI \times L$	0000	(–(KOR_RN	0.0500	(1.195) (0.0147) (0.319) (0.796*	(1.745) 0.0529 (0.890)	0.0513	(0.811) 0.0182 (0.242) 0.1020	(1.558) 0.1059 (1.134)	with du periods y. Newe	15
KOR_TS	0.0640** (2.275) 0.0557 (1.166) 0.0957** (2.484) 0.1186	(1.619) KOR_TP $\times D_{K_{-E}}$	-0.0041 (-0.109)		-0.0141 (-0.328)	-0.0216 (-0.418)		-0.0696 (-1.179)	omponents uncertainty respectivel	
D_{K_E}	0.0135 (0.297) 0.0640	(0.912) KOR_TP	$\begin{array}{c} 0.0175 \\ (0.590) \\ 0.0217 \\ (0.601) \end{array}$	0.0536**	(2.101) (0.0599) (1.466) (0.0454)	(1.090) 0.0611 (1.114)	0.0916***	(2.637) 0.1380** (2.212)	d and its c le for high mponents, sspectively	
	2401469	$D_{K_{-E}}$	0.0360 (1.473)	0.0126 (0.512)	0.0224 (0.640)	0.0691^{*} (1.841)	0.0305 (0.809)	0.0843 (1.484)	n sprea / variab d its co evels, re	
Const	-0.021 (-0.61.0 -0.0247 (-0.477 (-0.288) (-0.288) (-0.288)	(-0.57) Const	$\begin{array}{c} 0.0204 \\ 0.075 \\ 5.44 \times 10^{-4} \\ (0.027) \\ 0.021 \end{array}$	(1.475) (0.785) (0.785)	$\begin{pmatrix} -0.496 \\ -0.0286 \\ (-0.733) \\ 0.0313 \end{pmatrix}$	(0.851) -0.0077 -0.0077 (-0.186) 0.0643***	(2.015) 0.0451 (1.171) -0.0125	(-0.265) -0.0662 (-0.928)	urns on tern the dummy spread an 5 and 1% 1	
Horizon	n = 6 n = 12	Horizon	n = 6		n = 12				narket retu $_{E} D_{K-E}$ is Its of term \approx at the 10,	
R^2	198 142 540 491	Adj. R^2	-0.0049 -0.0061	0.0689	0.0681	-0.0067 0.0375	0.0870 0.0618	0.0992	t stock n t for $D_{K_{-}}$ the resu nificance	
Adj	0.0 0.0 0.0	$\begin{array}{l} \operatorname{KOR}_{RN} \\ \times D_{K-E} \end{array}$		0.0456^{***} (3.045)	0.0401^{**} (2.354)		0.0780*** (2.707)	0.0712** (2.013)	of Korear ole 3, excep 1 B report present sig	
$\operatorname{KOR}_TS \times D_{K_E}$	0.0100 (0.847) 0.0209	(0.788) KOR_RN	2100	(1.233) -0.0063 (-0.896) (-0	(1.690) 0.0023 (0.252)	0.0322	(1.252) -0.0017 (-0.065) 0.0476*	(1.688) 0.0158 (0.464)	egressions tose in Tah nels A and and *** rej	
R_TS	132** 132** 126) 126) 358** 104) 104) 0204	(730) KOR_TP $\times D_{K-E}$	<i>m</i> -0.0159 (-1.555)		-0.0068 (-0.066)	-0.0148 (-0.679)		-0.0042 (-0.182)	redictive r ntical to th eturns. Pa eses. *, **	
КО	8.09.08.09 8.09.08 8.09	(0 KOR_TP	<i>d expectati</i> 0.0025 (0.400) 0.0119* (1.820)	0.0104*	(1.920) (1.689) (1.689) (0.0063)	(0.366) 0.0160 (0.804)	0.0279*	(1.892) 0.0274 (1.143)	es from p ns are ide market r 1 parenth	
D_{K_E}	-0.0139 (-1.028) -0.0094	(-0.310) D_{K_E}	nd risk-neutra 0.0098 (1.515)	-0.0105 (-1.394)	-0.0052 (-0.479)	0.0265* (1.730)	$^{-7.42} \times 10^{-4}$ (-0.046)	0.0018 (0.073)	orts estimate ble definitio cuture stock e reported in	
Const	<i>rm spread</i> -0.0055 (-0.739) 0.023 (0.255) -0.0141 (-0.684)	(-0.196) Const	<i>rm premium a</i> 0.0040 (1.089) -0.0024 (-0.467)	(1.162) $26 \times 10^{-4*}$ (1.685) -0.0035	(-0.611) -0.0037 (-0.516) 0.0119	(1.154) -0.0035 (-0.271) 0.0149	(1.211) 0.0100 (0.729) -0.0085	(-0.526) -0.0122 (-0.528)	he table repo PU. All varia months of f statistics ar	Table 4. Information of term spread and its
Horizon	Panel A: Te $n = 1$ $n = 3$	Horizon	Panel B: Te n=1	.7	n = 3				Notes: T Korean EI predictive corrected <i>i</i>	uncertainty in Korean stock market

16

On the other hand, in Panel B of Table 4, EPU has a significant effect on the predictive power of the risk-neural expectation for future stock market returns. In Models (4) and (8), the coefficient estimates on the interaction term between the term premium and EPU dummy variable are insignificant for all predictive horizons, which indicates that the predictive power of the term premium on future stock market returns is not significantly affected by the prevailing levels of the EPU. However, in Models (6) and (8), while the coefficient estimates on the standalone term for the risk-neutral expectation are not significant, the coefficient estimates on the interaction term between the risk-neutral expectation and EPU dummy variable are positive and significant for the prediction of one-, three- and six-month stock market returns. These results point out that the risk-neutral expectation has the significant return predictive power only during high uncertainty periods. In addition, compared to the increment in the adjusted R^2 by incorporating the EPU in the regression with the term premium, there is a noticeable increase in the adjusted R^2 by interacting the EPU dummy variable with the risk-neutral expectation in the regression. For example, in the prediction of one-month stock market returns, while the addition of D_t reduces the adjusted R^2 in the comparison between Models (3) and (4), it increases the adjusted R^2 from 1.21% to 6.89% in the comparison between Models (5) and (6) and the improvement in the adjusted R^2 is sustained in the comparison between Models (7) and (8). These results are consistent with our conjecture that the predictive power of the risk-neutral expectation varies with the level of EPU because the risk-neutral expectation of the term spread is related with the monetary policy cycle (Rosenberg and Maurer (2008) due to the linkage between the inflation expectation included in the risk-neutral expectation and the monetary and interest rate policies of the central bank.

Furthermore, while the adjusted R^2 in Model (1) is larger than that in Model (7) for onemonth stock market returns, the adjusted R^2 s in Models (6) and (8) are larger than those in Models (1) and (2) for one- and three-months stock market returns. Therefore, although the decomposition of the term spread does not enhance the explanatory power, considering the EPU nevertheless improves the explanatory power for short-term future stock market returns.

