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Abstract

Purpose –Marksmanship data is a staple ofmilitary and law enforcement evaluations. This ubiquitous nature
creates a critical need to use all relevant information and to convey outcomes in a meaningful way for the end
users. The purpose of this study is to demonstrate how simple simulation techniques can improve
interpretations of marksmanship data.
Design/methodology/approach – This study uses three simulations to demonstrate the advantages of
small arms combat modeling, including (1) the benefits of incorporating a Markov Chain into Monte Carlo
shooting simulations; (2) how small arms combat modeling is superior to point-based evaluations; and (3) why
continuous-time chains better capture performance than discrete-time chains.
Findings – The proposed method reduces ambiguity in low-accuracy scenarios while also incorporating a
more holistic view of performance as outcomes simultaneously incorporate speed and accuracy rather than
holding one constant.
Practical implications –This process determines the probability of winning an engagement against a given
opponent while circumventing arbitrary discussions of speed and accuracy trade-offs. Someone wins 70% of
combat engagements against a given opponent rather than scoring 15 more points. Moreover, risk exposure is
quantified by determining the likely casualties suffered to achieve victory. This combination makes the
practical consequences of human performance differences tangible to the end users. Taken together, this
approach advances the operations research analyses of squad-level combat engagements.
Originality/value – For more than a century, marksmanship evaluations have used point-based systems to
classify shooters. However, these scoring methods were developed for competitive integrity rather than
lethality as points do not adequately capture combat capabilities. The proposed method thus represents a
major shift in the marksmanship scoring paradigm.
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1. Introduction
Evaluating performance among military and law enforcement personnel raises many
challenging questions. Despite the difficulty of predicting individual preparedness for a
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lethal force engagement, marksmanship is almost universally found as a core measure
across many different defense and security organizations. For both research and practical
evaluations, marksmanship has a major advantage in that it can be readily quantified and
stands among the most frequently measured performance variables in either military or
law enforcement circles. One major disadvantage, however, is that marksmanship
assessments tend to invite endless debate. For example, disputes about the relative merit
of speed or accuracy on a given drill are common, yet they often cannot be solved by direct
comparison. How do you compare a quarter-second time difference to a 10% accuracy
difference on the same drill? Which is better? Answering these questions with subject
matter expertise has been the basis for building marksmanship evaluations since the
inception of firearms.

Tracing the history of marksmanship helps reveal how the system in use today
emerged more than 100 years ago. As early as the American Revolution, marksmanship
tests evaluated the lethality of the marksman. In one instance, the test involved a
company commander sticking a head-sized wooden board on a tree 150 yards away and
drawing a nose in the center—anyone who could shoot the nose could join the company
(Harrower, 1900). Continental rifles depended upon accuracy rather than speed for
lethality, and in turn, their marksmanship tests were designed for accuracy without a
speed requirement. These tests continued largely unchanged for the next hundred years
as accuracy dominated marksmanship tests. Around the turn of the 20th century, the
point-based system emerged thanks in part to a combination of pay bonuses offered to
expert marksmen (36 Congressional Record 798, 1903) and the development of the
National Board for the Promotion of Rifle Practice (GAO, 2019; Rocketto, 2012). Points
became a way of ranking shooters for classification and competition, and yet, the same
point-based classification used for mass production in Second World War (FM 23–10,
1943) remains nearly identical to the current marksmanship scoring employed today
(United States Navy, 2021). Thus, point-based systems developed largely to support
competitive integrity rather than lethality. The problem is that these measurements do
not resemble marksmanship in a lethal force scenario, which may be why marksmanship
assessments have little predictive validity for real-world shooting engagements
(Morrison and Vila, 1998). As such, there remains a significant opportunity to enhance
marksmanship evaluations to the practical benefit of military personnel and law
enforcement officers.

Here we propose advancing marksmanship evaluations by using small arms combat
modeling to create a more holistic representation of human performance. The intent is to
translate raw marksmanship variables into the probability of winning a small arms
combat engagement against some given opponent. This approach simulates several
processes within a lethal force encounter, utilizing speed and accuracy variables in
multiple Monte Carlo simulations to sample possible outcomes given the variance in both
factors. Because the procedure samples from variance in marksmanship observations,
the entire speed/accuracy trade-off debate is circumvented by omitting the need for
arbitrary weighting or point assignment—that is, the Monte Carlo technique lets the
data decide whether speed or accuracy matters more under those conditions. Points
become irrelevant with this method, which would represent the most significant change
for military and law enforcement marksmanship evaluations in more than a century.
Moreover, risk assessment can be performed by measuring the number of casualties
suffered during an engagement with multiple personnel on both sides of the firefight.
Taken together, this procedure has immense practical and theoretical value when
exploring the safety and efficacy of performance among military and law enforcement
personnel.
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2. Fundamentals of modeling armed conflict
Wargaming is a function of strategic and tactical planning. As such, in one form or another, the
processhas existed since the inception of organized conflict. Itsmassive evolution came in the form
of operations research following Second World War (Morse and Kimball, 1951). Operations
research represents a scientific and quantifiable method of providing data for military decision-
makers regarding numerous operations such as troopmovements and supply chain logistics. This
then-emergent and now fully functional field turned wargaming from a thought exercise into a
computable event series that could maximize efficiency and preparation in military operations.

