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Abstract

Purpose –This paper aims to examine how the regional variable in country conflict modeling affects forecast
accuracy and identifies a methodology to further improve the predictions.
Design/methodology/approach – This paper uses statistical learning methods to both evaluate the quantity
of data for clustering countries along with quantifying accuracy according to the number of clusters used.
Findings –This study demonstrates that increasing the number of clusters for modeling improves the ability
to predict conflict as long as the models are robust.
Originality/value –This study investigates the quantity of clusters used in conflict modeling, while previous
research assumes a specific quantity before modeling.
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1. Introduction
War is a messy business. Not only does war pay a cost in current lives, but it impacts future
lives, fortunes and honor (prestige). Even though the 1940s event in Germany occurred over 70
years ago, people continue to have mental anguish concerning the religious genocide of the
Holocaust. In Japan, survivors ofNagasaki continue to face increased cases of cancer, especially
leukemia, well past the initial loss of homes and family. The Iraq and Kuwait conflict saw oil
resources razed lest the enemy control them, regardless of the economic impact on the world.
Today, political conflict in Yemen stunts development as factions vie for official government
legitimacy. Yes, war claims more than lives; it seeps into every aspect of living.

It is no wonder that from the highest levels of power to the lowest trenches of poverty,
researchers seek and strive to understand the constructs that perpetuate the flames of war –
much time, resources and research drive modeling country conflict and peace. The irony,
however, is that research often takes a narrow view of conflict to assume it is about the
distribution of economic resources and the game theory of information (Brito and Intriligator,
1985). For example, Gartzke focused mainly on economic contributions of capital
interdependence (Gartzke et al., 2001), while Goldstone stressed political factors such as
regime type and state-led discrimination (Goldstone et al., 2010), and Østby narrowed in on
social inequalities (Østby, 2008). Yet, country conflict has always been more complex
than that – it is a product that incorporates both political, economic and social aspects.
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While investigating significant variables toward predicting country conflict, five proxies
continue to surface: Polity through regime types, gross domestic product (GDP) per capita,
conflict history, population size and regions. However, many non-government organizations
expend significant time and funding resources in developing data on specific datasets. All the
variables except regional groupings trace to an open-source database. Regions, however, are
often qualitative in their construct while at the same time showing integral toward increasing
prediction accuracy (Hegre et al., 2013; Ahner et al., 2015; Leiby, 2017). Although prior
research categorizes countries into regions, there remains a gap to uncover what drives this
region proxy and why it is so important. One hypothesis states that regions represent a
complex mixture of variables that produce a common culture, driving how other variables
influence country instability. In other words, the region proxy sets the level of coefficients for
all other proxies in a robust country conflict prediction model. The task then is to develop
these regions to maximize the predictive influence of other independent variables.

This research considers far more variables than previously considered in the literature to
develop a whole culture concept while also forming regions to better model country conflict
through cultural boundaries. Most notably, it investigates the optimal number of regions to
consider within modeling and where to delineate the geographic boundaries for each region,
while also considering data similarity.

2. Literature review
Multiple country conflict researchers demonstrate the benefits of a region component toward
modeling predictions. Over a decade ago, Goldstone noted that different regions facilitate
different propensities for instability and therefore used regions as a control for building the
modeling dataset (Goldstone et al., 2010). His research explicitly noted five regions with
different propensities for instability and made efforts to account for similar “regional and
temporal distributions” in both the control and problem datasets (Goldstone et al., 2010).
Although the modeling approach was global, a single model to predict “all of the onsets of
instability that occurred worldwide” for a given time period, the results concluded regional
differences with striking results showing the Africa and East Asia region having higher risk
of instability onset within a five-year prediction (Goldstone et al., 2010). An interesting
contribution from the research focused on modeling conflict in a single region, their specific
case study being sub-Saharan Africa. It was noted that by modeling by region rather than
globally, model accuracy increased. However, regions for every country were not addressed.

Shortly thereafter, researcher Hegre demonstrated a modeling approach that included
regions as predictor variables (Hegre et al., 2013). Instead of the five regions annotated by
Goldstone, Hegre defined nine regions revised from the United Nation’s regional definitions.
He posited that the region variable improves the quality of predictions by maximizing the
explained variance in the dataset, but questioned the duration of this assistance for distant
forecasts (Hegre et al., 2013). The basis for the claim revolves around how long the
heterogeneity of the regions may remain and surmises that prediction benefits may degrade
after a decade (Hegre et al., 2013).

A third example of regionalmodeling surfacedwith theBoekestein logistic regression study,
where his study investigated five different categories of a regional variable (Ahner et al., 2015).
The study concluded that a six-region categorization presented the best modeling accuracy for
the modeling employed, specifically a categorization inspired by a 2006 talk presented by
statisticianHans Rosling. Rosling’s presentation dissected a six-region categorization asserting
that semi-geographical aggregation of datahides the diversity of country-level and evenwithin-
country-level data (Rosling, 2006). His examples, such as population vs fertility rates, or child
survival vs GDP, foster conclusions that social changes precede economic changes while
economies trend toward homogeneity. Despite the theme that inter-national culture may be too
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diverse to conclude national culture (discriminant properties ranging between societal and
economicvariables), other studies usinghierarchical clustering techniques refute any claim that
national culture cannot be a worthwhile analysis unit (Minkov and Hofstede, 2012). Notably,
missing fromRosling’s presentationwas rationale for the categorization of the regions. Despite
the lack of rationale for the categorizations, Boekestein’s use of the region as a variable assisted
in reducing both false negatives and false positives within a global model. Furthermore, when
treating each region as its own model with tailored classification cut-off parameters at 0.28,
model accuracies increase by at least 5% (Ahner et al., 2015).

