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Abstract

Purpose –This study aims to examine ship loading strategies during large-scale military deployments. Ships
are usually loaded to a stowage goal of about 65% of the ship’s capacity. The authors identify howmuch cargo
to load onto ships for each sailing and propose lower stowage goals that could improve the delivery of forces
during the deployment.
Design/methodology/approach – The authors construct several mixed integer programs to identify
optimal ship loading strategies that minimize delivery timelines for notional, but realistic, problem variables.
The authors study the relative importance of these variables using experimental designs, regressions,
correlations and chi-square tests of the empirical results.
Findings – The research specifies the conditions during which ships should be light loaded, i.e. loaded to less
than 65% of total capacity. Empirical results show cargo delivered up to 16% faster with a light-loaded
strategy compared to fully loaded ships.
Research limitations/implications – This work assumes deterministic sailing times and ship loading
times. Also, all timing aspects of the problem are estimated to the nearest natural number of days.
Practical implications – This research provides important new insights about optimal ship loading
strategies, which were not previously quantified. More importantly, logistics planners could use these insights
to reduce sealift delivery timelines during military deployments.
Originality/value – Most ship routing and scheduling problems minimize costs as the primary goal.
This research identifies the situations in which ships transporting military forces should be light loaded, thereby
trading efficiency for effectiveness, to enable faster overall delivery of unit equipment to theater seaports.

Keywords Ship loading, Stowage goals, Military logistics, Mixed integer programming, Correlation,

Regression, Chi-square tests

Paper type Research paper

Introduction
During US military deployments, large amounts of unit equipment flow from the Continental
US (CONUS) to overseas locations. About 90%of the deploying unit equipment is transported
on sealift vessels or, more commonly termed, ships (US Headquarters of the Navy, 2020; US
Joint Chiefs of Staff, 2013b). Although airlift can transport equipment anywhere in the world
within several hours, only sealift can move the millions of square feet of military equipment
during contingency operations (US Joint Chiefs of Staff, 2013b). The US Transportation
Command is responsible for scheduling the military’s unit equipment onto a limited fleet of
sealift ships that must cycle between CONUS and theater ports to deliver the deploying
ground forces. Determining the amount of unit equipment to load onto ships, frequently
termed the stowage goal, is an important operational problem for the US Transportation
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Command. Analysts at the command refer to this problem as the Military Ship Loading
Problem (MSLP). The focus of this research is solving the MSLP using several mixed integer
program (MIP) variants to obtain exact solutions. Then, we provide statistical analyses of the
empirical results.

Various ship characteristics are pertinent to the MSLP. First, military deployments
involve several types of sealift ships, primarily roll-on/roll-off (RO/RO) ships and
containerships (US Joint Chiefs of Staff, 2005). The MSLP focuses solely on RO/RO ships,
because unit equipment is transported predominantly using government-owned and
commercially available RO/RO ships (US Joint Chiefs of Staff, 2013b). Second, each ship
has unique characteristics in terms of speed, capacity, loading rates (i.e. how much cargo can
be loaded onto the ship over time as the ship is on berth) and starting location. Ship speed and
capacity are known with certainty, but loading rates and starting location are less certain.
Ship loading rates depend on cargo availability at the CONUS port and port infrastructure
capabilities. Ship starting locations depend primarily on whether the ship is government- or
commercially owned. Government-owned ships are layberthed on the East, Gulf and West
Coast of the CONUS and are typically ready within 5–10 days after being notified of a large-
scale contingency (US Department of Transportation, 2021). Conversely, ships owned by
commercial partners are usually actively moving cargo and thus could be anywhere in the
world when a large-scale contingency begins. After being notified of the deployment,
commercial ships must offload their cargo at the nearest world-wide port prior to sailing to
the nearest assigned CONUS seaport, which could take up to 30 days. In addition to ship
characteristics, the MSLP requires additional problem data, including the amount of unit
equipment deploying, the number of berths available at CONUS seaports, the distance
between CONUS and theater seaports, and the number of ships available to transport the
cargo. These remaining inputs for the MSLP are described later in the paper.