Table 5 presents the regression results of the growth of industrial production index to evaluate the predictive power of the term spread and its components varied with the EPU for the Korean economy. In Panel A of Table 5, the coefficient estimate on the term spread is positive and significant except for the one-month growth of the industrial production index. Similar to the results in Panel A of Table 4, the magnitudes of the coefficient estimate on the term spread and the adjusted R^2 increase with the predictive horizons. Although the coefficient estimate on the interaction term between the term spread and D_t is positively significant at the 5% level for the three-month growth of industrial production index, the coefficient estimates on the interaction term between the term spread and D_t for other predictive horizons are not significant. In Panel B of Table 5, the results for the growth of the industrial production index are somewhat different from the results for the stock market returns. While the predictive power of the risk-neutral expectation for short-term stock market returns is significant during high uncertainty periods, the predictive power of the risk-neutral expectation for the growth of the industrial production index is significant in long-term predictive horizons during high uncertainty periods. The coefficient estimates on the interaction term between the risk-neural expectation and D_t are significant in explaining the three-, six- and 12-month growths of the industrial production index. Furthermore, when the interaction term between the risk-neutral expectation and D_t is added to the regression models, the changes in the adjusted R^2 are larger than the changes in the adjusted R^2 affected by the addition of the interaction term between the term premium and D_t . For

Adj. R^2	0.0662 0.0868 0.1118 0.1218	Adj. R^2	0.0068 0.0065 0.0194 0.1181 0.0632 0.0655 0.0655 0.0547 0.0547 0.0547 0.0547 0.0547	Information content
${}^{\rm LTS}_{K_E}$	1115 553) 1135 494)	$\operatorname*{KOR}_{K DE} RN$	0.0251*** (3.522) (3.522) (2.960) (2.960) (2.960) (2.960) (2.960) (2.963) (1.953) (1.9	certainty r ants, respe ively
$\stackrel{\rm KOI}{\times} D$	00 (1) (1)	KOR_RN	$\begin{array}{c} 0.0062\\ -0.0055\\ -0.0035\\ 0.0111\\ 0.0118\\ 0.0118\\ 0.0118\\ 0.0118\\ 0.0118\\ 0.0118\\ 0.0118\\ 0.0118\\ 0.0138\\ 0.0123\\ 0.0123\\ 0.0123\\ 0.0138\\ 0.0036\\ 0.00036\\ 0.000036\\ 0.000036\\ 0.00036\\ 0.00036\\ 0.000036\\ 0.000036\\ 0.000036\\ 0.000036\\ 0.000000\\ 0.00000\\ 0.00000\\ 0.00000\\ 0.000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.000\\ 0.000\\ 0.0000\\ 0.000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.000\\ 0.000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.000\\ 0.000\\ 0.000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.000\\$	trespect 17
KOR_TS	0.0098*** (1.979) 0.0024 (0.367) 0.0167** (2.292) 0.0078 (0.808)	$\begin{array}{c} \operatorname{KOR}_{\mathrm{TP}} & \operatorname{I}\\ \times D_{K_{-E}} \end{array}$	-0.0031 (-0.517) (-0.517) (0.519) (0.519) (0.228) (0.228) (0.228) (0.228) (0.228) and its of and it	artable for ead and its d 1% levels
O_{K_E}	-0.0144* (-1.959) -0.0153 (-1.631)	KOR_TP	0.0039 0.0056 0.0057 0.0057 0.0057 0.0057 0.00124** 0.0114* (1.727) 0.0114* (1.727) 0.0114* 0.0149** (1.727) 1.727 1.052 0.0149** 0.0140**	e dummy v of term spr the 10,5 an
l lat	0062 153) 1144* 962) 1148* 1148* 764) 233***	D_{K_E}	$\begin{array}{c} -2.75 \times 10^{-1} \\ (-0.087) \\ (-0.087) \\ (-0.0101* \\ (-1.691) \\ (-1.740) \\ (-1.740) \\ (-1.740) \\ (-1.740) \\ (-1.740) \\ (-1.740) \\ (-1.6015) \\ (-0.640) \\ (-0.64$	D_{K-E} is the results the results ificance at t
Cot	6 <u>1</u> 818189	Const	0116**** 0116**** 0.0546) 0.0546) 0.0546) 0.0546) 0.0144*** 0.0144*** 0.0116*** 0.0068** 0.01093*** 0.0293*** 0.0293*** 0.0293*** 0.0134** 0.0134** 0.0293*** 0.0133** 0.0134** 0.01134** 0.0291***	B report sent sign
Horizon	n = 6 n = 12	Horizon	n=6 = 0 0 = 0 0 = 0 n=12 = 0 0 = 0 0 0 = 0 0 0 0 0 0 0 0	except 1 ls A and *** repre
Adj. R^2).0024 -0.0006).0446).0821	Adj. R^2	-0.0053 -0.0165 -0.0011 0.0045 -0.0024 -0.0015 -0.0015 -0.005 -0.0136 0.0136 0.0136 0.0136 (2.1110 (2.111) (2.1111)	n Table 3 dex. Pane * *** and *
S I	*	$\operatorname{KOR}_{KD_K}_E$	0.0064 (1.356) 0.0078 (1.396) (1.396) (1.396) (1.396) (1.396) (2.761) (2.761) (2.761) (2.761) (2.761) (2.761) (2.949) (2.949) (2.41) (2.41) (2.942) (2.941) (2.942) (2.941) (2	o those i uction in utheses.
$\begin{array}{c} \operatorname{KOR}_T \\ \times D_{K_{-E}} \end{array}$	0.0045 (1.108) 0.0129***	KOR_RN	0.0016 (0.853) -0.0011 (0.0609) (0.0025 (-0.0025) (-0.0026) (-0.0028) (-0.00	dentical t trial prod cd in parei cd in parei
KOR_TS	$\begin{array}{c} 0.0020\\ (1.459)\\ -0.0011\\ (-0.388)\\ 0.0066^{*}\\ (1.958)\\ -0.0020\\ (-0.524)\end{array}$	$\operatorname*{KOR_TP}_{\times D_{K_E}}$	27 × 10 ⁻⁴ (0.044) (0.077) (0.677) (0.677) (0.071) (1.984) (1.984) (1.984) (1.984)	ritions are i rth in indus s are reporte
E	(0034).935))141** 2.550)	KOR_TP	$\begin{array}{c} 5.14\times 10^{-4}\\ 5.14\times 10^{-4}\\ (0.254)\\ 4.71\times 10^{-4}\\ (0.298)\\ 0.298)\\ 0.0016\\ (1.183)\\ -6.17\times 10^{-4}\\ (1.207)\\ 0.0021\\ 0.0028\\ 0.6649\\ (0.648)\\ 0.0657^{**}\\ (0.648)\\ 0.0657^{**}\\ (-0.153)\\ -4.31\times 10^{-4}\\ (-0.153)\\ 0.0057^{**}\\ (-0.153)\\ 0.005$	ariable defin tiths of grow d t-statistics d t-statistics
$D_{K_{-}}$	* -0.((-0.(-0.(D_{K_E}	<i>i</i> and <i>risk-neu</i> (0.333) (0.333) (0.333) (0.333) (-0.110) (-0.110) (-0.763) (-1.765) (-0.763) (-1.765) (-1.76	Table 5.
Const	erm spread 7.28 × 10 0.532 0.0030 0.0016 0.440 0.010 ³ 0.010 ³ 0.010 ³	Const	$erm \ premium$ 0.0021^{***} 0.0021^{***} 0.0017 (1.451) 0.0024^{****} (1.451) 0.0021^{**} - (1.871) $(0.0021^{***}$ (1.8831) 0.0021^{***} (1.8831) $(0.0023^{****}$ $(1.0331)^{****}$ $(1.0331)^{****}$ $(1.0331)^{****}$ $(1.0331)^{****}$ $(1.0027^{****}$ $(1.0123)^{****}$ $(1.0232^{****})^{****}$ $(1.0232^{**})^{****}$ $(1.0232^{**})^{****}$ $(1.0232^{**})^{****}$ $(1.0232^{**})^{***}$ $(1.0232^{**})^{***}$ $(1.0232^{**})^{***}$ $(1.0232^{**})^{***}$ $(1.0232^{**})^{***}$ $(1.0232^{**})^{***}$ $(1.0232^{**})^{*$	spread and its components with uncertainty in
Horizon	Panel A: T $n = 1$ $n = 3$	Horizon	Pamel B: T $n = 1$ 0 0 $n = 3$ 0 0 0 0 0 0 0 0 0 0	Korean economy: Industrial production index

JDQS 29.1 instance, in the prediction of the three-month growth of industrial production index, the adjusted R^2 decreases from -0.05% in Model (1) to -0.94% in Model (2). However, considering the effect of EPU on the risk-neutral expectation improves the adjusted R^2 by 9.23% in the comparison between the Models (3) and (4).