Other works have improved upon Boekestein’s research while maintaining the
consistency of using the same six distinct regions for modeling (Leiby, 2017; Shallcross
and Ahner, 2019). Shallcross incorporated a dependent variable, dividing the modeling
dataset into in-conflict and not-in-conflict Markov states, focused on the transitional state of
conflict rather than the current year’s static state, further improving prediction results
(Shallcross and Ahner, 2019). Later, Neumann sought to find further improvements by
reevaluating region categories using both the transitional-dependent variable from
Shallcross and her new modified k-means approach for clustering countries (Neumann
et al., 2022). This capitalized on Hegre’s idea that the heterogeneity of the regions may change
over time. Using amodified k-means algorithm, Neumann improved prediction accuracies by
as much as 2.5% by redefining six United States Combatant Command regions using a
combination of political, military, economic and social variables (Neumann et al., 2022). Her
combination of 30 diverse variables transformed into 9 principal components (PCs) alludes to
the idea of a cultural association between countries. Previous studies have shown support for
cultural clusters as a combination of religion, language, geography, ethnicity and economics,
among other factors (Gupta et al., 2002; Minkov and Hofstede, 2012). Gupta’s study classified
10 distinct clusters through discriminant analysis indicating shared societal goals or values
between countries, culminating toward the conclusion that regions are a relevant unit of
analysis and a reliable study indicator (Gupta et al., 2002).

Unresolved is a consensus on the number of cultural clusters, or regions, and how they
should be formed. Neumann assumed six clusters using a mathematical approach based on
k-means clustering that maintains consistency with the current number of US-defined
geographic commands. However, concerning the Gupta study, his mathematical approach
using discriminant analysis concluded that more distinct clusters may exist. Another study
recognized the inconsistency of published reports toward identifying the number of distinct
cultural clusters, which varied from as little as six toward asmany as 18 clusters, and applied
a hierarchical mathematical approach settling on 11 global clusters (Ronen and Shenkar,
2013). Although these studies apply mathematical approaches to defend their conclusions,
they were limited in howmany culture-defining variables they considered. Neumann’s study
presented the most culture-defining variables, considering up to 30 variables. This study
greatly increases the culture-defining variables considered, and thus the complexity, by
considering 932 possible variables.

Capitalizing on the increased availability of possible variables, this study seeks to address
assumptions feeding prior work. First, does the increase in variables considered assist in
producing better country conflict prediction regions? Second, what number of regions
produce the best country conflict prediction models? And third, what country regional
groupings produce superior country conflict prediction forecasts?

3. Methodology
The dataset contains variables on 173 United Nations’ member countries whose population
total exceeds 250 K as of 2016. The Political, Military, Economic, Social and Information
(PMESI) Database, which is the Air Force Institute of Technology’s repository of several
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open-source databases, provided the 932 independent variables. Any variables missing
values from their open-source databases were imputed using multiple imputation.

Feature extraction and clustering techniques require complete-case data, so observations
with missing values must be discarded or estimated. List deletion of missing values seriously
degrades the ability to detect effects of interest as various statistical estimates would be
severely biased (van Buuren, 2018). The alternative, considered to be the method of choice for
addressing country conflict missing values, multiple imputation, estimates a plausible value
that is statistically valid for the missing data (Rubin, 1996). This study used MASS-impute,
a type of multiple imputation, to complete the dataset (Leiby and Ahner, 2023). Originally,
30 datasets were created to account for the stochastic nature of imputation but due to the
computational complexity of the method’s algorithm, only one dataset was explored for this
investigational study employing a new approach to the region generation problem. However,
the preliminary exploration of parameters for the number of PCs used all 30 datasets.

Consistent with Neumann, the methodology follows a process of transforming the
variables into PCs before running a clustering algorithm. Also, as with Neumann, the last
period of observation generates the clusters, in this case, the year 2015. Once the countries are
clustered into new regions, each region is modeled independently through logistic regression
to predict each country’s conflict state. Within the methodology, there are four types of
control parameters: 2 types of dependent variables, 7 quantities of PCs, and up to 10 possible
clusters with andwithout geographic connections. This totals 1,925 different regional logistic
regressionmodels. Furthermore, this study applies an automated stepwise logistic regression
approach using the Tjur coefficient of determination to select appropriate independent
variables for the regional models. This approach also expedites the modeling-building
process in comparison to the seven-step purposeful selection of covariates approach found in
(Hosmer et al., 2013), as used by both Shallcross and Neumann, who built only 24 models.

The observation period consists of 10 years, employing 2006–2012 as a training set and
2013–2015 as a three-year validation set. The logistic regression modeling assesses two
variants of dependent variables, both of which are derived from the Heidelberg Institute for
International Conflict Research (HIIK). HIIK maps the highest level of conflict intensity score
to each country according to a conflict means and conflict consequences approach
(Heidelberg Institute for International Conflict Research (HIIK), 2020). HIIK is an alternative
to other possible conflict variable databases such as the Correlates of War Project or the
Uppsala Conflict Data Program, which focus on casualties per event year and delineations
between inter- and intra-state conflict. One of the dependent variable variants, static-state,
borrows fromBoekestein (Ahner et al., 2015), where HIIK intensity levels 0–2 are coded as not-
in-conflict and levels 3–5 are coded as in-conflict. The other variant, transition-state, borrows
from Shallcross (Shallcross and Ahner, 2019) and Neumann (Neumann et al., 2022), where the
Boekestein static-states transition its conflict state given the nation’s previous year conflict
status. Nations that transition into or remain not-in-conflict are coded as not-in-conflict, while
nations that transition into or remain in-conflict are coded as in-conflict (Shallcross and
Ahner, 2019). An overview of the new methodology is illustrated in Figure 1.