Military planners use doctrinal sources and operational experience as the basis for most
logistics problems, including the MSLP. First, RO/RO ships are the primary ships used to
deploy initial unit cargos (e.g. tanks, towed artillery, armored fighting vehicles) because these
types of cargos are rolling stock, which can be driven (vice crane-loaded) onto the ship using
side or end ramps (US Joint Chiefs of Staff, 2013b). No ship loading plan will occupy 100% of
the ship capacity, because some empty space is needed for bracing, tie-down, maneuvering,
shape of the cargo and contour of the ship (Kurinovich, 2005). The cargo space left unoccupied
after the ship is considered fully loaded is termed broken stowage (US Joint Chiefs of Staff,
2016). However, planners usually refer to the percent of ship capacity that can be occupied
with unit equipment, which we simply call the stow factor. Historical planning stow factors
have ranged from 65 to 75% during the past 30 years (Kurinovich, 2005). Higher stow factors
correlate with fewer ship voyages, whereas lower stow factors correlate with more ship
voyages. In real-world sealift operations, such as Operation Enduring Freedom (OEF) and
Operation Iraqi Freedom (OIF) in the early 2000s, planners used a ship load planning stow
factor of 65% due to less-than-optimal cargo loading processes as well as the rolling stock
being formed into task force packages (Kurinovich, 2005). The research provided in this
paper largely supports doctrinal recommendations for the 65% stow factor as a general
planning factor, given operational realities; however, we provide empirical evidence that
supports deviations from the 65% stow factor. Specifically, we identify circumstances in
which ships should load to less than 65% of the ship capacity.

The MSLP is most similar to ship loading and scheduling problems in the literature that
focus on flexible ship cargo loads, i.e. instances in which the amount of cargo loaded onto
ships is a decision variable. Research on flexible ship cargo sizes is comparatively rare in the
literature compared to other ship loading and scheduling problems related to the MSLP, such
as problems involving split cargo loads. Split cargo load problems allow the total cargo
requirement to be broken into smaller requirements delivered by multiple transport assets
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over time. In addition to flexible and split cargo loads, the MSLP also considers a
heterogeneous fleet of ships, constrained port infrastructure in terms of limited CONUS berth
space and that ship loading and unloading times depend on the amount of cargo on the ship.

The primary difference between the MSLP described in this research and the various
flexible cargo loading and split cargo load problems is that the focus of the MSLP is speed of
delivery, whereas the focus of most flexible or split cargo problems is increased profits or
decreased costs, i.e. cost-efficiency considerations. Weschler (1976) was the first to formally
propose the primacy of combat effectiveness and, from a logistics standpoint, speed of
delivery over financial, or cost, considerations during times of war. Indeed, military doctrinal
sources continue to suggest the primary goal of military deployment operations is the fastest
possible delivery of unit equipment given available transportation assets (US Joint Chiefs of
Staff, 2013a, 2019), i.e. the measure of success is effectiveness in terms of faster deployments
instead of measures of efficiency or cost. In fact, the US military is generally not concerned
with monetary costs during a major deployment. Instead, delays to a unit’s deployment
timeline must be minimized to enable rapid mobility (US Joint Chiefs of Staff, 2013a). In terms
of transport modes and speed of delivery, US Joint Chiefs of Staff (2013b) notes that sealift is
the fastest transport mode for the delivery of large amounts of unit equipment, whereas airlift
is the fastest mode for small amounts of deploying cargo. The priority for faster delivery over
cost efficiency is lacking in the existing flexible cargo load and split cargo load literature.
Thus, the present research adds the military’s perspective to the body of literature for ship
loading and scheduling.