Table 6 reports the regression results using the growth of coincident economic activity index as the dependent variable instead. In Panel A of Table 6, the coefficient estimate on the term spread in Model (1) is positive and significant except for onemonth growth of the coincident economic activity index. Although the size of the coefficient estimates on the term spread and the adjusted R^2 in Model (1) is smaller than those in Panel A of Table 5, the pattern of those across the predictive horizons is very similar to those in Panel A of Table 5. In addition, incorporating EPU does not have an effect on the predictive power of the term spread. In Panel B of Table 6, the coefficient estimates on the risk-neutral expectation are positive and significant at the 5% or 1% levels only during high uncertainty periods in all predictive horizons. These results are consistent with the results of the stock market returns and the growth of the industrial production index. Analogous to the results in Panel B of Tables 4 and 5, the improvements in the adjusted R^2 by incorporating EPU are sizable. Taken together with Tables 4-6, the empirical evidence in Korea confirms the significant predictive power of the risk-neutral expectation in the Korean stock market and the Korean economy during high uncertainty periods.

3.4 Predictive power of the term spread and its components in the USA

Similar to Section 3.3, we assess the predictability of the term spread and its components for the US stock markets and the economy in an analogous manner.

In Table 7, the results using the US stock returns as the dependent variable are presented. As opposed to the results in Panel A of Table 4, the coefficient estimates on the term spread are not significant in Panel A of Table 7. In addition, the coefficient estimates on the term spread and the interaction term between the term spread and D_t are also insignificant in Model (2), which are similar to the results in Panel A of Table 4. Thus, the term spread does not have significant explanatory power for future stock market returns, and the EPU does not exhibit any strong association with the predictive power of the term spread.

In Panel B of Table 7, with the decomposition of the term spread into the term premium and risk-neutral expectation, we find that the information contents on the term spread components for US future stock market returns do indeed vary with the level of EPU. The coefficient estimates on the interaction term between the risk-neutral expectation and D_t are significant at the 1% or 5% levels in Models (6) and (8) for all predictive horizons, which are consistent with the results in Panel B of Table 4. In addition, the increases in the adjusted R^2 through the addition of the interaction term between the risk-neutral expectation and D_t in the US stock market are comparable to those in the Korean stock market. However, during high uncertainty periods, while the predictive power of the risk-neutral expectation lacks significance at the 12-month horizon in the Korean stock market, it remains significant at all predictive horizons in the US stock market.

In Table 8, we report the results using the growth of the US industrial production index as the dependent variable. In Panel A, there is no significant coefficient estimate on the term spread in Model (1) for the growth of the US industrial production index, while the predictive power of the term spread is positively significant in Model (1) for the growth of Korean industrial production index except for the one-month predictive horizon. In addition, the adjusted R^2 s in Model (2) are negative and decrease compared to the adjusted R^2 s in Model

Adj. R^2	0.0607 0.0889 0.1247 0.1326	Adj. R^2	-0.0057 -0.0026 0.0773 0.2264 0.0945 0.2341 0.2341 0.103 0.1151 0.1161 0.1841 0.1841 0.1661	Information sticks of content content
KOR_TS $\times D_{K-E}$	0.0036 (1.462) 0.0016 (0.416)	RL KOR_RN $\times D_{K_E}$	045 (69) (69) (69) (69) (67) (67) (67) (1113**** (66) (13805) (13805) (13805) (13805) (13805) (13805) (1384) (13284) (with dummy var ates predictive m o corrected <i>I</i> -stati
ST	88** 54) 117 52) 52) 77**** 71) 71)	e KOF	4 4 4 4 4 4 4 4 4 4 4 4 4 4	1987) indice in the second sec
KOR	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	$\operatorname{KOR}_{K-E} \operatorname{TH}_{K-E}$	$\begin{array}{c} -0.0016\\ (-0.643)\\ (-0.633)\\ (0.203)\\ (0.203)\\ (0.179)\\ (0.179)\\ (0.179)\end{array}$	iods. Horizional iods. Horizional y and We
D_{K_E}	-0.0060^{**} (-2.039) -0.0048 (-1.019)	KOR_TP	$\begin{array}{c} -2.04\times10^{-4}\\ -2.04\times10^{-4}\\ (0.295)\\ 0.025\\ 0.025\\ 0.013\\ 0.013\\ 0.013\\ 0.017\\ 0.016\\ 0.017\\ 0.035\\ 0.0056^{9**}\\ 0.005$	em spread an ncertainty per ctively, Newe
ònst	$\begin{array}{c} -0.0036\\ (-1.569)\\ 4.40\times10^{-4}.40\times10^{-4}\\ (-0.147)\\ -0.0071*\\ (-1.870)\\ -0.0048\\ (-0.829)\end{array}$	D_{K_E}	$\begin{array}{c} \begin{array}{c} & & & & & \\ & & & & & & \\ & & & & & & $	ity index on t ble for high u oments, respe
zon C	6 - 12	Const	$\begin{array}{c} 1.37\times10^{-1.37}$	mic activ my varia its comp its comp
Hori	n = n	orizon	n = 6 n = 12 - 6 n = 12 - 6 n = 12 - 6 n = 12 - 6	int econo read and vely vely
Adj. R^2	0.0072 0.0039 0.0285 0.0402	Adj. <i>R</i> ² H	-0.0049 -0.0091 0.0016 0.0489 0.0420 0.0420 0.0420 0.0311 0.1315 0.0386 0.0386	to include the control of the contr
L TS	× 10 ⁻⁴ 439) 027 575)	$\begin{array}{c} \operatorname{KOR}_{\mathrm{RN}} \\ \times D_{K_{-E}} \end{array}$	⁴ 0.0023**** (2.773) ⁴ 0.0022**** (2.817) (2.817) ⁴ 0.0069**** (2.756)	th in Koreat sept for D_{K} he results of nd 1% levels nd 1%
$\mathrm{KOF} \times D$	8.14 (1.) (1.)	COR_RN	$\begin{array}{c} 33 \times 10^{-4} \\ (0.799) \\ 55 \times 10^{-4} \\ 55 \times 10^{-4} \\ 55 \times 10^{-4} \\ (1.159) \\ (1.159) \\ (1.159) \\ (1.159) \\ (1.219) \\$	s of grow able 3, ext 3 report t he 10, 5 a
KOR_TS	$\begin{array}{c} 5.05\times10^{-4}\\ 1.1228\\ -3.76\times10^{-5}\\ 0.0055\\ 0.0019^{4}\\ 1.30\times10^{-4}\\ (0.070)\end{array}$	$\begin{array}{c} \operatorname{KOR}_{\mathrm{TP}} & \operatorname{K}\\ \times D_{K_{-E}} \end{array}$	$\begin{array}{c} ition \\ -7.41 \times 10^{-4} \\ (-0.957) \\ 4.6 \\ -5.6 \\ (-0.052) \\ (-0.052) \\ (-0.062) \\ (-0.033) \\ (-0.033) \\ (-0.033) \\ (-0.033) \\ (-0.0304) \\ (-0.$	tive regression al to those in T. Panels A and E significance at t significance at t
D_{K_E}	$\begin{array}{c} 8.83 \times 10^{-4} \\ (-1.369) \\ -0.0034 \\ (-1.633) \end{array}$	KOR_TP	$\begin{array}{c} neutral expecta \\ 1.31 \times 10^{-4} \\ 1.31 \times 10^{-4} \\ 1.341 \\ 1.3$	tes from predictions are identic cicitity index. 1 **** represent
	-0 -1 -1 -2 -2 -4 -2 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4	D_{K_E}	i and risk (0.917) (0.917) (0.917) (0.917) (0.917) (0.957) (0.957) (-0.857) (-0.857) (-0.857) (-0.857) (-0.857) (-0.857) (-0.857) (-0.857) (-0.857) (-0.955) (-1.554) (-1.554) (-1.554) (-1.368)	Table 6.
Const	$\begin{array}{c} \mbox{erm spread} \\ \mbox{erm spread} \\ -5.08 \times 10 \\ -1.221 \\ 1.86 \times 10 \\ 0.032 \\ -0.0013 \\ (-1.426 \\ -1.426 \\ -1.426 \\ -1.426 \\ -1.426 \\ -0.076 \\ 0.076 \\ \end{array}$	Const	$\begin{array}{c} \label{eq:constraint} \begin{tabular}{lllllllllllllllllllllllllllllllllll$	spread and its components with uncertainty in Korean economy
Horizon	panel A: 7 $n = 1$ $n = 3$	Horizon	n = 1 $n = 1$ $n = 1$ $n = 3$ -1 $n = 3$ -1 -1 -1 -1 -1 -1 -1 -1	Coincident economic activity index