Modeling the dynamics of armed conflict or warfare involves a wide array of factors, but the
art of this modeling is identifying only a select few variables that make a model manageable,
meaningful and useful (Kress, 2012). This guidance suggests that selecting the right variables
for the right model is critical, and there are many different options to consider. For example,
Lanchester models utilize differential equations to model combat between two opponents as a
function of mutual attrition (Atkinson et al., 2012; Kress et al., 2018; Lanchester, 1916).
Extensions of this basic process have been applied to guerilla warfare as well as state warfare
(Deitchman, 1962; Kress and Szechtman, 2009). This modeling approach addresses large-scale
conflict, but not individual service member decision-making. The latter cannot be ignored when
exploring the lethality of a given force. However, addressing individual combatant decisions
requires a significant shift inmethod and focus aswell as the variables involved in themodeling
effort. Perhaps the most common warfighter decision-making model is Boyd’s Observe-Orient-
Decide-Act (OODA) Loop (Osinga, 2007). In this model, combat decisions follow this loop over
and over again as new observations lead to new actions. An individual warfighter gains an
advantage by executing the OODA loop faster than the adversary, making time a critical
component of the model (Breton and Rousseau, 2005). Like combat shootingmodels (Washburn
and Kress, 2009), the individual decision-making process is an abstraction. It might address the
conceptual decision posed to the individual service member, but it lacks the formulaic precision
of large-scale modeling efforts such as Lanchester models.

Despite the valuable insight provided by these various efforts, none address individual
warfighter lethality. Lanchester formulas apply much better to large-scale conflict because they
operate throughattrition, andBoyd’sOODA loop is a conceptualmodelwithout a corresponding
process to quantify the outcomes. A training instructor cannot use either method to calculate
individual warfighter lethality in different scenarios. Likewise, researchers cannot use these
methods to explore the impact of different training regimens or equipment. Somemore complex
simulations exist, such as One Semi-Automated Forces (Logsdon et al., 2008), the Virtual Battle
Space (Buttcher et al., 2022) and Infantry Warrior Simulation (IWARS; Kalnins et al., 2014;
Samaloty et al., 2007). These platforms enable concretemanipulation ofmany different variables
including terrain and maneuver warfare. Still, marksmanship can be underrepresented in these
simulations. IWARS, as one example, uses a body part hit distribution to simulate the impact of
different shots fired to account for casualties and incapacitation (Eaton et al., 2014). This data
becomes essential to simulation outcomes, yet broad distributions do not take into account
human performance differences in marksmanship skill nor adequately provide a way to
evaluate marksmanship data as obtained from the range—one of the most robust sources of
information in military assessments.

Instead, marksmanship performance measurements become limited to what can be
collected and evaluated on the range itself. This effort often needlessly restricts scenarios to
very narrow metrics. For example, marksmanship tests could use a par time, where the drill
measures howmany shots can be put on target in a given time frame. This drill may be useful
as a training exercise, but the only conclusion for lethality would be that five shots are more
lethal than four shots. Alternatively, fixed round counts may prevent stratification between
shooters because the test only says that they meet some standard without providing ameans
to differentiate between them. Critical information is missing. Questions begin with—but are
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not limited to—who achieved the first vital hit? Because speed is held constant, there is no
information about when shots were fired. Does a “hit” actually depict a shot to vital area or
potentially lethal outcome? Hitting anywhere on the target might not adequately represent a
lethal or incapacitating wound, and so the definition of a hit matters as much as the target
type. Similar assumptions are imbedded in this outcome such that five shots cannot truly be
considered more lethal than four shots without also considering the assumptions inherent to
this measure. Therefore, developing a better way to measure individual warfighter lethality
utilizing human performance data is a critical need for ongoing military performance
evaluations.

3. Monte Carlo simulations and warfighter lethality
Monte Carlo simulations represent another method for simulating a combat engagement,
although the technique is underutilized. Common applications involve the effectiveness of
weapon strikes (Chusilp et al., 2014; Hu and Wang, 2013) or even marksmanship with small
arms (Mihaylov, 2017). Some applications emerged during Vietnam War-era modeling to
describe both small unit, tactical-level activities as well as the larger unit and operational-
level activities (Adams et al., 1961; Bonder, 2002; De Laquil, 1980; Monahan and DuBois,
1979). However, these simulations were impractical given the computing power at that time.
Even a moderate number of simulations could take hours or days to complete, and the Monte
Carlo technique requires an increasing number of simulations (corresponding to the variables
being simulated) to ensure an accurate interpretation. This computational power concern is
much less of an issue in the modern era as even modest computers can perform highly
complex calculations that were beyond the reach of the computers at that time.

Currently, theMonte Carlo technique enables converting raw human performance metrics
into a small arms lethality simulation that is both simple to understand and easy to calculate
(Biggs and Hirsch, 2021). This approach uses marksmanship data collected from two
shooters to determine which shooter is more lethal. Marksmanship data must include means
and standard deviations regarding speed and accuracy for the technique to work, or
otherwise have some reason to sample from a known distribution of shooter performance.
Accuracy metrics become interpreted as lethal or non-lethal hits, which requires a conversion
based on whether the targets involved point-based scoring (as might bemeasured with paper
targets) or hit-and-miss scoring (as might be conducted with steel targets). Individual shots
can then be assigned as a lethal or non-lethal outcome. Speed enhances these measures
because two shooters might both fire a lethal or incapacitating round during the simulation,
and when this happens, the faster shooter will emerge victorious.

Accuracy and speed thus become converted from raw performance metrics into a
likelihood of winning the gunfight based on who fired a lethal round first. An individual
simulation can produce one of four possible results between two shooters, Shooter A and
Shooter B:

(1) Shooter A wins by firing a lethal shot when Shooter B misses.

(2) Shooter B wins by firing a lethal shot when Shooter A misses.

(3) Non-lethal draw where both shooters miss.

(4) Lethal draw, where both shooters fire a lethal round in such close temporal proximity
that the two bullets would pass in the air and strike the opponent.