3.1 Dimension reduction
By increasing the number of variables, challenges arise concerning applying clustering
techniques. Kriegel investigated clustering high-dimensional data and imparted four key
considerations (Kriegel et al., 2009). The four key issues when employing clustering
techniques are typically referred to as the curse of dimensionality. The first issue revolves
around the ratio of data elements (p) to observations (n), the general principle that when p > n,
there are not enough simultaneous equations to solve for a solution. Kriegel noted that
clustering enables “users to identify the functional dependencies resulting in the dataset,” but
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as more variables are added, the complexity of the relationships increases making it difficult
to visualize interesting insights (Kriegel et al., 2009). The second issue states that as more
variables are considered, the idea of proximity or distance becomes less meaningful because
of increasing dimensionality; “the distance of the farthest point and the nearest point
converge to 0” (Kriegel et al., 2009). The third issue considers the difference between global
and local subspaces, where variables are more likely to be irrelevant in certain subspaces, in
turn, increasing the amount of noise at the global level (Kriegel et al., 2009). The fourth issue
dives into the redundancy of variables, thus artificially weighting distances, from a
correlation perspective (Kriegel et al., 2009). The advice to overcome all four issues remains
the same though: narrow variable selection below 10–15 variables. Beyer demonstrated that
using more than 15 dimensions produces meaningless results (Beyer et al., 1999). The Beyer
study focused on distance measures within clustering algorithms, showing that this
multi-dimensional upper bound is agnostic to distance type if the clustering method used
employs distance as a metric. The premise is “that the minimum and maximum distances
from the query point to points in the dataset become closer and closer as dimensionality
increases” (Beyer et al., 1999). Through simulation, the dataset size and the data distribution
remained consistent showing that the primary restrictor is dimensionality and that the
inflection point is between 10 and 20 dimensions (Beyer et al., 1999).

There are two overarching mechanisms toward reducing dimensions in a dataset:
feature selection and feature extraction. Feature selection selects and only uses the most
relevant variables in the dataset. However, this study dramatically increases the number of
variables for consideration; therefore, using feature selection would disregard a core study
motivation by ignoring the influences of over 900 additional variables. On the other hand,
feature extraction reduces the number of dimensions by considering all 932 variables,

Figure 1.
Overview of
methodology
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creating a small subset of new variables as linear combinations of the original variables.
With the aim to retain as much of the original information captured while reducing
the overall dimensions of the dataset, feature extraction is preferred and used for
this study.

For the clustering portion of the study, there is no dependent variable or current
meaningful label, so unsupervised approaches as opposed to supervised approaches, like
discriminant analysis, facilitate feature extraction. Principal component analysis (PCA) and
factor analysis (FA) cover the two primary unsupervised approaches. PCA seeks to solve the
optimization problem of developing linear combinations of all variables subject to loading
scalars that sum to one, while accounting for variance (James et al., 2013). Meanwhile, FA
models the correlation structure of all variables to illuminate rotatable latent variables with
associated factor loadings (Hastie et al., 2009).

PCA assumes that the dataset is multivariate normal and has been standardized, so
scaling is not a factor. Therefore, variables are first assessed for normal distribution and
transformed as appropriate in the pre-processing stage. Standardization is also applied
during pre-processing to alleviate any scaling biases between independent variable
measures. FA assumes the dataset has no outliers, multicollinearity is manageable, and
there is no homoscedasticity between variables. Management of the assumptions was
dealt with through various measures such as Box–Cox normal distribution
transformations, Min-Max standardization scaling and exploring the removal of
variables with high pair-wise correlation. Feature extractions seek to reduce the number
of variables to somem< p, where pwould be the full 932 variables andm being the number
of newly created variables that explain most of the information. Due to FA havingmultiple
solutions because of its rotatability, PCA is preferred for this study. For PCA, there are p
number of PCs, but m number of PCs explaining the interesting information (information
with limited amounts of white noise) through representing much of the variation in the
data (James et al., 2013). There is no ideal solution to identify the optimal number of PCs,
but there are a battery of methods from which to form a consensus or at least a plausible
range (Cangelosi and Goriely, 2007).

For this study, the following tests influenced the number of PCs retained: the combined
assessment of the percent variance explained, the broken-stick model, the Jolliffe
modification to the Guttman–Kaiser rule and the log-eigenvalue diagram. For PCA, the
ratio of each eigenvalue to the sum of all eigenvalues captures the variance explained in
the model. The goal contends to use as few PCs as possible to explain the variance in the
dataset. Typically, a predetermined ratio of 90% total explained variance is sought after,
but for data with more white noise, the threshold can be lower. Cangelosi notes that in
practice, common thresholds are between 70% and 95% (Cangelosi and Goriely, 2007). The
broken-stick model, presented by MacArthur during a bird study, compares eigenvalues
against an apportioned resource distribution (Cangelosi and Goriely, 2007). The
distribution follows (Equation 1), where p is the number of partitions and j is
subinterval for the corresponding k-th element component. The element components are
compared to the eigenvalue loadings, retaining the number of components that have a
greater value than the broken-stick elements. The Guttman–Kaiser rule simply states that
interesting components have eigenvalues obtained from the correlation matrix exceeding
unity. In practice, the rule may be too conservative, so Jolliffe’s modifications lower the
threshold to 0.7. Finally, the log-eigenvalue diagram, which is a modification of the scree
plot, plots the log of eigenvalues against the number of components. This modified way of
looking at eigenvalues can clarify some of the subjectivity inherent in the scree plot. The
log-eigenvalue diagram displays the eigenvalue such that the smaller values will
eventually form a geometric line, identifying those components that are conjectured to be
noise (Cangelosi and Goriely, 2007).
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Ek ¼ 1

p

Xp

j¼k

1

j
(1)