JDQS 29,1	Adj. R^2		Adj - R^2	0.0169 0.0452 0.0149 0.0386 0.0488 0.0488 0.047 0.0042 0.0047 0.0947 0.2191 0.1261 0.2421	S EPU. edictive ected <i>t</i> -
	IS IE	0) 0) 0) 0) 0) 0) 0) 0) 0) 0) 0) 0) 0) 0	$\underset{\times \overline{D}_{U - E}}{\text{US}}$	0.1580**** (2.868) (3.329) (3.329) (3.329) (3.328) (3.328) (3.328) (3.328) (3.370)	ables of U licates pre 1987) corr
20	$\operatorname{US}_{D_{U}}^{1}$	0.00 0.01 ¹ 0.01 ²	US_RN	$\begin{array}{c} 0.0261\\ -0.0045\\ 0.0368\\ 0.0378\\ 0.0378\\ 0.0328\\ 0.0378\\ 0.0328\\ 0.008\\ 0.0088\\$	mmy vari orizon inc id West (
	US_TS	$\begin{array}{c} -0.0018 \\ (-0.171) \\ (-0.171) \\ -0.0093 \\ (-0.848) \\ (-0.848) \\ 0.0178 \\ (1.138) \\ 0.0178 \\ (1.138) \\ (0.311) \end{array}$	$\underset{\times \overline{D}_{U_E}}{\text{US}}$	0.0052 (0.227) (0.285) (0.285) (0.285) (0.285) (0.285) (0.285) (0.285)	s with du eriods. H Newey ar
	E	946 60) 949	US_TP	$\begin{array}{c} -0.0237\\ (-1.236)\\ -0.0238\\ (-1.132)\\ (-1.132)\\ (-1.132)\\ (-1.1332)\\ (-1.1332)\\ (-1.1332)\\ (-0.776)\\ (-0.776)\\ (-0.776)\\ (-0.776)\\ (-1.1376)\\ (-1.1$	mponent ertainty p ectively.
	$D_{U_{-}}$	0.00 0.00 0.00 0.00	D_{U_E}	0.0409*** (2.468) (2.468) (-2.340) (-2.340) (-2.504) (-2.504) (1.265) (1.265) (1.265) (1.265) (-2.854)	and its cc high unc ents, resp tively
	Const	0.0348** (1.950) 0.0238 (1.304) 0.0238 (0.755) 0.0184 (0.426)	Const	0.0511**** (4.808) 0.0318** (1.0064 0.0318** (0.579) 0.0054 0.079*** (0.579) 0.079*** (1.712) 0.079*** (1.712) 0.079*** (1.712) 0.079*** (0.048) 0.005570000000000	term spread variable for l its compon evels, respec
	Horizon	n = 6 n = 12	Horizon	n = 6 n = 12	eturns on e dummy pread and and 1% k
	8	41 39 41 39 41 38 41 38 41 41 41 41 41 41 41 41 41 41 41 41 41	Adj. R^2	0.0119 0.0296 -0.0016 0.0521 0.0175 0.0775 0.0775 0.0224 0.0260 0.0261 0.0660 0.0591	market re D_{U-E} is the of term spectrum of term spectrum (10, 5).
	Adj. R	-0.00 0.003 -0.00 -0.00	$\underset{\times \overline{D}_{U,E}}{\text{US}}$	(2.467) (2.467) (2.467) (2.483) (2.881) (2.881) (2.881) (2.342) (2.342) (2.342)	US stock or D_{U_E} . <i>L</i> ie results ificance at
	$\sum_{X} \overline{D}_{U,E}$	-0.0026 -0.269) -0.269)	US_RN	$\begin{array}{c} 0.0040\\ (1.073)\\ -0.0040\\ (1.073)\\ (1.073)\\ (1.073)\\ (1.045)\\ (-1.325)\\ (-1.325)\\ (-1.192)\\ (-1.192)\\ (-1.192)\\ (-1.192)\\ (-1.152$	essions of , except fo 3 report th esent sign
	1 ST_	0026 0673) 0673) 0673) 0673) 0030 0031 0.0031 0.0024 0.0024	$\underset{\times \overline{D}_{U_{-E}}}{\mathrm{US}}$	on -0.0121 (-1.551) (-1.551) (-2.267) (-2.267) (-2.267) (-2.267) (-2.267) (-2.267) (-1.034) (-1.034)	edictive regr se in Table 3 nels A and E nd *** repre
	Sn		US_TP	$\begin{array}{c} -0.021\\ -0.007\\ -0.007\\ 0.046 \\ 0.046 \\ -0.0088\\ (-1.550)\\ 0.0037\\ (-1.550)\\ 0.0037\\ (0.6088\\ -0.0164\\ (-1.530)\\ (0.6081\\ (-0.654) \\ (-0.654) \\ (-0.654) \\ (-0.654) \\ (-0.654) \\ \end{array}$	es from pr cal to thos turns. Par ses. *, ** s
	$D_{U_{-E}}$	0.0131 (1.499) 0.0268 (1.238)	D_{U_E}	md risk-neutr (3.172) (3.172) (-1.789) (-1.789) (-1.789) (-1.602) (-1.602) (-1.602) (-1.602) (-1.602) (-1.735) (-1.735) (-1.735)	orts estimate s are identio k market re in parenthe
Table 7. Information of term spread and its components with	Const	<i>erm spread</i> 0.0075*** 0.0026 0.0209*** 0.01329 0.01329 0.01329 (1.352)	Const	$\begin{array}{c} \label{eq:constraint} remains to the premium to the second second$	The table repcole definition of future stock are reported of a stock of the stock o
uncertainty in US stock market	Horizon	Pamel A: T, n = 1 $n = 3$ $n = 3$	Horizon	$Panel B: T_i$ $n = 1$ $n = 3$	Notes: T All varial months of statistics