The purpose of this research is to provide new insights about ship loading strategies
during military deployments. The remainder of this paper is organized as follows. First, we
review the pertinent literature most similar to the MSLP. Second, we describe the data
required for the MSLP and then construct several math programs, specifically MIPs, to
identify the optimal amount of unit equipment to load onto each ship for each sailing as the
entirety of the unit equipment is delivered. Third, we provide an empirical analysis with
notional, but realistic, problemdata. Because the input data can vary, we construct a two-level
experimental design and then solve the MIP for each experimental run. Fourth, we conduct
statistical tests on the solution outputs, including regressions, correlations and chi-square (χ2)
tests. Next, we discuss our findings in the context of similar problems studied in the literature.
Finally, we suggest possible extensions to the MSLP for future researchers.

Literature review
As noted previously, the lines of research most related to the MSLP are flexible cargo loads
and split cargo loads for ship scheduling problems. Table 1 compares the attributes of the
literature most related to the MSLP, including the solution method (e.g. exact or heuristic),
objective function and key problem characteristics such as flexible cargo loads, split cargo
loads, heterogeneous vehicles, constrained infrastructure and load/unload times dependent
on the amount of cargo loaded. For additional details, the interested reader is directed to the
summary papers by Song (2021), Christiansen et al. (2013) and Christiansen et al. (2004), which
collectively cover the previous 30 years of research for ship routing and scheduling problems.

Flexible cargo loads have been studied for over 20 years. Fagerholt and Christiansen (2000a,
b) examined a ship scheduling problem inwhich the ship holds could be configured for flexible
amounts of cargo. The authors used a set partitioning approach to limit ship wait time and
under-used cargo capacity while recognizing that time at port depends on the amount of cargo
loaded. Then, Brønmo et al. (2007) provided the first definition of “flexible cargo sizes” for a
short-term tramp ship scheduling problem. The authors developed a MIP, which they solved
with a set partitioning approach to determine how much extra cargo to load onto a fleet of
heterogeneous ships to increase profits for the company. Next, Al-Khayyal and Hwang (2007)
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used a network flowmodel while allowing a heterogeneous fleet of ships to be partially loaded.
Similarly, Brønmo et al. (2010) expanded on previous work with flexible cargo loads while
specifically studying the balance between extra profits from additional cargos versus the
additional loading and unloading time incurred by ships taking on larger cargo loads. Most
notably, the researchers highlighted that the time a ship spends in port depends on the amount
of cargo loaded, which is central to the MSLP. Similarly, Korsvik and Fagerholt (2010) noted
that load and unload times depend on quantity loaded in their study of ship routing and
schedulingwith flexible cargo quantities. The authors employed a heuristic using a tabu search
technique to solve the problem. Hennig et al. (2015) considered both flexible and split cargo
loads in their path flow solution for a crude oil tanker routing and scheduling problem.
Rodrigues et al. (2016) considered port infrastructure restrictions, specifically ship draft limits
at certain ports, and flexible cargo loads in their solution for a maritime oil transportation
problem. Next, Stanzani et al. (2018) provided exact and heuristic solutions for howmuch crude
oil to carry on tankers for a Brazilian oil company while considering a heterogeneous fleet of
ships and a limited number of berths. More recently, Santos et al. (2020) formulated exact and
heuristic solutions for a deep-sea maritime cargo routing problem for a heterogeneous fleet of
ships with draft limits, flexible cargo sizes and split loads.