Equation (1): Broken-stick distribution

3.2 Clustering and geography
Two objectives motivate developing regions. The first objective seeks to apply mathematical
rigor to the prediction models where studies (Ahner et al., 2015; Leiby, 2017) demonstrate that
grouping countries provide higher prediction results over just one global model. The second
objective seeks to apply practical rigor to the models where political, economic or military
applications may only be useful for countries that are contiguous.

Neumann studied the dichotomy of the objectives through her modified k-means
approach. Her algorithm weighted the distance formula in k-means clustering between the
Euclidean distance of the first two PCs and the Euclidean distance of each country’s center of
power (the capital city) (Neumann et al., 2022). K-means finds a local optimum influenced by a
specified initial assignment of countries to clusters. This constrains comparisons between
different numbers of clusters and infers that there is no consistency between observing
countries within, for example, a 6-cluster solution to a 7-cluster solution. First, because local
and global optima are not the same, initial assignment matters. Second, changes in the
number of regions influence associations between countries due to the mechanism of the
within-cluster variation vs the without cluster variation. Any major shifts between country
associations then are hard to explain when comparing different k solutions. There are two
factors in the Neumann study that this research challenges.

The first factor is that the modified k-means approach does not always produce
contiguous regions. In her final groupings, Morocco and Libya are attached to Combatant
Command (COCOM) 1 with Algeria from COCOM 2 separating their contiguousness.
Additionally, Tunisia and Albania are attached to COCOM 2 with Italy from COCOM 3
separating their contiguousness. These anomalies in contiguous regions arise from,
practically speaking, developing two separate models, and finding a compromise between
them. K-means develops clusters only by observing the dimensional likeness within the
dataset. Themodified approach presents a solution to combine a geographic constraint, but it
is still a compromise between the data solution and the geography solution.

The second factor addresses the contiguousness from a different aspect – the
geographic constraint has not been defined and therefore left to the modeler to approach a
solution. Neumann used a Great Circle distance between country capitals (Neumann et al.,
2022). Where this may be a valid approach, distance biases may occur when the capitals
are not centrally located within the country. For example, Russia borders 14 countries, but
Moscow is 3,200 miles closer to Minsk, Belarus than Beijing, China, where both countries
border Russia. It is uncertain if an assumption of centralized centers of power factored into
the weights between the mathematical rigor and the practical rigor of the Neumann study.
This research proposes that using country borders overcomes center-of-power
assumptions when considering contiguous regions. To assist in capturing many of the
island nations, a country is considered bordering if the country pair’s borders are within
100 km of each other. For island nations further than 100 km from any other country, the
next closest country is considered bordering. One exception is made to the border matrix;
the border connection between Russia and the USA is severed to assist in keeping North
America and Asia as separate geographic regions. This exception assists leaders in setting
policy and strategy as the Atlantic and Pacific Oceans present natural lines of
demarcation.
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Hierarchical clustering accommodates these two new factors innately, making it
preferable over developing yet another modified k-means approach. Unlike k-means, where
observations are initially (sometimes randomly) assigned one of (predefined k) k-number of
clusters, hierarchical clustering starts with each observation as its own cluster and then
combines “like clusters” or “two least dissimilar pairs” together until only one cluster exists.
An output of this process is a tree-like diagram called a dendrogram. A k-number of clusters
can be obtained from hierarchical clustering by stopping the algorithm prematurely. “Like
cluster” observations are defined as the two cluster observations that share the least distance
when calculating the Euclidean distance difference of their associated variables (or PCs).
To accommodate the geographic constraint, the algorithm considers a connection
parameter, which only assesses the Euclidean distance difference for observations that
have valid connection points.

3.3 Model building and comparison
Referencing Figure 1, independent variables may undergo transformations to meet
assumptions for PCA. A Box–Cox transformation assists in transforming the variables to
appear as close to a normal distribution as the data allows. The data is then standardized
using amin-max approach placing all values between the range of 0 and 1. Once the datameet
the assumptions of standardized, multivariate normal, PCA is applied to create the specified
number of PCs that are used for the dimensions establishing clusters. Agglomerative
hierarchical clustering, using a ward linkage, builds a tree to identify which countries belong
in which regions. The clustering is completed using both no additional connectivity
constraints as well as using a country border matrix connectivity constraint.