Const	D_{l}]_E	ST_SU	$\times \overline{D}_{U_{-1}}$	ر عر	$\operatorname{Adj-}R^2$	Horizon	1 Coi	nst	$D_{U_{-E}}$	US_TS	Б×	$\sum_{\overline{D}_{U_{-E}}}^{S TS}$	$\operatorname{Adj-}R^2$
4	4.6	0×10^{-5} (0.020) (0.183)	$\begin{array}{c} -1.64 \times 10^{-} \\ (-0.251) \\ (-0.251) \\ 2.13 \times 10^{-5} \\ (0.420) \\ -4.55 \times 10^{-} \\ (-0.234) \\ (-0.234) \\ (0.322) \end{array}$	4 -7.03 -4 (-0.	(537)	-0.0053 -0.0075 -0.0048 -0.0078	n = 6 n = 12	0.10.00.000	244) 0653 0440 027 027 027 027 027 027 027 027 027 02	0.0047 (0.479) 0.0018 (0.107)	$\begin{array}{c} -4.27 \times 10 \\ (-0.131) \\ (-0.131) \\ (3.27 \times 10^{-} \\ 0.034 \\ 0.0020 \\ (0.345) \end{array}$		0.0033 -0.544) 0.0023 0.294)	-0.0056 -0.0134 0.0005 -0.0066
	$D_{U_{-E}}$	US_TP	$\underset{\times \bar{D}_{U_E}}{\text{US}} \text{TP}$	US_RN	$\underset{\times \bar{D}_{U_E}}{\text{US}}\text{RN}$	Adj-R ² Ho	rizon Co	inst	$D_{U_{-}E}$	US_TP	$\underset{\times \overline{D}_{U_{-E}}}{\text{US}}$	US_RN	$\underset{\times \overline{D}_{U_E}}{\text{US}}$	$\operatorname{Adj-}R^2$
	n and risk- 25 × 10 ⁻⁴ (0.596) (0.596) (-2.416) (-2.416) (-2.081) (-2.081) (0.973) (0.973) (0.973) (-1.600) (-1.600) (-1.503)	$\begin{array}{c} \begin{array}{c} \mbox{meutral expect} q\\ -0.34.10 cry \\ (-0.341) \\ (0.0011) \\ (0.997) \\ (0.0011) \\ (0.0016) \\ (-0.370) \\ (-0.370) \\ (-0.322) \\ (0.0022) \\ (0.0023) \\ (0.0033) \\ (0.0033) \\ (0.0033) \\ (0.0033) \end{array}$	tion -0.0024 (-1.512) (-1.512) (-1.512) (-1.816) (-1.816) (-1.226) (-1.226) (-1.253)	$\begin{array}{c} 8.82 \times 10^{-5} \\ (0.125) \\ -2.13 \times 10^{-4} \\ (0.125) \\ -2.13 \times 10^{-4} \\ (-3.11) \\ -2.47 \times 10^{-4} \\ (0.311) \\ -8.39 \times 10^{-4} \\ (-1.124) \\ (-1.124$	0.0061*** (2.297) (2.297) (2.631) (2.631) (2.631) (2.631) (2.631) (2.233)	$\begin{array}{c} -0.0040 n \\ 0.0059 \\ -0.0058 \\ 0.0184 \\ -0.0095 \\ 0.01184 \\ -0.0010 n^2 \\ 0.0273 \\ 0.0273 \\ 0.0273 \\ 0.0165 \\ -0.0043 \\ 0.0543 \\ -0.0006 \\ 0.0783 \\ \end{array}$	= 12	$\begin{array}{c} 773^{***} \\ 773^{***} \\ 773^{***} \\ 773^{***} \\ 773^{***} \\ 773^{***} \\ 773^{***} \\ 773^{***} \\ 773^{***} \\ 773^{***} \\ 773^{***} \\ 773^{***} \\ 773^{***} \\ 711111111111111111111111111111111111$	0.0083* (1.694) -0.0478* -1.738) -1.630) -1.630) -1.630) -1.630) -1.630) -1.630) -1.630) -1.630 -1.738 -1.630 -1.630 -1.630 -1.630 -1.630 -1.630 -1.630 -1.630 -1.630 -1.630 -1.630 -1.630 -1.630 -1.630 -1.630 -1.630 -1.630 -1.738 -1.630 -1.738 -1.600 -1.738 -1.730 -1.730 -1.738 -1.7000 -1.70000 -1.70000 -1.70000 -1.70000 -1.70000 -1.7000 -1.7000 -1.7000 -1.7	$\begin{array}{c} -0.0033\\ (-0.483)\\ 0.0041\\ (0.639)\\ (0.639)\\ (0.639)\\ (0.639)\\ (0.631)\\ (0.0038\\ (0.283)\\ (0.28$	-0.0119 (-1.448) (-1.448) (-1.776) (-1.776) (-0.0107 (-0.0107) (-0.0116) (-0.0116) (-0.0116)	$\begin{array}{c} 0.0031\\ (0.765)\\ (.556 \times 10^{-6.56})\\ (.556 \times 10^{-6.56})\\ (.565 \times 10^{-6.56})\\ (.566 \times 10^{-0.136})\\ (.00146)\\ (.00139)\\ (.00139)\\ (.00139)\\ (.00120)\\ (.00120)\\ (.00120)\\ (.00120)\\ (.00120)\\ (.00120)\\ (.00120)\\ (.00021$	 ⁴ 0.0388* (1.847) (1.847) (1.847) (1.847) (1.847) (1.847) (1.847) (2.138) (2.138)	0.0019 0.0141 -0.0007 0.0666 0.0062 0.0943 -0.0040 -0.0027 0.0292 0.1571 0.0233 0.1588

variables of US EPU. All variable definitions are identical to those in Table 3, except for $D_{U,E}$ is the dummy variable for high uncertainty periods. Horizon indicates predictive months of growth in industrial production index. Panels A and B report the results of term spread and its components, respectively. Newey and West (1987) corrected *t*-statistics are reported in parentheses. *, ** and *** represent significance at the 10, 5 and 1% levels, respectively.

Table 8. Information of term spread and its components with uncertainty in US economy: Industrial production index

21

Information content

22

(1), as opposed to the case of Korea. In Panel B of Table 8, the predictive power of the riskneutral expectation for the growth of the industrial production index is significantly positive across all predictive horizons except for the three-month horizon in Model (6) during high uncertainty periods. These results are similar to those obtained for the US stock returns as the dependent variable. Furthermore, the improvement in the adjusted R^2 using the interaction of the EPU ranges from 2.42% to 12.79%.

Table 9 reports the regression results with the growth of the US coincident economic activity index as the dependent variable. In Panel A, the coefficient estimates on the term spread are negatively significant in Model (1) except for the 12-month horizon. In addition, the coefficient estimates on the interaction term between the term spread and D_t are negatively significant at the 10% level in Model (2) except for the three-month horizon. However, the shorter the predictive horizon is, the stronger the explanatory power of the term spread for the growth of the coincident economic activity index is. These patterns are different from the case of Korea, and also from other US forecast variables. According to the results in Panel A of Table 9, although the pattern is somewhat different, the EPU can improve the predictive power of the term spread for the growth of the coincident economic activity index.

In Panel B of Table 9, the coefficient estimates on the term premium in Models (3), (4), (7) and (8) are negatively significant at the 1% or 5% levels, except for the 12-month growth of US coincident economic activity index in Model (4). However, the coefficient estimates on the interaction term between the term premium and D_t are not significant in Models (4) and (8) for all predictive horizons. These results suggest that the information on the term premium for the growth of the US coincident economic activity index does not vary strongly depending on the level of EPU. The coefficient estimates on the risk-neutral expectation during high uncertainty periods are significantly positive for the six- and 12-month growths of the US coincident economic activity index. Furthermore, the explanatory power of the models with the interaction term between the risk-neutral expectation and D_t becomes larger as the predictive horizon increases. As the adjusted R^2 s in the Model (8) are the largest across all predictive horizons and the coefficient estimates on the risk-neutral expectation during high uncertainty periods are significantly positive for six- and 12-month predictive horizons, the results strongly suggest that the information content of the risk-neutral expectation for the growth of the US coincident economic activity index varies significantly with the level of EPU.

In sum, the empirical evidence in Korea and the USA confirms that the predictive power of the risk-neutral expectation becomes noticeable stronger during high uncertainty periods. Moreover, allowing for the interaction between the risk-neutral expectation and EPU significantly improves the explanatory power of the future stock market returns and economic activity in Korea and the USA. However, our results also reveal some differences in between Korea and the USA. For example, the predictive power of the risk-neutral expectation during high uncertainty periods in Korea is less significant than that in the USA for longer predictive horizons (e.g. six- or and 12-month stock returns or 12-month growth in the industrial production index). These differences in empirical results may be attributable to a plethora of different factors, including the differences in the degree of development of the long-term government bond market [15].

4. Robustness check

To check the robustness of our definition of a "high uncertainty period," we analyze the predictive power of the risk-neutral expectation during the first quartile (top 25%) of EPU rather than the top 50% in this section.