Although flexible cargo loading is the key component of the MSLP, the assumption that
cargos can be split between multiple ships is another important aspect of the MSLP. The
heterogeneous fleet of ships will conduct multiple sailings, or cycles, to deliver the immense
amount of unit equipment for the deployment. The literature on split loads for transportation
problems ismore extensive than for flexible cargo loads. Nowak et al. (2008) provided seminal
work on pickup and delivery problems with split loads by quantifying benefits based on load
size, cost and frequency of common origins and destinations. Aswith theMSLP, Korsvik et al.
(2011) noted for split cargo load problems that the time to load and unload cargo depends on
the quantity loaded. Andersson et al. (2011) noted that split loads are most common in land-
based logistics problems. The authors provided an exact method for shipping problems and
concluded that load splitting results in more port calls and port costs, but also increased
profits. Then, St�alhane et al. (2012) considered a split load shipping problem with a
heterogeneous fleet via an exact, path-flow formulation solved with a branch-and-price
algorithm. Next, Sahin et al. (2013) provided a heuristic solution for the multi-vehicle pickup
and delivery problem and concluded a 32% cost savings with split loads, but noted that the
savings depend on the spatial distribution of pickup and delivery locations. Chen et al. (2014)
provided a heuristic solution using variable neighborhood search for a truck transportation
problem involving split loads. Lee and Him (2015) provided exact and heuristic solutions for a
shipping problem with a heterogeneous fleet of ships with split cargo loads. Similarly,
Haddad et al. (2018) provided exact and heuristic solutions to multi-vehicle pickup and
delivery problems with split loads for homogenous vehicles. Wolfinger (2021) noted that load
and unload times depend on the amount of cargo while providing exact and heuristic
solutions for a trucking problem assuming split cargo loads. Likewise,Wang et al. (2021) used
a generic algorithm with tabu search to solve a trucking problem with split loads. Finally,
Wolfinger and Salazar-Gonz�alez (2021) provided an exact solution for a shipping problem
with a heterogenous fleet and split cargo loads.

The previously mentioned research with flexible or split cargo loads eachminimized costs
as the objective, whereas the objective of the MSLP is to minimize delivery timelines. The
notable exception is thework of Santos andBorenstein (2022), who provided an exact solution
via a fuzzy weighted max-min method for a shipping problem with flexible cargo loads, split
loads, heterogenous fleet of ships and infrastructure constraints. More importantly, this
recent workminimized late deliveries for some cargo in addition tominimizing costs. As such,
this work most closely aligns with the MSLP, although the MSLP allows the load and unload
times to vary based on the amount of cargo loaded on the ships. In addition, several other
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researchers have incorporated time delays or minimized late deliveries similar to the MSLP
without considering flexible or split cargo loads. For instance, Campbell and Savelsbergh
(2004) noted that increasing the amount of cargo on vehicles, and thereby takingmore time to
load the vehicle, could result in delivery delays. Also, V�elez-Gallego et al. (2020) focused on a
truck loading problem and allowed for a minimum capacity on trucks (as opposed to full
cargo loads) and stressed that early delivery was desired. Similarly, the primary goal of the
MSLP is the earliest possible delivery of unit equipment to theater. Despite the diverse body
of work related to the MSLP, to the best of our knowledge, no previous research has
incorporated all aspects of the MSLP, including flexible cargo loads, split cargo loads,
heterogeneous fleet of ships with different sizes and speeds, ships executing multiple cycles
between CONUS and the theater during the deployment, load and unload times that depend
upon the amount loaded and ships competing for limited CONUS berth space.

Methods
TheMSLP is to assign unit equipment to a fleet of heterogeneous ships cycling between CONUS
seaports and theater seaports to minimize the delivery timeline. The methods applied in this
research include formulating and solving MIPs followed by statistical tests of correlation and
association. As presented in the literature review, the use of MIPs to find exact solutions for the
MSLP is consistent with the methods used by other researchers to solve similar problems. The
problem assumptions, notation, MIP formulations and outcome measures are provided next.