The latter possibility places specific assumptions on the scenario if distances are far and
environmental factors affecting bullet trajectory become involved. Still, when sampled many
thousands of times in a Monte Carlo simulation, raw marksmanship performance metrics of
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speed and accuracy become converted into a percentage chance of winning the gunfight
against a given opponent by measuring the number of simulations resulting in each of the
four possible outcomes. A quarter-second time difference and a 10% accuracy difference can
then be compared directly to determinewhich performance ismore likely to achieve victory in
a head-to-head fight under given circumstances. In turn, performance differences can be
presented in a simple and straightforward manner that a military audience can readily
appreciate without needing to arbitrarily construct a point-based system or intentionally
modifying drills to hold either speed or accuracy constant. That is, rather than providing
results based on statistics such as p-values, confidence intervals and effect sizes, which are
commonly misunderstood by individuals with (and without) significant experience in
statistics (Falk and Greenbaum, 1995; Hoekstra et al., 2014; Oaks, 1986; Simpson, 2020), the
result can be presented in terms of engagement outcomes—which squad is more lethal?

It is alsoworth noting that the technique can be adapted to awide range of scenarios based
on what should constitute a “vital hit” from accuracy data. The four outcomes represent
possibilities, but additional possibilities could also be included in the simulation. For example,
an incapacitating shot might neutralize someone without killing them, which would be
simulated as wounded in action rather than killed in action. Additional inclusions could
represent factors such as body armor or human physiological limitations. The four simplified
possibilities depict an adequate range of outcomes for illustrating how the Monte Carlo
technique can be adapted to warfighter lethality evaluations—not an exhaustive list. The
specific level of complexity is more a function of the marksmanship data available and
question to be answered than any limitation of the Monte Carlo technique.

4. How a Markov Chain enhances the Monte Carlo simulation
Simple Monte Carlo applications can model warfighter lethality by comparing the
performance of two different shooters (cf. Biggs and Hirsch, 2021). However, the technique
proposed is too simple to adequately measure lethality. The Monte Carlo only approach
simulates two shooters firing a single shot in a head-to-head engagement. If they both miss,
the engagement ends in a non-lethal draw. Low accuracy can also produce near-meaningless
simulation outcomes with a high percentage of non-lethal draws. Moreover, combat
engagements incorporate many more actions than this single event. Multiple shots and
multiple personnel should be included in the simulation to make the outcome interpretation
more realistic.

Aproposed solution is to introduce aMarkovChainandmodify the technique. This approach
is similar to, but distinct from, the Markov Chain Monte Carlo (Brooks et al., 2011; Geyer, 1992;
Gilks et al., 1995; Hastings, 1970). Markov Chains are stochastic models that enable simulating a
sequence of events with the current state dependent upon the previous state and probabilistic
transition to the next state (Gagniuc, 2017; Roberts, 1996). Board games played with dice are
excellent examples of Markov Chains as the current state depends on a sequence of previous
events, yet the next move depends upon probability as determined by the dice. Markov Chains
show the transition of states based on an assigned rule and a sample from a probability
distribution. Wrapping this process in a Monte Carlo simulation allows for the entire Markov
Chain to be run many times, producing an approximation for the distribution of squad-level
outcomes while using a sequence of real-world observations in human performance data rather
than arbitrarily assigned transition probabilities. Markov Chains create the sequence, Monte
Carlo simulations approximate the likelihood of outcomes, and human performance data form
the base observations for Monte Carlo simulations.

Technically, this proposed alternative bears greater resemblance to a process known as a
Markov duel (Barfoot, 1974, 1989) or just a stochastic process. The Markov Chain Monte
Carlo method describes a class of algorithms used to sample from a probability distribution
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which is difficult to specify directly. Instead, small arms combat modeling involves a series of
Monte Carlo simulations to enable a more complex series of actions than a simple head-to-
head engagement. The added value is to simulate a series of events using probabilistic
sampling and transition states to determine a more complex outcome than a single shot.
Multiple shots can be modeled, and multiple shooters can be involved in the Markov Chain.

When simulating multiple shots, each individual shot will sample from a speed and
accuracy distribution. Accuracy will determine the effectiveness of given shots, but speed
will act as the tiebreaker if both shooters fire a lethal shot. Speed will also determine how
quickly a shooter moves into the next shot, which could have implications for time accrued in
the sequence. One shootermight have an advantage of firing extra shots and achieving a vital
hit before amore accurate but slower opponent if the time sequence becomes long enough due
to low accuracy. The process would continue until a lethal resolution or all ammunition is
expended, and in the latter case, there should be a termination rule to determine whether the
scenario ends or continues as reloading would then need to be simulated. Multiple shooters
proceed in much the same fashion, albeit the contest is no longer head-to-head. Moreover, the
Markov Chain solution adds a more granular measure of risk estimation. The probability of
victory can be quantified at the squad-level as with the individual level, but as a squad-level
analysis, casualties suffered can be determined along with casualties inflicted during the
engagement. This measurement captures not only the likelihood of victory, but the likely
costs required to achieve said victory.

One critical aspect of the Markov Chain is whether to use a discrete-time chain or a
continuous-time chain (Coolen-Schrijner and Van Doorn, 2002; Craig and Sendi, 2002; Spedicato,
2017; Suchard et al., 2001). Discrete-time chains utilize a pre-determined outcome point to
simulate transition in incremental steps,whereas continuous-time chains donot divide transition
stages into discrete points as the entire process remains a continuous flow. The discrete process
has advantages in certain contexts, such as setting a sequential point between transitions in
disease modeling (Morton and Finkenst€adt, 2005). Until recently, given the logistical challenges
of collecting acoustic shot timing data from a large number of shooters, it is conceivable that
manymarksmanship tests and existing data sets would consist of accuracymetrics only. In this
case, combat modeling could utilize a discrete process when speed information is not available.
Individual shots would then proceed in a tournament-style approach, where a lethal outcome is
checked at each step and the process continues with multiple shots until a lethal outcome is
reached. That said, even if the discrete-time process is possible, it would be theoretically inferior
to the continuous-time process as speed is a critical component of lethality. Speed is the great
tiebreaker—that is, lethal shot accuracy is irrelevant if the enemy shooter fired a lethal shot
faster. Continuous-time chains integrate the speed component and produce a theoretically and
practically superior modeling method.