$\operatorname{Adj.} R^2$	0.0605 0.1021 0.0109 0.0348	Adj. R^2	0.2023 0.2203 0.000654 0.0654 0.2451 0.1368 0.1415 0.1368 0.1415 0.1368 0.1415 0.0390 0.1286 0.2414 ts with berids onents, levels,	I
TS	0043* 822) 778)	$\underset{\times \overline{D}_{U_E}}{\text{US}} \text{RN}$	 1 0.0115 (1.623) (1.64) (1.764) (1.764) (2.229) (2.677) (2.677) (2.677) and 1% 	
US_{D}	4 -0.0 (-1.)	US_RN	$\begin{array}{c} 0.0013\\ (0.877)\\ (.0.877)\\ (.0.877)\\ (.0.665)\\ (.0.665)\\ (.0.655)\\ (.0.655)\\ (.0.874)\\ (.0.85)\\ (.0.324)\\ (.0.036)\\ (.0.044)\\ (.1.988)\\ (.1$	
ST_S	$\begin{array}{c} -0.0023*\\ (-1.800)\\ 7.16\times10^{-}\\ (-0.807)\\ -0.0022\\ (-1.031)\\ (-1.031)\\ (0.127)\end{array}$	$\underset{\times \overline{D}_{U_E}}{\text{US}}$	-0.0036 (-1.255) (-0.0021 (-0.811) (-0.811) (-0.0016 (-0.344) (-0.344) (-0.344) f term spread	
E U		US_TP	0.0061***** (-2.0583) (-2.0583) (-2.058) (-2.0038*** -0.0056***** -0.0056**** (-1.453) (-1.453) (-2.459) (-2.459) (-2.459) (-2.39	
$D_{U_{-}}$	* 0.007 * (2.11	$D_{U_{-E}}$	11 × 10 ⁻⁴ (0.824) -0.0163* -1.684) -2.021) -2.021) -2.021) -2.021) -2.021) -2.021) -2.023 (1.446) (1.446) (1.446) -2.322) -2.322) -2.322) -2.322) -2.322) -2.322) -2.322) -2.322) -2.322) -2.322) -2.322 -2.322) -2.322 -2.322) -2.322 -2.322) -2.322 -2.322 -2.322) -2.3222 -2.322 -2.322 -2.322 -2.322 -2.322 -2.322 -2.3222 -2.	
Const	$\begin{array}{c} 0.0152^{****} \\ (10.115) \\ 0.0133^{***} \\ (10.624) \\ 0.0261^{****} \\ (7.959) \\ (7.179) \end{array}$	Const	$\begin{array}{c} 1161^{+0.06}\\ 1152^{-0.06}\\ 1152^{-0.06}\\ 1152^{-0.06}\\ 1152^{-0.06}\\ 1173^{-0.06}\\ 1113^{-0.06}\\ 1133^{-0.$	
Horizon	n = 6 n = 12	Horizon	n = 6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	
I, R^2 I	972 355 870 274	Adj. R^2	02173 02281 -0.058 0.0150 0.2291 0.2255 0.2291 0.2295 0.2391 -0.052 0.2452 0.2452 0.2452 0.2452 0.2452 0.2452 0.2452 0.2452 1.Table 3, rithy inder	
Adj	* 0.0 0.1 0.0 0.0	$\underset{\times \overline{D}_{U_E}}{\text{US}}$	$\begin{array}{c} 0.0012 \\ (1.129) \\ 0.0049 \\ (1.027) \\ (1.477) \\ (1.492) \\ 1.492) \\ \text{growth i} \\ \text{growth i} \\ \text{ported ir} \end{array}$	
$\mathrm{US_TS}_{V_{LE}}$	-7.60×10^{-4} (-1.773) -0.0022 (-1.652)	US_RN	$\begin{array}{c} -2.52 \times 10^{-5} \\ (-0.088) \\ -3.78 \times 10^{-5} \\ (-0.158) \\ (-0.158) \\ 3.72 \times 10^{-4} \\ (-0.158) \\ 3.80 \times 10^{-4} \\ (2.255) \\ (2.255) \\ (2.255) \\ (2.255) \\ (2.474) \\ (0.101) \\ 0.0013 \\ (2.474) \\ (0.0113 \\ (2.474) \\ (2.474) \\ (0.0113 \\ (2.474) \\ (2.692$	
SL	$\begin{array}{c} 22 \times 10^{-4**} \\ 42 \times 10^{-4} \\ 45 \times 10^{-4} \\ -1.53 \times 10^{-4} \\ -1.51 \\ 0.0014^{**} \\ -2.010 \\ 0.0014^{**} \\ -2.010 \\ -2.010 \\ -2.010 \\ -1.173 \end{array}$	$\underset{\times \overline{D}_{U_E}}{\mathrm{US}} \mathrm{TP}$	<i>ation</i> (-0.950) (-0.950) (-0.576) (-0.576) (-0.576) (-0.576) (-0.576) (-0.576) (-0.633) (
L_E US	$\begin{array}{ccc} -5.\\ 113^{**} & -2\\ 164) & -2\\ -1 & -2\\ 034^{**} & -5\\ 924) & -6\end{array}$	US_TP	$\begin{array}{c} \begin{array}{c} -0.0011^{\#} \\ -0.0011^{\#} \\ -0.0011^{\#} \\ (-2.467) \\ (-2.467) \\ (-2.467) \\ (-2.467) \\ (-2.467) \\ (-2.3187) \\ -0.0013^{\#} \\ (-2.325) \\ (-2.325) \\ (-2.325) \\ (-2.325) \\ (-2.325) \\ (-2.325) \\ (-2.324)$	
D_U	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	D_{U_E}	<i>m and risk</i> <i>m and risk</i> (0.093) -0.0018 -1.225) -1.225) -1.216 (0.152) (0.152) (0.152) (0.152) -1.555) -0.0061* -1.758) (0.152) -1.758) reports es reports es reports es <i>f</i> US EPU van d W	Infor
Const	erm spread 0.0028* (10.32 0.0024* (11.62(0.0020* (10.32(10.32(0.071*)	Const	0023***********************************	co une
Horizon	p=1 $n=1$ $n=3$ $n=3$	Horizon	Pamel B: T $n = 1$ $n = 1$ 0 0 0 0 0 0 0 0 0 0	econo

nformation content

23

Table 9.

Information of term spread and its components with uncertainty in US economy: Coincident economic activity index Table 10 reports the empirical results with the redefined uncertainty dummy variable (D^Q_t) . Owing to the limitations of space, we only report the results of Models (6) and (8) in the Korean and the US stock markets; other results are broadly consistent with those in Tables 4 to 9. In Panel A, the coefficient estimates on the interaction term between the risk-neutral expectation and D^Q_t are positive and significant at the 1% or 5% levels for one- and three-month predictive horizons in the Korean stock market. In addition, the increase in the adjusted R^2 is also comparable to that in Table 4. For instance, the adjusted R^2 s in Models (6) and (8) with D^Q_t are 9.03% and 11.27%, respectively, which are slightly larger than those in Table 4. In Panel B, the coefficient estimates on the risk-neutral expectation during high uncertainty periods are positively significant except for Model (8) for the six-month predictive horizon. Although the significance of the coefficient estimate on the interaction term between the risk-neutral expectation and D^Q_t is somewhat weaker than that in Table 7, the sign of the coefficient is still positive. Furthermore, the addition of D^Q_t improves the adjusted R^2 in the US stock market.

In summary, the predictive power of the risk-neutral expectation for future stock market returns and economic activity during the top quartile of the EPU is still significantly stronger than the other three quartiles both in Korea and the USA. These findings lend further support to the hypothesis that uncertainty has an important role in the information on the term spread's components, especially the risk-neutral expectation.

5. Conclusion

This study investigates how the predictive power of the term spread and its components on the stock market and economic activity vary with the level of economic or policy-related uncertainty. The central bank exploits the monetary policy and interest rate policy to alleviate the adverse impact of unexpected events such as the COVID-19 pandemic, financial crisis and major political elections. Thus, we expect that the risk-neutral expectation of the term spread to have significantly stronger predictive power for future stock market returns and economic activity during high uncertainty periods, as this component captures the movement of monetary business cycle and the inflation expectation pertaining to the monetary and interest rate policies.

The empirical results confirm that the risk-neutral expectation significantly and positively predicts future stock market returns and economic activity during high uncertainty periods. This relation is robust to the alternate definition of high uncertainty period based on the first quartile of the uncertainty measure. However, we do not observe a similar increase in the predictive power of the term spread and term premium with regard to the EPU.