Assumptions
The following simplifying assumptions for the MSLP are used for this research. First, all
timing aspects of the MSLP are in full day increments, i.e. fractional days are not allowed.
Second, this research does not distinguish between CONUS seaports, which would add
complexity to this initial examination of the MSLP. Instead, the total number of berths on the
dominant coast are aggregated across the available CONUS seaports. The dominant coast is
defined as the CONUS coast (West or East) nearest the overseas theater. Several operational
realities support the aggregation of berths on the dominant coast, including (1) the transit
time between CONUS and the theater seaports is nearly identical (less than a day difference in
transit time) for each seaport on the dominant coast and (2) ships can be diverted to an
alternative seaport on the dominant coast if the primary seaport has no available berth space.
The third simplifying assumption for the MSLP is that sail times going from CONUS to
theater are identical (less than a day difference in transit time) to sail times going from theater
to CONUS, i.e. the direction of sailing has no effect on transit time. In reality, prevailing winds
and weather disruptions could result in different sail times between CONUS and the theater
depending on the direction of transit. Next, the time required to unload a ship in theater is
assumed to be identical (within the full day increment) to the time to load the ship in CONUS,
e.g. if a ship is loaded for two days in CONUS, then the unload time is two days in theater. In
addition, we assume unit equipment is readily available at the CONUS seaport, i.e. ships are
not waiting for equipment to arrive to the seaport. Finally, we assume berth space at theater
seaports is not a constraint during the deployment. Future researchers are encouraged to
adjust the above assumptions, which could increase the accuracy of the problem. However,
the stated simplifying assumptions noted here are appropriate for the first iteration of the
MSLP with future extensions provided in the Conclusion section.

Notation
The indices for the MSLP are defined first. Let S be the set of ships with a specific ship s ∈S.
Next, let U be the set of positive integers representing the deployment day with u and v
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specific days such that u, v ∈ U. In this paper, we restrict the set of deployment days to
U5 {1,2, . . .,150}; however, in practice, the number of deployment days typically exceed 300.
Finally, let W be the set of positive integers representing the number of days a ship can be
loadedwhile on berthwithw and z specific load days such thatw, z∈W. In this paper, we limit
the set of load days toW5 {1,2,3}. In our analysis, we focus on three types of RO/RO ships:
large/medium speed RO/RO (LMSR), fast sealift ship (FSS) and standard RO/RO. Not all ship
types require three days of loading time. In fact, SDDCTEA Pamphlet 700-2 (2011) notes that
planning factors for load times of an LMSR or an FSS are up to three days while loading times
for a standard, and generally smaller, RO/RO is up to two days. The maximum loading time,
in days, for each ship will be provided as input data for the problem.

Next, we define the parameters for the input data. Several ship characteristics are
important for the MSLP. First, let caps be the total ship cargo capacity in terms of square feet
of unit equipment. Square feet of deploying cargo is the standard measure of sealift
requirements for military deployments (US Joint Chiefs of Staff, 2005). Second, let spds be the
ship speed asmeasured in knots. Next, let loads be themaximumnumber of days ship s can be
loaded such that loads∈W. Then, let as be the first day that ship s is available for loading at a
port on the dominant CONUS coast. Also, let cs,w represent the amount of unit equipment,
measured in square feet, that can be loaded onto ship swhile berthed forw days. Finally, let ds
represent the positive integer number of days representing the one-way transit time between
the dominant CONUS coast and theater seaports. In addition to the ship-based parameters,
additional input data are required for the MSLP. First, let bv be the available number of ship
berths on the dominant CONUS coast on day v. Second, let the total amount of unit equipment
to transport be represented by r, which will be stated as a positive number of square feet.

Mixed integer program (light loads) formulation
The MIP (light loads) formulation for the MSLP requires a single decision variable and one
binary variable. Let xs,u,w be a non-negative decision variable representing the amount of
square feet of unit equipment loaded onto ship s that berths on the dominant CONUS coast
starting on day u and is then loaded for w days. Let ys,u,w be a binary intermediate variable
that will be used to control ship taskings, i.e. to prevent a tasked ship from being tasked while
executing its currentmission. Let ys,u,w5 1 if xs,u,w> 0, and ys,u,w5 0 otherwise. The objective
function for the MIP (light loads) minimizes the weighted arrival time of unit equipment to
theater, as given in equation (1):

minimize
X
s∈S

X
u∈U

Xloads
w¼1

ðuþ wþ dsÞ * xs;u;w (1)

We assume ship loading begins on the first day of berthing (u), which would suggest the ship
arrives in theater on day (uþ wþ ds – 1). However, SDDCTEA Pamphlet 700-2 (2011) notes
that ships require at least 12 additional hours for piloting, docking and other non-loading port
activities at the CONUS port. To account for this additional time and avoid a fractional
number of days, the scalar (uþ wþ ds) in equation (1) represents a conservative estimate for
the expected arrival day at theater seaports. Finally, this arrival day in theater is weighted by
the amount of cargo on the ship given by xs,u,w.