5. Examples of the small arms combat modeling in warfighter simulations
The next steps are to provide three examples of the proposed modeling technique and how it
can be applied to warfighter lethality. These illustrations should provide depth and context
that enables operations research professionals to utilize the technique when communicating
to a military audience. In these examples, the basic scenario will be two squads engaging in a
firefight at an approximate distance of 100 meters.

Basic assumptions will first be addressed through a process analysis of the engagement.
For Monte Carlo simulations of warfighter lethality, the many assumptions can be broadly
classified into three possible areas: 1) determination of a lethal outcome; 2) scenario
parameters; and 3) data granularity. Next, three different simulationswill be conducted based
on different factors that would affect the modeling technique. The first simulation will
demonstrate the advantage of incorporating aMarkov Chain versus a straightforwardMonte
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Carlo simulation when evaluating warfighter lethality. The second simulation will
demonstrate the advantage of a small arms combat modeling versus a point-based or
percentile-based system in evaluating warfighter lethality. The third simulation will validate
why a continuous-time chain is superior by demonstrating the number of misleading
resolutions in a discrete-time chain when accuracy is even moderately high.

5.1 Assumptions in the shooting simulation
The foremost consideration is how a lethal outcome will be determined in the simulation.
Marksmanship accuracy can be collected in many different ways including hit-or-miss
assessments using steel targets, lethal hit zones on photorealistic targets and point-based
scoring on bullseye targets. Hit-or-miss approaches can bemodeled as a biased coin-flip when
determining accuracy, but point-based scoring requires some necessary conversion to
identify a lethal hit zone (Biggs and Hirsch, 2021). Determining a lethal outcome is a critical
assumption of any modeling effort and should be documented well.

Next, the scenario parameters must be established. These parameters will include factors
such as the number of shooters involved, distance between personnel, whether the shooters
are moving, weapons used, ammunition available before reloading andmanymore aspects of
combat performance which could be included. Complexity is not a weakness of the modeling
effort as any depth of complexity could be simulated. More complex simulations merely
complicate the number of possible transition states, programming needed and computational
time. Even so, the modeling effort can only be as complex as the parameters incorporated,
which is why the scenario itself represents an assumption.

The final category of assumptions involves the granularity of input data in the modeling
effort. If marksmanship data is entered into the simulation, then how the marksmanship data
is collected matters. Single-shot drills could provide variance estimates, but only at the group
level as each individual only fired a single shot so there was no performance variability to
estimate. A drill may collect speed and accuracy data about the general exercise, but the data
collection may not distinguish between differences for a first shot versus an inter-shot
interval. Speed data may aggregate all processes leading up to the trigger press, but the
different exercises may not permit segmenting the data into different cognitive functions
such as visual search behaviors versus distance calculations. Data granularity broadly
describes the precision and detail with which data is collected for simulation input, and how
the data is collected inherently limits themodeling effort. The best result occurs when the raw
data collection is preceded by a systems analysis so that the drills measured adequately
sample the combat marksmanship they are intended to replicate.

For the three modeling examples, the specific scenario will be a combat engagement at
100 meters between opponents firing rifles. Marksmanship data will be simulated from
assumptions that parallel typical marksmanship tests. Specifically, the simulated drill has
shooters fire upon a steel (i.e. hit or miss) target 100 meters from the shooter’s position until
scoring a hit. Data collected includes time to first shot, inter-shot interval (time in between shots
following the initial shot) and hit probability. The speed data permits modeling efforts that
distinguish between behaviors associated with the first shot and behaviors associated with
subsequent shots. This information is important when modeling multiple shooters as it will
provide an option for modeling transitions between targets using first-shot data. Accuracy can
be calculated based onhit probabilitywhich translates to the number of shots fired before hitting
the target. Again, the assumed target is a steel target at 100 meters, which permits only hit-or-
miss data. These outcomes produce a biased coin flip for accuracywhen simulatingwhether the
individual shot successfully struck the target.

Transition states are determined by the accuracy of the shot fired, and this individual
process assumes that the shooter is not eliminated from a squad-level simulation by a hostile
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shooter. The left half of the figure shows how the first shot produces an opportunity to sample
speed and accuracy from a distribution of performance (A), how subsequent shots can be
distinguished from the cognitive and behavioral factors involved in the first shot (B), how
weapon malfunctions provide a further opportunity to model behavior (C) and when a
successful outcome produces a transition to a new target. The right half of the figure shows
Shooter 1 and Shooter 2 firing upon one another in a continuous-time Markov Chain that
produces multiple shots from each shooter before one successfully incapacitates the other at
the end of the string. This flow is dependent upon the presumed data available in the
marksmanship drill as originally collected.