Our paper contributes to the literature on the information of the term spread. We consider the impact of the monetary and interest rate policies' significance on the information on the term spread and its components. Furthermore, this paper provides indirect empirical evidence that the monetary and interest rate policies of the central bank play an important role on the response to uncertainty created by unexpected shocks. When viewed this way, our results highlight that the policymakers ought to recognize and carefully monitor the effectiveness of the monetary and interest rate policies, particularly during periods of high uncertainty. Finally, our results suggest that uncertainty plays an important role when using the information in the bond markets to anticipate future movements in the stock markets and economic activity. In this respect, our research provides important insights on the conditional trading strategy in the stock markets or economic policymaking.

IDQS

29.1

Horizon	Const	$D^{Q}_{K_{-}E}$	KOR_TP	$\mathrm{KOR_TP} \times D^Q{}_{K_E}$	KOR_RN	$\mathrm{KOR_RN} \times D^Q{}_{K_E}$	Adj. R^2
Panel A: Term $pr_{n=1}$	mium and risk-neutr 0 0041	ral expectation (Korean _0 0069	n stock market)		6.44×10^{-4}	0.0571***	0.0646
4	(0.929) -0.0068	(-0.648) -0.0019	0.0127**	-0.0054	(0.081) 0.0075	(2.742) 0.0544^{**}	0.0684
n = 3	(-1.072) 0.0078	(-0.134) 0.0116	(2.062)	(-0.493)	(0.816) 0.0126	(2.268) 0.0860***	0.0903
	(0.581) -0.0170	(0.686) 0.0130	0.0291*	1.13×10^{-4}	(0.470) 0.0284	(2.914) 0.0866**	0.1127
n = 6	(-0.947) 0.0202	(0.524) 0.0323	(1.809)	(0.006)	(0.962) 0.0323	(2.548) 0.0638	0.0593
	(0.841) -0.0218 (-0.688)	(0.968) 0.0215 (0.588)	0.0492*	0.0167	(0.673) 0.0589 (1-138)	(1.159) 0.0741 0.2801	0.1013
n = 12	(0.000) 0.0513 (1.304)	0.0537 0.0537	(170°T)		(1.1.1.00) 0.0439 (0.595)	6.94×10^{-4} (0.008)	0.0229
	(-0.814)	0.1075^{*} (1.859)	0.1153*** (2.955)	-0.0598 (-1.144)	(1.362)	-0.0307 (-0.327)	0.0978
Horizon	Const	$D^{Q}{}_{U_E}$	US_TP	$\text{US}_{TP} \times D^Q_{U_{LE}}$	US_RN	$\mathrm{US}_{\mathrm{RN}} imes D^{Q}_{U_{\mathrm{D}}E}$	Adj . R^2
Panel B: Term $prent{int} n = 1$	mium and risk-neutr 0.0045	val expectation (US sto -0.1398***	ck market)		0.0015	0.1123***	0.0777
	(1.233) 0.0051	(-2.793) -0.1073**	-0.0014	-0.0125	(0.455) 0.0020	(2.873) 0.0938***	0.0852
n = 3	(1.401) 0.0070	(-2.386) -0.2372*	(-0.338)	(-1.491)	(0.556) 0.0040	(2.675) 0.2103**	0.0913
	(0.544) 0.0137 (0.00137)	(-1.802) -0.2141^{*}	-0.0140	0.0015	(0.407) 0.0095	(2.064) 0.1886**	0.0964
n = 6	(1.203) 0.0066	(-1.901) -0.1859	(c01.1-)	(0.094)	(0.889) 0.0129	(2.134) 0.1940*	0.0661
	0.025	(-1.361) -0.1845	-0.0330	0.0258	0.0257	(3.1719)	0.0822
n = 12	(1.066) -0.0146	(-1.292) - 0.3081	(-1.525)	(0.885)	(1.327) 0.0608	(1.548) 0.3136*	0.1590
	(-0.265) 0.0104	(-1.496) -0.3670*	-0.0521	0.0663	(1.565) 0.0809*	(1.906) 0.3118^*	0.1837
	(0.231)	(-1.697)	(-1.401)	(1.229)	(1.768)	(1.954)	
Note: The tabl. 25% dummy v $D^{Q}_{K-E}(D^{Q}_{U-E})$ ii and B report th and B report th	e reports estimate ariables of Koræ s the dummy vari e results of Korea icance at the 10, 5	s from predictive r an and US EPUs, able for Korean (US n and US stock ma and 1% levels, resp	egressions of grow respectively. All ¹ 5) top 25% high und urkets, respectively bectively	th in Korean and US stock variable definitions are ic certainty periods. Horizon Newey and West (1987) or	market returns on the entical to those in $'$ in dicates predictive in nulcates predictive t -statistics and preceded t -statistics and the entire entities and the entity of the ent	rm spread and its compone Fable 3 , except for $D^{Q_{K,E}}_{K,E}$ nonths of stock market retu ic reported in parentheses.	ents with top and $D^Q_{U_{-E}}$. ms. Panels A *, ** and ***
ł							
Korean mai uncer	Inform						Ir
unce and kets: tainty	T nation sprea						oforn C
rtaint US s top 2 y dur vari	able n of id an						mat cont
ty in stock 25% nmy iable	10. term d its with					25	ion ent

IDQS	Notes
29,1	1. Davis and Fagan (1997), Brunetti and Torricelli (2009).
	2. Campbell and Yogo (2006), Chen (2009).
	3. Details of the price of risk parameters are explained in Adrian et al. (2013).
90	4. Engle et al. (1987), Longstaff and Schwartz (1992), Wachter (2006).
26	5. Baker <i>et al.</i> (2016) construct the US EPU based on news. EPU of the USA reflects the search results in 10 large newspapers containing at least one of the terms such as "uncertainty" or "uncertain," "economic" or "economy," "congress," "legislation," "white house," "regulation," "federal reserve" and "deficit." Similar to the EPU of the USA, the EPU of Korea is also derived from the search results in newspapers. The 10 newspapers included in their analysis are USA Today, the Miami Herald, the Chicago Tribune, the Washington Post, the Los Angeles Times, the Boston Globe, the San Francisco Chronicle, the Dallas Morning News, the Houston Chronicle and the WSJ. EPU of Korea reflects the search results containing one or more of the following terms such as "economy" "legislation," "tax," "regulation," "Bank of Korea," "central bank," "deficit," "WTO," "law/bill," "ministry of finance," "uncertainty" or "uncertain" in the newspaper with the native language including Donga Ilbo, Kyunghyang, Maeil Economic, Hankyoreh, Hankook Ilbo and Korea Economic Daily. After September 2016, EPU of Korea is constructed based on the set of newspapers excluding Donga Ilbo due to archiving issues.
	6. For the USA, the EPU is constructed based on three components. The first component based on news is similar to EPU of the USA used in this paper. The second component includes the information on uncertainty about expiration of tax code provisions in the future reported by the Congressional Budget Office. The third component captures uncertainty monetary policy and government spending. However, for Korea, the EPU is only constructed based on news. To eliminate the influence of the difference in the components of the EPU's construction on our results, we use the EPU of the USA based on news only.

- The results with the term spread defined as the difference between interest rates of five-year and one-year treasury bonds are qualitatively similar and available upon request.
- 8. The maturities of the treasury bonds range from one month to 10 years.
- 9. www.newyorkfed.org/research/data_indicators/term_premia.html.
- 10. All indexes in Korea and the USA are seasonally adjusted.
- 11. www.policyuncertainty.com/.
- 12. EPUs of Korea and the USA are standardized and normalized, respectively.
- 13. During low uncertainty periods, although the correlation between the risk-neutral expectation and stock market returns is negative (-0.1189), that is statistically insignificant (*t*-statistics = -1.0978).
- 14. Harvey (1989), Estrella and Hardouvelis (1991), Haubrich and Dombrosky (1996) and Estrella and Mishkin (1998) show that the term spread has the predictive power for 12-month (i.e. fourquarters) growth of economic activity.
- 15. While the long-term interest rate generally refers to the 10-year Treasury bond in the USA (Stock and Watson, 1989), the corresponding measure in economic analysis is usually three- or five-year Treasury bonds for the case of Korea, as is the case when constructing the composite economic index, for example. Thus, the market for long-term bonds appears to be thinner and less developed in Korea compared to the USA.