The constraints for the MIP (light loads) formulation are given in equations (2)–(10):

X
s∈S

X
u∈U

Xloads
w¼1

xs;u;w ¼ r (2)

xs;u;w ≤ cs;w ∀s∈S ∀u∈U ∀w∈W (3)
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xs;u;w ≤BigM * ys;u;w ∀s∈ S ∀u∈U ∀w∈W (4)

X
s∈S

Xðas−1Þ
u¼1

Xloads
w¼1

ys;u;w ¼ 0 (5)

Xloads
w¼1

ys;u;w ≤ 1 ∀s∈ S ∀u∈U (6)

X
s∈S

Xu

v¼ðu�loadsþ1Þ

Xloads
z¼ðu�vþ1Þ

ys;v;z ≤ bu ∀u∈U (7)

X
�

uþ2*wþ
2*ds

�

v¼uþ1

Xloads
z¼1

ys;v;z ≤BigM *
�
1� ys;u;w

�
∀s∈ S ∀u∈U ∀w∈W (8)

xs;u;w ≥ 0 ∀s∈ S ∀u∈U ∀w∈W (9)

ys;u;w ∈ f0; 1g ∀s∈ S ∀u∈U ∀w∈W (10)

Equation (2) ensures all deploying requirements given by r are exactly met. Equation (3)
limits the amount of unit cargo loaded on the ship to the associated load quantities for each
ship and number of days on berth. Next, equation (4) includes a large positive value (BigM)
and forces the binary intermediate variable to 1 for any positive value of xs,u,w. Equation (5)
prevents any assignment until the ship is available for onloading on the dominant coast.
Equation (6) limits each ship onloading to a unique number of load daysw. Then, equation (7)
limits the number of ships berthed simultaneously on the dominant CONUS coast to the
number of berths available by day, which requires accounting for ships that berthed prior to
the current day (u) and are still being loaded. Equation (8) prevents a previously tasked ship
frombeing available for a subsequent sailing until the ship has completed its previous sailing.
The upper bound on the first summation in equation (8) accounts for the time to load, sail to
theater, unload, sail back to CONUS and one additional combined day for piloting, docking
and other non-loading port activities during the ship cycle (SDDCTEAPamphlet 700-2, 2011).
Finally, equations (9) and (10) ensure the decision variables are non-negative values and
binary, respectively.

Mixed integer program (full loads) formulation
The MIP (full loads) formulation is similar to the MIP (light loads) formulation. In fact,
both formulations use the same input data. The differences stem from the decision
variables in the MIP (full loads) formulation not needing to specify the number of days
ships are loaded, because all ships achieve full loads by berthing for the maximum
number of load days.

Let xs,u be a non-negative decision variable representing the amount of square feet of
unit equipment loaded onto ship s that berths on the dominant CONUS coast starting on
day u. Let ys,u be a binary intermediate variable that will be used to control ship taskings.
Let ys,u 5 1 if xs,u > 0, and ys,u5 0 otherwise. The objective function for the MIP (full loads)
formulation minimizes the weighted arrival time of unit equipment to theater, as given in
equation (11):
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minimize
X
s∈S

X
u∈U

ðuþ loads þ dsÞ * xs;u (11)

In equation (11), the scalar (uþ loadsþ ds) represents the arrival day based on the first day of
berthing (u), the number of days berthed (loads) to reach 65% stowage (i.e. fully loaded) and
sail time to theater (ds). This arrival day in theater is weighted by the amount of cargo on the
ship given by xs,u.