Both accuracy and speed are used to influence transition states. Accuracy determines
transitions based on hit-or-miss to control the individual shot outcome and how speed will be
calculated. Speed determines the time for each individual shot, but speed criteria also determine
when a shooter is eliminated. Any time a hostile opponent fires a lethal shot at the individual (if the
opponent’s shot is faster than the individual can fire a lethal shot), the individual is removed from
the simulation and the hostile selects a new target (see Figure 1). Reloading speed,when applicable,
would be sampled fromanother drill where the shooter is required to reload after hitting the target.
Time to reload canbe sampled as the timedifference betweenhitting the target and the time to first
shot following the reload. The first simulation will utilize a single shooter paradigm, whereas the
remaining two simulationswill involve squads of 14 servicemembers. These simulations include a
latency parameter to allow for overlap between two lethal shots fired in close temporal proximity
that they result in a lethal draw, such as two shotswithin one hundredmilliseconds of one another.
This data utilizes metrics from multiple sources that measured simple response time (RT) from
military service members (Proctor et al., 2015; Vincent et al., 2008, 2012) plus the time taken for a
rifle round to travel 100 m. Finally, the termination rule will be total victory—that is, a squad is
only victorious when the entire enemy squad has been eliminated.

Notably, the specific simulation can be affected by the marksmanship data collected, and
these examples are merely one of many different ways marksmanship data can be collected.
For example, the sampled reload drill incorporates both the time to reload and cognitive
processes in aiming behaviors to acquire a new target following the reload, but the given data
cannot distinguish between them.More complete assumptions could provide amore complete
simulation. However, any lethality modeling effort will be limited by the data available, and
the intent here is to provide information comparable to realistic marksmanship data drills.

Figure 1.
Basic flow of the
Markov Chain process
to convert
marksmanship data
into lethality metrics
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5.2 Example #1: Markov Chains versus standard Monte Carlo in simulating lethality
A critical question involves whether the introduction of a Markov Chain process adds
significant value to the Monte Carlo simulation. This question is answered here by using a
Markov-Chain-inspired process to simulate multiple shots in sequence rather than a single
shot (cf. Biggs and Hirsch, 2021). The multi-shot simulation is intended to clarify the relative
performance difference by reducing the number of unresolved outcomes, most notably the
number of non-lethal draws where both participants miss. Two shooters missing each other
must be incorporated into the modeling as contemporary field firearms performance among
law enforcement suggests hit rates are well below 50% on average (14–38%; Morrison and
Vila, 1998). Not only are missed shots more likely to be accompanied by “follow-up” shots but
given the terminal ballistic realities of individual small arms weapons (influenced by shot
placement, projectile, and distance to the target, etc.), it is reasonable to assume that multiple
shot engagements are the norm rather than the exception. Therefore, if the introduction of a
sequence of events simulating multiple shots both reduces ambiguity in the outcomes, the
simulation outcomes should produce a more informed ratio of Shooter A wins to Shooter B
wins that better resembles a combat engagement.

During these example simulations, Shooter B will have a mean performance advantage of
10% for both accuracy and speed. The standard deviations in all cases will be one-quarter of
the mean value. Shot times differentiate between the first shot and subsequent shots, where
the average speed for subsequent shots is one-quarter the speed of the first shot to simulate
removing cognitive processes. The first shot base speed is 15.00 s for Shooter A (SD5 3.75 s)
and 13.50 s for Shooter B (SD 5 3.38 s). Subsequent shot base speed is 3.75 s for Shooter
A (SD 5 0.94 s) and 3.38 s for Shooter B (SD 5 0.84 s). Shot accuracy is simulated to be the
same for first shots and subsequent shots. Three different shot accuracy scores are simulated
for Shooter A: 25%, 50% and 75%. Shooter B had a 10% accuracy advantage in all cases
(27.5%, 55% and 82.5%). One hundred thousand simulations were conducted for each
condition, and percentage outcomes represent the number of simulations from these 100,000
that produced this result. See Figure 2.

Far left numbers represent the simulated base accuracy for Shooter A in a scenario where
Shooter B has a 10% advantage in both speed and accuracy. The entire band represents the
continuum of possible outcomes totaling to 100%. Blue denotes Shooter Awins outright, grey
denotes a non-lethal draw where no shooter fired a lethal round, black denotes a lethal draw
where both shooters fired lethal rounds and gold denotes Shooter B wins outright. The
graphical advantage of the Markov Chain Monte Carlo is demonstrated by reducing the grey
bands in each accuracy simulation.

Monte Carlo

Monte Carlo

Monte Carlo

Markov Chain

Markov Chain

Markov Chain
75%

0% 50%25%

Shooter A Wins Non-Lethal Draw Lethal Draw Shooter B Wins

75% 100%

50%

25%

Source(s): Figure by authors

Figure 2.
Graphical depiction of

the head-to-head
outcomes using either a
straightforward Monte

Carlo single-shot
simulation (Monte
Carlo) or a Markov

Chain-inspired multi-
shot simulation
(Markov Chain)
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Across all three accuracy rates, the Markov Chain produced fewer non-lethal draws than the
straightforward single-shot Monte Carlo. This understandable difference highlights not only
that simulating a sequence of events is important, but when the difference is most important.
For high-accuracy scenarios, the chain simulationmay not be as important given that the first
shot will likely hit. This specific instance is effectively modeling only speed with accuracy
having a minimal influence. The assumption then becomes whether a single shot is sufficient
to neutralize an opponent, which involves the assumptions underlying the definition of a
lethal outcome rather than individual accuracy. Conversely, in low-accuracy scenarios, a
single-shot procedure is likely to produce an exceptionally high number of unresolved
outcomes or non-lethal draws. This approach does provide some insight into lethality, but as
a combat engagement would never end after a single missed shot from both sides, the
simulation is hardly realistic. A multi-shot engagement provides better insight by resolving
performance differences in low-accuracy simulations.