Once the countries are identified by region, individualized regional models are created
through a stepwise logistic regression method. Independent variables are assessed for
increasing themodel accuracy as evaluated through theTjur coefficient of determination. For
the transition-state dependent variable, two models are developed for each region: given in-
conflict static-state and given not-in-conflict static-state. The selection of independent
variables comes from the pre-transformed datasets, where the model is limited to amaximum
of 10 variables to curb overfit. Unlike linear regression, logistic regression does not have a
model-fit measure such as adjusted-R2 to assess variable selection. One pseudo-R2 method
that does not use maximizing the likelihood function, which coincidentally is also what
logistic regression uses to developmodel coefficients, is the Tjur statistic (Allison, 2013). Tjur
saw similarities between graphically comparing differences in two “parallel histograms” and
the graphical check of the Hosmer–Lemeshow test (Tjur, 2009). This led to Tjur developing
the coefficient of discrimination, D, which characterizes “a good model” of high explanatory
power that predicts a high percentage of true positives and true negatives (Tjur, 2009).
In previous research, an AUC-ROC was considered among goodness measures which value
both positive and negative cases equally but suffer when applied to unbalanced data. For
imbalanced data, AUPRC is heralded as a superior metric, but only when one case class is
deemed important (Baillie et al., 2021). The Tjur statistic provides an alternative to the area-
under-the-curve debate. The Tjur statistic, as seen in Equation (2), identifies statistically
significant variables for the models, where bπi1 and bπj0 denote the fitted values for successes
and failures, respectively, of N true successes and M true failures, for the binary outcomes of
logistic regression.

D ¼
PN

i¼1bπi1

N
�
PM

j¼1bπj0

M
(2)

Equation (2): Tjur coefficient of discrimination
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Accuracy from the confusion matrix quantifies the predictive power of the models.
A weighted and unweighted (average) accuracy score provides insight into the analysis. The
weighted score uses the number of observations per region to provide perspective into how
many country-year pair observations predict accurately, whereas the unweighted score
averages the accuracy of all regional models for the specified modeling parameters.

4. Results
Predictive accuracy remains the core focus in assessingmodels for country conflict. Focusing
on just the dependent variable, the naı€ve approach assumes that transitions into or out of
conflict are rare occurrences (“black swans”) presenting an assumption that countries will
remain in their current state for the next three years. Therefore, anchoring on the last year in
the training set (the year 2012), the following three years of naı€ve predictions would be
accurate at 87.3%, 85.0% and 86.1% for a cumulative average of 86.1%. Considering the 932
independent variables through the stepwise logistic regression modeling approach, some
global predictions using either 6 or 7 clusters achieved similar results. A global prediction
averages all regional predictions given the number of worldwide clusters and dependent
variable states. One global prediction may incorporate a single cluster; therefore, the global
prediction and a 1-cluster regional prediction would be the same. However, another global
predictionmay incorporate 6 clusters; therefore, the global predictionwould be the average of
6 regional predictions. If the global model uses the transition-state dependent variable, 12
regional predictions aggregate for the global prediction, as each region would have a
prediction given a not-in-conflict static-state model and given an in-conflict static-statemodel.
At the regional level of modeling, 296 of the 1,925 regional models surpassed the naı€ve global
baseline. However, it is noted that prior research had lower goal thresholds – a goal to be
above 80% (Goldstone et al., 2010; Ahner et al., 2015; Leiby, 2017; Shallcross andAhner, 2019),
which this research achieved in the majority of models.

4.1 Pre-processing results
ABox–Cox transformationwas applied to each variable to optimize the normality of the data.
The lambdas of the transformation ranged between 16 and 18, where the mean and median
lambdawere 0.45 and 0.18, respectively. Although some of the transformations required large
lambdas, over 20% of the variables assessed for less than 0.5 of a linear transformation,
which means basically no transformation is required at all to assume normal.

PCA demonstrated superiority over FA for the dataset. After optimizing the normality of
the data through Box–Cox transformations and standardizing the data, the explained
variance after 15 variables for PCA was 71.3%, whereas FA was only 54.8%. The first
principal component explained 36.6% of the variance, whereas the first latent variable of FA
only explained 18.7% of the variance. Due to more information being retained in the reduced
dimensions of PCA, the study used the PCA technique for the remainder of the study.

Observing the tests to determine the number of PCs to keep, the range varied between 6
and 32 components. The two statistical methods producing the maximum and minimum
range of PCs for consideration were the broken-sticks model and Jolliffe’s method, retaining
32 (range between 30 and 32) and 6 components, respectively. Cangelosi noted that his
research observed that the broken-stick method consistently retained the fewest number of
components compared to other techniques (Cangelosi and Goriely, 2007), yet in this research,
the broken-stick method retained the most PCs. This is most likely due to a much larger
number of variables in the original dataset compared to Cangelosi, where examples by
Cangelosi weremuch smaller on a scale of 10s rather than 100s considered here. Still, 32 out of
932 components is a 96.6% reduction in dimensions, which is a better reduction than
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Cangelosi demonstrated in his study. Figure 2 illustrates that although 32 components (black
lines) statistically quantify the threshold (red line, broken-stick distribution), graphically, it
could be argued that little is gained by retainingmore than 16 components, with how close the
distribution lines are to each other. The Jolliffe method result of 6 PCs remained consistent
across all 30 datasets and presented theminimumnumber of components to retain. Ironically,
this is also contrary to reports that the Jolliffe method in practice errs on retaining too many
components (Cangelosi and Goriely, 2007). Again, the recommendations were made on much
smaller dimension sizes with the example examining only nine variables (Cangelosi and
Goriely, 2007) compared to our over 900 variables.

The log-eigenvalue diagram, as illustrated in Figure 3, presents a subjective interpretation
of how many components should be retained. The log theory conjectures that noise decays
geometrically, meaning the graphical representation of noise in the data should manifest as a
straight line as shown in red. Taken strictly, the graph demonstrates a maximum of 18, but
taken less strictly, a minimum of 10 components could possibly suffice.