The constraints for the MIP (full loads) formulation are given in equations (12)–(19):X
s∈S

X
u∈U

xs;u ¼ r (12)

xs;u ≤ cs;loads ∀s∈ S ∀u∈U (13)

xs;u ≤BigM * ys;u ∀s∈ S ∀u∈U (14)

X
s∈S

Xðas−1Þ
u¼1

ys;u ¼ 0 (15)

X
s∈S

Xu

v¼ðu�loadsþ1Þ
ys;v ≤ bu ∀u∈U (16)

X
�

uþ2*loadsþ
2*ds

�

v¼uþ1

ys;v ≤BigM *
�
1� ys;u

�
∀s∈ S ∀u∈U (17)

xs;u ≥ 0 ∀s∈ S ∀u∈U (18)

ys;u ∈ f0; 1g ∀s∈ S ∀u∈U (19)

Measures
The key measure for the MSLP is the expected arrival time of unit equipment to theater
seaports (US Joint Chiefs of Staff, 2013a). Let T be the average arrival time (given in days) of
unit equipment to theater seaports. Thus, T represents an important effectiveness measure
for the MSLP. Equation (20) provides the calculation for T depending on the MIP variant
being used given the different subscripts in the primary decision variable.

T ¼

8>>>>>><
>>>>>>:

P
s∈S

P
u∈U

Ploads
w¼1

uþ wþ dsð Þ * xs;u;w
r

forMIP light loadsð Þ
P
s∈S

P
u∈U

uþ loads þ dsð Þ * xs;u
r

forMIP full loadsð Þ

(20)

The next measure of interest is the fleet-wide proportion of light-loaded sailings during the
deployment, which we designate as L and calculate using equation (21). There is no
associated measure for light-loaded proportions for MIP (full loads), because all ships are
required to be fully loaded to the 65% stow factor.
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L ¼

P
s∈S

P
u∈U

P
w<loads

ys;u;w

P
s∈S

P
u∈U

Ploads
w¼1

ys;u;w

(21)

In addition, the proportion of light-loaded sailings for each ship s across all MIP results may
be of interest in the post-analysis to assess correlations between light loadings and various
ship characteristics, such as speed and capacity. Let Ls be the proportion of light-loaded
sailings for ship s across all sailings of the MIP results, as given in equation (22).

Ls ¼

P
u∈U

P
w<loads

ys;u;w

P
u∈U

Ploads
w¼1

ys;u;w

∀s∈S (22)

Finally, the number of shiploads required to deliver all requirements would be of interest to
decision-makers, primarily as an efficiency measure for comparing the MIP solutions. Let N
be the number of shiploads, which is calculated using equation (23) depending on the MIP
being used given the different subscripts in the primary decision variable:

N ¼

8>><
>>:

X
s∈S

X
u∈U

Xloads
w¼1

ys;u;w forMIP light loadsð Þ
X
s∈S

X
u∈U

ys;u forMIP full loadsð Þ
(23)

Results
This section includes empirical results for the MSLP. First, we define test data representing
deployment requirements, ships with differing characteristics (including fleet size, capacity,
transit time between CONUS and theater and load rates) and dominant coast berth
restrictions. Two levels of realistic input data, one reflecting a low level and one reflecting a
high level, are provided and then we construct two experimental designs to test the MSLP
solutions. The two data levels are structured such that the low level (�1) represents a more
stressing deployment and the high level (þ1) represents a less stressing deployment. A
fractional factorial design (FFD) is used for the MIP (light loads), and the same design is used
for the MIP (full loads). The design variables are regression predictors, and the measures are
outcomes (Bruce and Bruce, 2017, p. 129). Each experimental run is solved to optimality using
a commercial MIP solver. Various statistical analyses are conducted on the results, including
regressions, correlations and χ2 tests.