5.3 Example #2: small arms combat modeling versus point-based lethality estimations
Another advantage of the Markov Chain simulation is that it better represents how combat
marksmanship incorporates each of the skills measured in a marksmanship assessment.
However, it is important to demonstrate this advantage as well as how a point-based system
might produce misleading results. To that end, the second example utilizes the same
marksmanship drill to compare a point-based or percentile-based outcome against a small
arms combat simulation designed to use an operations research analysis of marksmanship
procedures in simulation. See Table 1 for simulated marksmanship data. Equal points
weighting is assumed across the four exercises.

Marksmanship Metrics
First-shot RT Inter-shot Interval Accuracy Reload Time

Average Sample
Mean 14.25s 3.56s 26.25% 13.00s
SD 3.56s 0.89s 6.56% 3.25s

Squad A
Mean 15.00s 3.75s 25.00% 11.00s
SD 3.75s 0.94s 6.25% 2.75s
Percentile 42nd 42nd 42nd 73rd

Squad B
Mean 13.50s 3.38s 27.50% 15.00s
SD 3.38s 0.85s 6.88% 3.75s
Percentile 58th 58th 58th 27th
Outcome Analysis Squad A Squad B
Points-based Results
Simulation Results
Win %
Casualties Sustained

50th percentile

33.00%
8.11

50th percentile

67.00%
6.99

Note(s): Four data points are available from the exercise: first-shot reaction time, inter-shot interval, accuracy
and reload time. Means and standard deviations represent performance from two groups, Squad A and Squad
B. These performances are compared against another simulated average sample to convert performance in
percentile scores. Raw performance is the same as with Example #1 for first-shot RT, inter-shot interval and
accuracy. Across all four exercises, both squads have the same average percentile score of 50th percentile
Source(s): Table by authors

Table 1.
Simulated
marksmanship data
from 100-meter
marksmanship drills
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Assuming points were also assigned to these outcomes based on the percentile score
associated with performance, both Squad A and Squad B would be considered in the 50th
percentile. The lethality interpretation should then be that both squads are equally lethal. By
comparison, small arms combat modeling might produce a different outcome because it is
based on the combat marksmanship process rather than arbitrarily weighting the outcomes
of a marksmanship table. Additionally, this second example will illustrate the advantage of a
squad-level simulation through both casualty estimation and the compounding squad-level
advantage that results from an individual shooter advantage.

According to point-based/percentile rankings, these two squads were equivalent. The
simulation results, however, indicate a two-to-one advantage for SquadB.Thedisparity between
SquadsAandB in the simulation resulted fromSquadBhaving an advantage in skills thatmore
directly impact outcomes in the simulated conflict. Specifically, while SquadA excelled at reload
speeds, Squad B had an advantage in First Shot RT, Accuracy and Inter-shot Interval—all of
which have amore direct impact on outcomes. This is especially true since the longest simulation
lasted 27 rounds (see Figure 3). Assuming a 30-round magazine, reload times would not be a
relevant factor in these simulated conflicts. In addition to achieving total victorymore often than
Squad A, Squad B also took fewer casualties (6.99 compared to 8.11) on average to do so. Small
arms combat modeling thus provided more granular and meaningful analyses than the point-
based system while better-representing combat marksmanship processes and producing a
measure of risk exposure through estimated casualties.

The simulation demonstrates a clear advantage of the small arms combat modeling
technique over a point-based or percentile-based system. First, the simulation better represents
combatmarksmanship by integrating an operations research analysis into the evaluation rather
than an arbitrary point-based or percentile-based system. Factors such as reloading are clearly
not irrelevant, but they may play a more marginalized role in determining warfighter lethality
that does not warrant equal weightingwith another factor such as accuracy. Second, the squad-
level analysis simulates the compounding advantage determined by an individual shooter.
Example 1 demonstrated how a single shooter advantage could be established, but when
simulated in a squad, the superior force can press the advantage as it will continue to grow
throughout an engagement as hostiles are eliminated at a faster rate than allies. Third, this
approach provides an evaluation of risk exposure. Casualties can be estimated alongside the
likelihood of achieving victory, which better depicts lethality by estimating the costs of
achieving a victory aswell as the likelihood of emergingvictorious. These combined advantages
make small arms combatmodeling a superior assessment ofwarfighter lethality compared to an
arbitrarily-weighted, point-based system.
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5.4 Example #3: continuous-time versus discrete-time lethality simulations
A final consideration is why a continuous-time Markov Chain is important to use rather than
a discrete-time chain. The continuous-time chain enables a more complex transition state
between outcomes by incorporating speed data. Especially when multiple shots and multiple
shooters are involved, the continuous-time chain better depicts the fluidity of a combat
engagement. However, it is possible that only accuracy information might be available
following a marksmanship exercise. This approach would represent a discrete-time Markov
Chain as each transition state is dependent upon the individual shot serving as the discrete
event rather than a continuous-time process. The third example will demonstrate the value of
a continuous-time chain compared to a discrete-time chain in demonstrating lethality.

Participants are engaging based on the same marksmanship data of Example 1, limited
only to the 50% base accuracy condition. The discrete-time analysis uses only accuracy, and
so there is no speed to act as a tiebreaker in the event a shot is sampled as lethal from both
shooters. The result would be that they eliminate each other while the rest of the engagement
continues. For the discrete-time chain, casualties were unusually high. More than 11 of the 14
personnel would be killed to achieve a victory compared to the lesser casualties estimated by
the continuous-time chain. The likelihood of victory is also misleading as the discrete-time
chain reduces the chance of victory—due in part to the possibility of all personnel being killed
on both sides of the engagement—while also inflating casualties. See Table 2.