Considering the mentioned three tests, there was no consensus between them, which
suggested the need to explore multiple values: 6, 10, 16, 18 and 32. Retaining too few PCs
results in a loss of information, while retaining too many attaches meaning to noise, or as
Franklin refers to it, underextraction and overextraction (Franklin et al., 1995). The
percentage of variance explained after six components is only 60.02%, as seen in Figure 4,
which does not meet the window of explained variance desired – between 70% and 95%. It is
not until 14 components are included that the lower threshold is achieved at 70.50%. The
disparity of results from the preliminary tests does not come to a consensus, therefore, all
suggestions for the number of PCs are tested in the modeling phase for further examination.
An additional point was added for testing on the higher end of the scale making the PCs
quantities tested 6, 10, 14, 16, 18, 21 and 32.

Figure 2.
Broken-stick model
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Later in the study, it is recommended that 10 PCs are optimal for certainmodels. Using 10 PCs
would be a 98.9% reduction in dimensions while explaining 66.4% of the total variance, as
seen in Table 1. Comparing PC description names between this study and Neumann, only the

Figure 3.
Log-eigenvalue
diagram

Figure 4.
Percent explained
variance
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“unemployment” PC explicitly stands out in the comparison. However, other PCs were
implicitly similar to Neumann’s top principal component quantified as “Quality of Life”
comes frommultiple variables: birth rate, fertility rate, infant mortality rate, youth bulge and
population growth (Neumann, 2018). These variables are similar to the description of our
“Population Sizes,” which quantifies percentages across population generations affected by
birth rates, fertility rates and so forth. It is also noted that Neumann presented conflict
intensity, the data for the proxy-dependent logistic regression variable, in the clustering data,
where this study chose to keep that influence apart from the clustering segment. Overall, this
study observed more economic influences explaining data variation than what Neumann
observed, suggesting that modeling regions may be more economic-based rather than a
hypothesized holistic culture. This may be in part to the dataset containing 558 economic
indicators (60%), whereas Neumann’s dataset contained only 4 (13%). This may also explain
why Rosling’s regions worked well when combining countries together, like the
Organizations for Economic Co-operation and Development.

4.2 Modeling and validation results
Three model types demonstrated the selected combinations of PCs and cluster
configurations: static-state with no connection (SSNC), transition-state with no connection
(TSNC) and transition-state with geographic connection (TSGC). Accuracy results for all
combinations are in Figure A1. For all model types given the available data, the clustering
parameter had more influence on the predictive outcome than the PCA parameter. The best
training accuracy results for the no connection model demonstrated a preference toward few
PCs with static-state demonstrating an average training accuracy of 97.8% with 10 clusters
(95.6% weighted) and the transition-state demonstrating an average training accuracy of
98.5% with 8 clusters (96.9% weighted) for 6 PCs. The geographic connection model
demonstrated a preference formore PCs, where 18 PCs demonstrated both 100%average and
weighted training accuracy for both 9 and 10 clusters. As far as predictive power to assess the
number of PCs to anchor analysis on, the average weighted test accuracy of all cluster
parameters was examined; results are in Figure A2. Choosing between different numbers of
PCs resulted in a maximum difference of only 2.7% predictive accuracy, suggesting that
more PCs, for the regression models, explored and the available variables in the dataset, may
add little value. In fact, adding 18 or more PCs saw decreases in predictive accuracy
confirming the curse of dimensionality with clustering. Referencing the charts in Figure A1,
all the validation results share similar patterns except for using six PCs in the SSNC model
type. All models demonstrated severe diminishing returns for average validation accuracy

Principal component Leiby descriptions % Variation Neumann descriptions % Variation

PC1 Private Non-Guaranteed Debt 36.6 Quality of Life 24.0
PC2 Population Sizes 8.5 Military and Government 11.0
PC3 Amortization 6.0 Freedom 7.8
PC4 Consumption Spending 3.8 Unemployment 5.6
PC5 Imports 2.7 Trade and Religious Diversity 5.1
PC6 Unemployments 2.1 Anarchy Government 4.9
PC7 Natural Resource Values 1.9 Arable Land 4.3
PC8 Interest-Free Loans 1.8 Fresh Water 3.8
PC9 Purchasing Power Parity 1.7 Conflict Intensity 3.3
PC10 Publicly-Guaranteed Debt 1.3
Total Variation 66.4 69.8
Dimension Reduction 98.9 70.0

Source(s): Table by authors

Table 1.
Principal components

descriptions and
variance
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when increasing the number of clusters, whereas the SSNC model type with six PCs did not
demonstrate this trend of diminishing returns. It may be assumed that 59.8% explained
variance for the 6 PCs model may not be enough information to provide discriminating
models.

The highest overall accuracy models were compared between the three types as seen in
Figure 5: 16 PCs for SSNC, 14 PCs for TSNC and 10 PCs for TSGC. In all three cases, there is a
point where the average accuracy (blue line) diverges from the weighted accuracy (orange
line). These divergences, to no surprise, are due to small sample sizes within a region. For
example, SSNC developed regions with over 150 observations up through 3 clusters. At four
clusters, a divergence is detected from which a fourth cluster contained only 21 training
observations and 9 validation observations. Despite the small number of observations, the
models continue to increase in training accuracy while only predicting at naı€ve levels. The
dramatic decrease in accuracy at nine clusters is due to a region becoming small enough to not
have observations containing both states. One of the regions contained only one state from
which a model cannot be generated (default accuracy 5 0). This is consistent with drops in
accuracy for the transition-state models as well, except the occurrence happened with less
clusters due to the splitting of models given their static-state. The geographic constraint
minimized this occurrence by maintaining larger observation sizes per region cluster.