References

- Adrian, T., Crump, R.K. and Moench, E. (2013), "Pricing the term structure with linear regressions", *Journal of Financial Economics*, Vol. 110 No. 1, pp. 110-138.
- Ang, A., Piazzesi, M. and Wei, M. (2006), "What does the yield curve tell us about GDP growth?", *Journal of Econometrics*, Vol. 131 Nos 1/2, pp. 359-403.
- Aye, G.C., Christou, C., Gil-Alana, L.A. and Gupta, R. (2019), "Forecasting the probability of recessions in South Africa: the role of decomposed term spread and economic policy uncertainty", *Journal* of International Development, Vol. 31 No. 1, pp. 101-116.
- Baker, S.R., Bloom, N. and Davis, S.J. (2016), "Measuring economic policy uncertainty", The Quarterly Journal of Economics, Vol. 131 No. 4, pp. 1593-1636.
- Baker, S.R., Bloom, N., Davis, S.J., Kost, K., Sammon, M. and Viratyosin, T. (2020), "The unprecedented stock market reaction to COVID-19", *The Review of Asset Pricing Studies*, *raaa008*.
- Bekaert, G., Engstrom, E. and Xing, Y. (2009), "Risk, uncertainty, and asset prices", *Journal of Financial Economics*, Vol. 91 No. 1, pp. 59-82.
- Belz, S., Cheng, J., Wessel, D., Gros, D. and Capolongo, A. (2020), "What's the ECB doing in response to the COVID-19 crisis?", *Brookings report, 4 June.*
- Brunetti, M. and Torricelli, C. (2009), "Economic activity and recession probabilities: information content and predictive power of the term spread in Italy", *Applied Economics*, Vol. 41 No. 18, pp. 2309-2322.
- Campbell, J.Y. and Yogo, M. (2006), "Efficient tests of stock return predictability", Journal of Financial Economics, Vol. 81 No. 1, pp. 27-60.
- Cheng, J., Skidmore, D. and Wessel, D. (2020), "What's the fed doing in response to the COVID-19 crisis?", What More Could It Do? Brookings Report, 17 July.
- Chen, N. (1991), "Financial investment opportunities and the macroeconomy", *The Journal of Finance*, Vol. 46 No. 2, pp. 529-554.
- Chen, S. (2009), "Predicting the bear stock market: macroeconomic variable as leading indicators", *Journal of Banking and Finance*, Vol. 33 No. 2, pp. 211-223.
- Cochrane, J.H. and Piazzesi, M. (2009), Decomposing the Yield Curve. Working Paper, University of Chicago, Chicago, IL.
- Davis, E.P. and Fagan, G. (1997), "Are financial spreads useful indicators of future inflation and output growth in E.U. Countries?", *Journal of Applied Econometrics*, Vol. 12 No. 6, pp. 701-714.
- Engle, R.F., Lilien, D.M. and Robins, R.P. (1987), "Estimating Time-Varying risk premia in the term structure: the ARCH-MModel", *Econometrica*, Vol. 55 No. 2, pp. 391-407.
- Estrella, A. and Hardouvelis, G.A. (1991), "The term structure as a predictor of real economic activity", *The Journal of Finance*, Vol. 46 No. 2, pp. 555-576.
- Estrella, A. and Mishkin, F.S. (1998), "Predicting US Recessions: financial variables as leading indicators", *Review of Economics and Statistics*, Vol. 80 No. 1, pp. 45-61.
- Gulen, H. and Ion, M. (2016), "Policy uncertainty and corporate investment", *Review of Financial Studies*, Vol. 29 No. 3, pp. 523-564.
- Hamilton, J.D. and Kim, D.H. (2002), "A reexamination of the predictability of economic activity using the yield spread", *Journal of Money, Credit, and Banking*, Vol. 34 No. 2, pp. 340-360.
- Harvey, C.R. (1989), "Forecasts of economic growth from the bond and stock markets", *Financial Analysts Journal*, Vol. 45 No. 5, pp. 38-45.
- Haubrich, J. and Dombrosky, A. (1996), "Predicting real growth using the yield curve", *Economic Review*, FRB Cleveland, pp. 26-35.

Information

content

90 1	Analysis, Vol. 45 No. 1, pp. 49-80.
23,1	Irwin, N. (2020), "The fed's message: the money-printing presses are fired up and ready to go", <i>The New York Times, 23 March.</i>
	Ji, H. and Park, S. (2002), "The evaluation of creditability of interest spread on business cycle", <i>Korean Journal of Financial Management</i> , Vol. 19 No. 1, pp. 233-251.
28	Kim, J.S. (2018), "Return predictive power of uncertainty about risk for US and Korean stock markets", Korean Journal of Financial Management, Vol. 35 No. 1, pp. 49-81.
	Kim, J.S. and Yoon, S. (2020), "Term spreads and global asset allocations in Korea", <i>Journal of Money</i> and Finance, Vol. 34 No. 1, pp. 55-111.
	Kim, K., Ku, J. and Ku, B. (2018), "Financial market variables as predictors of Korea's real economic activity", <i>Journal of Money and Finance</i> , Vol. 32 No. 1, pp. 121-167.
	Kim, N.H. and Lee, K.Y. (2018), "The impact of domestic economic policy uncertainty on macro and financial variables", <i>Journal of Korean Economics Studies</i> , Vol. 36 No. 2, pp. 77-112.
	Longstaff, F.A. and Schwartz, E.S. (1992), "Interest rate volatility and the term structure: a two-factor general equilibrium model", <i>The Journal of Finance</i> , Vol. 47 No. 4, pp. 1259-1282.
	Mueller P. Tabbaz Salehi A and Vedalin A (2017) "Exchange rates and monetary policy

Mueller, P., Tahbaz-Salehi, A. and Vedolin, A. (2017), "Exchange rates and monetary policy uncertainty", The Journal of Finance, Vol. 72 No. 3, pp. 1213-1252.

Hjalmarsson, E. (2010), "Predicting global stock returns", Journal of Financial and Quantitative

- Newey, W.K. and West, K.D. (1987), "A simple, positive semi-definite, heteroskedasticity and autocorrelation consistent covariance matrix", Econometrica, Vol. 55 No. 3, pp. 703-708.
- Ng, S. and Perron, P. (1995), "Unit root tests ARMA models with data-dependent methods for the selection of the truncation lag", Journal of the American Statistical Association, Vol. 90 No. 429, pp. 268-281.
- Plosser, C. and Rouwenhorst, K. (1994), "International term structures and the real economic growth", Journal of Monetary Economics, Vol. 33 No. 1, pp. 133-155.
- Rosenberg, J. and Maurer, S. (2008), "Signal or noise? Implications of the term premium for recession forecasting", FRBNY Economic Policy Review, Vol. 14 No. 1, pp. 1-11.
- Rudebusch, G.D., Sack, B.P. and Swanson, E.T. (2007), "Macroeconomic implications of changes in the term premium", Review, Vol. 89 No. 4, pp. 241-270.
- Sharif, A., Aloui, C. and Yarovaya, L. (2020), "COVID-19 pandemic, oil prices, stock market, geopolitical risk and policy uncertainty nexus in the US economy: fesh evidence from the wavelet-based approach", International Review of Financial Analysis, Vol. 70, p. 101496.
- Stock, J.H. and Watson, M.W. (1989), "New indexes of coincident and leading economic indicators", NBER Macroeconomics Annual, Vol. 4, pp. 351-394.
- Wachter, J. (2006), "A Consumption-based model of the term structure of interest rates", Journal of Financial Economics, Vol. 79 No. 2, pp. 365-399.
- Yoon, S. (2018), "Decomposition of term spreads and information content of term premia in Korea", Journal of Money and Finance, Vol. 32 No. 4, pp. 75-114.

Corresponding author

IDQS

Jun Sik Kim can be contacted at: junsici@inu.ac.kr

For instructions on how to order reprints of this article, please visit our website: www.emeraldgrouppublishing.com/licensing/reprints.htm Or contact us for further details: permissions@emeraldinsight.com