The third simulation demonstrates the value of a continuous-time Markov Chain when
simulatingwarfighter lethality. Specifically, speed and accuracy data present amore decisive
explanation compared to discrete-time data with accuracy alone, which produces a high
number of lethal draws. Individual head-to-head engagements will often end with both
shooters killing the other if base accuracy is high and accuracy is the only determining
variable. In practice, this factor becomes expressed as an overestimation of casualties
suffered to achieve victory and an underestimation of the chances of victory by the winning
squad. Whereas the discrete-time chain measures many outcomes as a lethal draw when
determining based on accuracy alone, the continuous-time chain can use speed to resolve the
outcomewith the faster shooter being deemed the lethal one. It is still possible to have a lethal
draw, where both shooters fire lethal rounds in such temporal proximity that they would kill
one another, but this outcome is much rarer when speed is measured alongside accuracy.
Once again in simulating warfighter performance, the speed-plus-accuracy approach excels
over an accuracy-only approach (cf. Biggs and Hirsch, 2021). Accuracy-only might be used
out of necessity, but analysts should strive to include speed whenever possible while
modeling warfighter lethality.

Outcome
Squad A Wins Squad B Wins Lethal Draws

Discrete-time Chain
Likelihood 33.26% 61.26% 5.48%
Casualties Sustained 11.23 10.55 N/A

Continuous-time Chain
Likelihood 26.12% 73.88% 0.00%
Casualties Sustained 9.07 7.42 N/A

Note(s): Performance data is based on the 50% accuracy condition and the same 10% advantage to both
speed and accuracy outlined in the first simulation
Source(s): Table by authors

Table 2.
Simulated outcomes
from a discrete-time
chain versus a
continuous-time chain
Markov Chain Monte
Carlo simulation
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6. Discussion
Military performance encompasses a wide range of activities, but an important subset of
performance assessment concerns warfighter lethality. That is, identifying how successful a
given force will be in combat against a hostile adversary. While marksmanship data is one of
many variables that could be utilized as a surrogate for lethality, it is often done so in a way
that is at best imprecise, and at worst, not combat-relevant. The current analysis proposes an
alternative approach to evaluatingwarfighter lethality by using small arms combatmodeling
to convert human performance data into a quantifiable chance of winning a gunfight.
The process embraces lethality because it is inherently adversarial. Risk exposure is also
quantified in this process by identifying the likely number of casualties suffered to achieve
victory. Moreover, this proposed approach circumvents arbitrary weighting of different
speed and accuracy drills as well as the entire discussion of speed/accuracy trade-offs by
incorporating both factors into a simulation. These combined factors make small arms
combat modeling a unique method to convey the relative impact on warfighter performance
of different training procedures, equipment or other factors. In doing so, this simulation
approach represents the most significant shift in military marksmanship evaluations since
before Second World War.

Three exercises demonstrated the value of small arms combat modeling in simulating
warfighter lethality. The first exercise demonstrated the value of integrating a Markov Chain
rather than using a simple head-to-head Monte Carlo simulation (cf. Biggs and Hirsch, 2021).
A Markov Chain enables simulating multiple shots, which produces much more decisive
resolutions as there are far fewer non-lethal draws, especially when accuracy is low. The second
exercise demonstrated how the simulation is superior to a points-based or percentile-based
system. Two squads with the same percentile ranking on average yielded drastically different
outcomes in simulation—specifically, one squad had a two-to-one advantage in likelihood of
achieving victory despite their similar points-based ranking. This evidence also demonstrates
the need formore operations research analysis inmarksmanship as ameansof supportingbetter
warfighter lethality evaluations. The third simulation demonstrated the value of a continuous-
time Markov Chain rather than a discrete-time Markov Chain. Discrete-time chains may be
necessary when accuracy information is the only marksmanship data available, but they have
significant disadvantages when compared with continuous time chains as they overestimate a
number of casualties and underestimate advantage for the winning squad. Continuous-time
chains better depict the fluid nature of combat and the importance of speed when providing
decisive outcomes in evaluating lethality. Each exercise points to the multiple advantages of
using small arms combat modeling as an enhanced method of converting marksmanship data
into warfighter lethality evaluations.

Overall, the Monte Carlo simulation approach also better represents lethality than typical
marksmanship assessments. Whereas many tests rely on points-based systems or must
arbitrarily hold either speed or accuracy constant to assess the other component (e.g. par time
drills, shooting exercises with no time constraint), this simulation-based approach
incorporates both speed and accuracy to give a more comprehensive view of lethality.
Moreover, the sampling technique inherently incorporates variance into the outcome.
Consistency of performance matters—particularly at scale and over time—and no shooter
will win 100% of the time in a combat engagement. Incorporating variance and expressing
lethality as a chance of victory embraces this concept and emphasizes that variance is a
critical measure of performance. Additionally, the model produces a measure of risk
assessment through casualty estimations. These various factors provide more context and
depth when evaluating warfighter lethality than marksmanship scores alone could provide.

The applications also extend into multiple uses when evaluating performance, especially
in areas of training and equipment. If two novel training initiatives are conducted under
similar conditions, their respective effectiveness can be compared by modeling what a
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combat engagement between these opposing forces would look like. Rather than the arbitrary
debate about the relative merits of each course, the outcome can be quantified into the chance
of victory with the superior course producing themore lethal warfighters. Another use would
be in equipment evaluations. Performance can be measured with different rifles or different
equipment and the data can be used to model lethality with the different equipment options.
This possibility further demonstrates the value of quantifying warfighter lethality. That is, a
given trigger may enable shooters to fire more rapidly or better night optical devices might
enable faster first hit times. The performance benefit can be quantified as some increased
percentage chance of winning the engagement, which can be directly contrasted with the
equipment cost. Put simply, does the command believe a 5% increased chance of victory is
worth the $5,000 investment, or would they rather invest $20,000 for new equipment that
gives a 10% increased chance of victory? These performance benefits can be placed into the
context of lethality when briefed to senior leadership to aid decision-making. A third option
involves setting a standard for performance by having a population measure. If you set the
expectation of a near-peer adversary as the competing group, then the percentage of
engagements won represents the individual or squad score. That is, if the individual wins
94%of their engagements in simulation, then the individual would be in the 94th percentile of
shooters. An organization can set a reference population as the expectation and compare the
individual shooters or squads based on the number of engagements they would win to
determine a score rather than developing an arbitrarily-weighted points system.