4.3 Discussion and a heuristic model
Although the basic validation results did not surpass the naı€ve three-year prediction, most of
themodels for training accuracy demonstrated potential for good forecasting. However, there
are some insights observed within this exploratory study in concert with the refined
Shallcross (Shallcross and Ahner, 2019) and Neumann (Neumann et al., 2022) studies.

Shallcross proposed that using the dependent variable transition-state would increase the
accuracy of the models (Shallcross and Ahner, 2019), with Neumann demonstrating a
comparison between the Shallcross transition-state study and the Boekestein static-state
study increasing by 6% (Neumann et al., 2022). Although the gains in this study are not as
pronounced, the weighted training accuracy as observed in Figure 5 demonstrated the

Figure 5.
Model type’s accuracy
across clusters for best
PCA parameter
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potential for better models using the transition-state dependent variable, especially when
employing over five regional clusters. Shallcross tailored study years for training and
validation sets, meaning not all regions were consistent for every model. Neumann included
an interpolation year for validation rather than only extrapolating validation years. This
studywas not able to tailor years to each region to fine-tune eachmodel, as the objectivewas a
wide exploration of multiple quantities of PCs representing the explained variance in the
dataset and adjusting the number of clusters to gain insight into quantifying the number of
appropriate cluster regions. The data, however, did demonstrate that using a 6-region world
model may be too conservative and that more regions may produce better models.

Another insight that may explain the less pronounced confusion matrix accuracy gains
considers the non-stationarity of data. As countries transition into conflict, the quality and
accuracy of the datamay become suspect, which alsomay explain why in-conflict predictions
are typically lower than their not-in-conflict counterparts (Shallcross and Ahner, 2019).
Recalling the method setup, the validation of the data is considered a three-year period.
However, as seen in Table 2, years trained has an impact on the prediction of subsequent
years. Using 9 years of training data (2006–2014) increases the variation to the dataset
leading to lower training accuracies, however, the inclusion of two additional years (2006–
2012 vs 2006–2014) increases the validation prediction by 2%.Unfortunately, this can only be
assessed for past data and identifying factors to help assist in selecting appropriate training
data periods for future data is outside the scope of this study.

One of the issues pointed out when using Neumann’s modified k-means approach was the
non-contiguousness that could occur. Using the hierarchical clustering method with
connectivity should solve this problem. However, a constraint was to force a disconnect
between North America and Asia. Relying on scikit-learn’s structured agglomerative
clustering requires the connectivity matrix to be complete (Pedregosa et al., 2011). When the
connection matrix is disjointed, the algorithm overrides any connection point constraint and
uses dimensional Euclidean space to pair observations. It was assumed that the algorithm
would override the connectivity matrix when all possible connections were made, which for
the supplied matrix would be the last connection. However, for the TSGC 6-cluster model, a
connection betweenAsia and SouthAmerica wasmade on the 10th to last pairing resulting in
a noncontiguous region, as seen in Figure 6.

A gem of hierarchical clustering is that the dendrogram product provides an insightful
benefit to the construction of the regions. Pairs that are connected early portray closer
dimensional Euclidean distance than pairs made later. This assisted in developing a heuristic
approach model to observe increasing the number of regions above six. The heuristic
approach observed three rules. First, the regions would adhere to the strict connection
constraint provided through the geographic connection matrix. Second, each region would
retain at least six training observations. Third, the regions are created using the dendrogram
by moving the “least likely” trees until the first two constraints are satisfied. These “least

Averaged Weighted
T. Years V. Years T. Accuracy (%) V. Accuracy (%) T. Accuracy (%) V. Accuracy (%)

2006–2012 2013–2015 97.5 76.8 94.7 80.4
2006–2012 2013 97.5 76.8 94.1 80.3
2006–2014 2015 96.4 78.8 92.6 82.1

Note(s): T. – Training, V. – Validation
* TSGC Model with 6 Regions
Source(s): Table by authors

Table 2.
Global accuracy for
different validation

periods
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likely” trees refer to the fusion of observations through dimensional Euclidean differences
rather than the geographic connection constraint. Normally when viewing a hierarchical
clustering dendrogram, all tree branches would spread upward in the same direction, but
using a connection constraint, some branches become inverted to satisfy the connection
constraint as well as the dimensional likeness. Observing these inverted branches highlight
potential countries tomove to other clusters as their dimensional likeness is weak and heavily
constrained by the geographic connection.

Although TSGC results demonstrated increased accuracy up to 10 clusters, the heuristic
map resulted in only 7 regions. Clusters 8–10 contained small amounts of observations when
broken down between state-country pairs resulting in infeasible regions. For example,
Cluster 8 included Cuba, Haiti, the Dominican Republic, Jamaica and the Bahamas. However,
logistic regression requires observations of both categories of the binary dependent variable.
For TSGC, the rare observation needed is the change in transition-state given the prior year’s
static-state. As a 1-region global model, this occurs 15% of the time, but the distribution of
transitions is not observed equally as the world is divided into regions. Therefore, Cluster 8,
along with Clusters 9 and 10, did not contain enough observations to meet the second
heuristic rule. The branch was also inverted, suggesting a defense for potentially reassigning
its subsequent cluster connection.

The new heuristic-constructed regional map is presented in Figure 7. The model
incorporated the three gained insights: transition-state dependent variable combined with
more than six regions, a 9-year training set (2006–2014) with a 1-year validation set (2015),
and ensuring all regions are contiguous and well represented with observations. The results
demonstrated a high training accuracy of 96.1% with an 85.4% validation accuracy, as seen
in Table 3. It is worth highlighting that the in-conflict accuracy is greater than the not-in-
conflict accuracy, overcoming quality and accuracy issues innate to in-conflict data.