Although there are clear advantages to utilizing a Monte Carlo simulation when evaluating
warfighter lethality, these advantages should be viewed in light of their potential drawbacks. The
primary drawback is the requirement of a comparison group. This lethality simulation can be
biasedby selecting aweaker opponent, therebymakinga force seemmore lethal than theyactually
are. However, lethality is inherently a confrontational proposition that requires an adversary—a
shooter cannot reasonablybemeasured for lethality in contrast to a targetwhichdoesnot fire back.
Choosing the right opponent is only a potential weakness and not a guaranteed failing. Another
issue involves the marksmanship data used for simulation. The intent is to collect individual
marksmanship data that can be used for squad-level lethality simulations, but the simulation can
onlybeasprecise as thedata entered into it.Marksmanshipdrills shouldbe evaluatedalongside an
operations research analysis of the marksmanship process so that optimal exercises can be
designed for assessments and entered into models. Marksmanship operations research and
systems analyses are sorely lacking from the respective fields currently, which focus more on
large-scale conflict than individualwarfighter lethality (cf. Lanchestermodels;Atkinson et al., 2012;
Kress et al., 2018; Lanchester, 1916). In turn, individualmodeling effortsmust evaluate the available
drills andhow thedatamight be entered intomodels. Fortunately, this limitation also represents an
opportunity that can be resolved with future operations research.

Of course, one notable limitation involves the nature of target range accuracy and combat
accuracy.Marksmanship ranges often limit themanyvariables for numerous reasons, including
controlled assessment and safety. Actual combat will engage a number of different factors not
represented in the marksmanship range (Grossman, 2009; Grossman and Christensen, 2004).
This limitation applies to any marksmanship range or assessment. Still, the goal of the present
work involved extracting more meaningful conclusions from marksmanship data.

7. Future directions
The current evidence supports small arms combat modeling as a way to extract more
meaningful information frommarksmanship data, but it also represents a simplistic application.
ThisMarkovChainmodel is relatively easy to createwith fast run times to obtain results, both of
which are admirable features.However, therearemany future directions that could substantially
enhance the basic technique to supplement more complex small arms combat modeling efforts.
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The most notable change should be to adapt marksmanship data into agent-based simulations
(Kiesling et al., 2012; Railsback et al., 2006; Siebers et al., 2010; Woodaman, 2000). Rather than
allow the outcome to be dependent uponmarksmanship data alone, agent-based simulations can
incorporate autonomous agents to better understand the complex interactions involved in
combat. In turn, the Markov Chain supports a larger simulation with more freedom and
autonomy between actors that can incorporate many more variables. Deep learning techniques
could further supplement the knowledge gained from a stochastic duel (Gupta et al., 2022).

Still, the question becomeswhat variables to address and howbest to introduce them into the
Markov Chain. Again, the current effort largely revolved around extracting more valuable
interpretations from marksmanship data, yet it must be noted that the often desired one-shot/
one-kill dynamic of marksmanship accuracy is a vaunted goal in combat actions. Most shots are
fired without ever striking the target. Instead, the volume of fire could offer a psychological
advantage even if only a small percentage of rounds ever hit an effective target (Hall and Ross,
2009). Suppressive fire is likewise another tactic intended to produce a valuable opportunity
without ever intending for the rounds fired to strike a target (Teo et al., 2022). Neither volume fire
or suppressive fire is represented in the current technique, albeit both demonstrate how the
intent of shots fired can involve more than simply striking the target. Another critical factor
could involve target acquisition, which can be important in determining the winner of a
stochastic duel (Wand et al., 1993). The shooter who acquires the target first has a notable
advantage in a combat scenario. This aspect both better resembles actual combat procedures
and could further identify related factors that could influence the outcome, such as how
attacking from a hidden position achieves a notable advantage in a Markov model (McNaught,
2002). Each variable represents one of many factors that could be introduced into the base
Markov Chain technique used here to produce a more effective combat simulation.

8. Conclusion
Ultimately, modeling armed conflicts will continue to be a critical function in operations
research with amilitary focus. Small arms combatmodeling provides amethod to convert the
most readily available surrogate measurements for lethality, marksmanship data, into
quantifiable models of winning a firefight. This approach fills a vital need of modeling
warfighter lethality at the individual or squad level rather than the large-scale level of full
companies or divisions engaging in combat. Squad-level analyses might become particularly
relevant in operations research involving counter-terrorism activities by focusing on these
smaller engagements with non-state actors (cf. Arney and Arney, 2013; Kaplan and Kress,
2005; Kress and Szechtman, 2009). Still, the core advantage is in how small arms combat
modeling quantifies lethality. Any speed/accuracy trade-off or point-based weighting is
circumvented as the simulation process inherently utilizes both to provide a quantifiable
chance of winning the engagement while simultaneously capturing risk exposure through
the expected number of casualties to achieve victory. These simulation methods provide a
means to fundamentally shift marksmanship evaluations from the points-based methods
used to collect data for nearly a century. Taken together, this work advances the operations
research of small arms combat as well as advancing the definition of lethality by
demonstrating the need for speed, accuracy and variance in performance analyses.
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