5. Summary
The goal of the research sought to identify an optimal number of clustering regions and
delineate regional boundaries for conflict modeling. The additional constraint of
contiguousness assumes that geographic proximity is as or more important than country

Figure 6.
6-Cluster TSGC
regional map
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indicators alone. Furthermore, maintaining contiguous modeling regions assists decision-
makers with distributing resources and aid.

This study challenged two assumptions from Neumann producing insights otherwise left
unknown in prior research. The first challenge is the k-means approach, which assumes a
pre-defined number of regions. The second challenge is the method to provide contiguous
regions. The use of hierarchical clustering allows researchers to observe the pairing of
countries based on political, economic and social aspects. Of the three aspects, this research
demonstrated that economic indicators provide a large bulk of the influence for establishing
dimensions that feed the country clustering method. Demonstrating an economic heavy

Training Validation
Region Transition-state Obs Accuracy (%) Obs Accuracy (%)

1 Not-In-Conflict 45 100.0 4 100.0
2 Not-In-Conflict 98 96.9 9 100.0
3 Not-In-Conflict 212 100.0 23 73.9
4 Not-In-Conflict 84 100.0 9 77.8
5 Not-In-Conflict 73 82.2 6 83.3
6 Not-In-Conflict 214 91.1 18 72.2
7 Not-In-Conflict 148 96.6 13 69.2
1 In-Conflict 27 100.0 4 75.0
2 In-Conflict 91 97.8 12 100.0
3 In-Conflict 22 100.0 3 100.0
4 In-Conflict 69 100.0 8 75.0
5 In-Conflict 98 100.0 13 92.3
6 In-Conflict 218 90.8 30 86.7
7 In-Conflict 158 90.5 21 90.5
Total Not-In-Conflict 95.3 82.4
Total In-Conflict 97.0 88.5
Total Global 96.1 85.4

Note(s): Training Years (2006–2014), Validation Year (2015)
* TSGC Model with seven Modified Regions
Source(s): Table by authors

Figure 7.
Modified 7-cluster

transition-state
regional map
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influence for partitioning the world into regions supports other successful country conflict
region studies relying on Rosling’s partitions. This became more apparent only when
increasing the number of independent variables from 30 to 932. Although increasing the
number of variables also increases the number of dimensions clustering methods need to
contend with, feature extraction assists in reducing over 96% of the dimensions, solving the
curse of dimensionality.

Many parameters are involved in constructing country conflict models. This research
explored an automated, data-driven framework to increase country conflict-state predictive
accuracy one to three years into the future. Although other metrics quantify the statistical
viability of a model, predictive accuracy provides practical usefulness for decision-makers.
Given the available variables in the dataset, this research provides insight into the desirable
number of PCs to use for clustering countries into regions. The methodological setup further
provides insight into segmenting the world into regions for modeling. Using hierarchical
clustering highlights not only which countries should define a region, but also how those
regions formed. The formation aspect adds value over other clustering methods, such as
k-means clustering, which suffers from local optima based upon the initial random state. The
dendrogram facilitates observing which countries have the strongest cultural connection to
one another, adding yet further information toward constructing regions constrained outside
dimensional Euclidean distance.

This explorational study highlighted classifying countries into regions by balancing
cultural boundaries with geographical boundaries. Russia geographically borders both
Kazakhstan and Belarus, but the cultural boundary between Russia and Kazakhstan is much
greater than that between Russia and Belarus. Given the available dataset, Russia’s first
connection to form regions always culturally links to Kazakhstan. However, the
discriminating link for Belarus between Region 4 and Region 7 for the modified 7-cluster
transition-state global model is weaker yet places it in Region 4. Similarly, Australia remains
the last country to link to Region 7, leading toward a hypothesis that geographic boundary
heavily influences the link rather than cultural factors. These insights are easily seen through
hierarchical clustering’s dendrogram, balancing geographic and cultural boundaries.
As regions play a significant role in developing accurate prediction models, the
methodology of using hierarchical clustering becomes valuable.

Several obstacles still remain when implementing hierarchical clustering to produce
regional maps. Practically speaking, the Pacific Ocean creates a natural delineation between
regions, but algorithms do not always handle forced connections (or disconnections) as
expected. An adequate distribution of observations, in addition to number of country
observations, plays a vital role in adequate statistical modeling when constructing the
regions. The severe drop in global accuracy after a sufficient number of clusters clearly
demonstrates this influence as clusters increase hindering the distribution of observations.
Solving both maintaining strict adherence to the geographic connection constraint and
maintaining adequate observations for robust modeling may require a modified hierarchical
clustering algorithm for conflict modeling. Once solved, more emphasis on the selection of
variables for the logistic regression models, possibly through purposeful selection, should
further increase the global predictive output of the model.

Finally, the research exposed the assumption that emphasizing a 6-cluster regional map
for conflict modeling may be a limiting factor. This hierarchical approach methodology
demonstrates that regional model accuracy increases when exploring a greater number of
regions. Specifically, the modified seven-region map garnered high training accuracy with
competitive validation accuracy. These insights will propel advances in conflict modeling
and assessments, ultimately assisting leaders to have a greater understanding of threats and
vulnerabilities within their regions so that they may more effectively plan, prepare and
palliate possible threats.
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Figure A2.
Training and test
model accuracies given
PCA parameter
averaging across
clusters
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