Test data
The problem input data for this empirical analysis was derived from values based on
historical, or plausible, deployment operations. Unit equipment deployment requirements
depend on the scale of the contingency operation. Two recent, large-scale sealift operations
were used as the low and high levels for deployment requirements. The low level was set at
31.5M sq ft. based on Operation Desert Shield/Desert Storm (Matthews and Holt, 2003,
p. 116), and the high level was set at 21M sq ft. based on the initial four-month surge for OIF
(Kennedy, 2003). The high level thus reflects a less stressing deployment with less unit
equipment deploying compared to the low level. In terms of ship characteristics, a fleet of 60
ships were used for the low level (more stressing), and a fleet of 74 ships were used for the
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high level (less stressing). These fleet values represent realistic ranges of available shipping
capacity based on past military deployments (Kennedy, 2003). Table 2 provides the
notional, but realistic, ship characteristics for all ships in terms of ship capacity, speed and
first day of availability on the dominant CONUS coast. We selected the first 60 ships of
Table 2 (s5 1,2, . . .,60) for the low level fleet of ships. Available berth space on the dominant
coast was notionally set at six berths for the low level (more stressing) and ten berths as the
high level (less stressing). Transit times were based on deploying to notional, theater
seaports with the low level set as a far theater (more stressing) and the high level set as a
near theater (less stressing), with transit times for each ship s as in Table 3. Finally, load
rates were estimated by engineers from the Ports for National Defense with low load rates
(more stressing) and high load rates (less stressing) for each ship type (LMSR, FSS, RO/RO),
as shown in Figure 1.

Mixed integer program implementation
We implemented the MIPs in the General Algebraic Modeling System v24.3.3 software.
Exploratory test runs showed that solutions with optimality tolerances set at 1% could be
obtained within about 24 h of runtime. Thus, all MIP solutions were produced using the
GAMS CPLEX solver with settings to halt the solution after achieving a 1% optimality gap.
All MIP solutions were obtained on a Dell Precision T7500 computer, which was running
Windows 7 with 3.33 GHz and 48 GB of RAM.

Design of experiments
The focus of this paper is identifying the circumstances inwhich ships should be light loaded,
i.e. loaded to less than the 65% maximum stowage goal. Montgomery (2005) notes that
experimenters often leverage their domain knowledge of the problem under study when
selecting potential factors for the design of experiments (p. 21). As such, we conducted
exploratory analysis with the MIP (light loads) by changing various problem variables,
including size of the requirement (Reqt), size of the shipping fleet (Fleet), number of CONUS
berth spaces (Berth), ship transit times (Transit) and ship load rates (Load). The exploratory
analysis suggested that the outcome measures were somewhat sensitive to each of these five
problem variables. Therefore, we constructed a 2(5–1) FFD with 16 runs and solved the MIP
(light loads) with the prescribed two-level combinations of the five problem variables. The
selected FFD is a Resolution V design (Montgomery, 2005, p. 305), which permitted
identifying main effects as well as two-way interactions while assuming higher-level
interactions between variables were negligible. From a computational standpoint, the one-
half fraction design allowed us to identify the significant variables and interactions while
saving 16 computationally expensive runs compared to the associated full factorial design.

Next, we used the same experimental design for the MIP (full loads) runs. All ships were
loaded to 65% of the ship’s capacity for this MIP, so the Load variable was not relevant in the
design.We could have used a 2(4–1) FFDwith only four variables and eight runs. However, we
decided to use the same 2(5–1), or 16 runs, as a full factorial design on the four variables: Reqt,
Fleet, Berth and Transit. Additionally, the MIP (full loads) solutions were generally obtained
within about a minute of GAMS CPLEX runtime. Table 4 shows the experimental design
variables and settings for both MIPs.

Table 5 shows the MIP results with outcome measures and solution runtimes (in seconds)
reported. First, theMIP (light loads) results show faster overall delivery across all runswithT
values about 1.69 days earlier, on average, compared to the MIP (full loads) results.
Conversely, theN values show that, on average, theMIP (full loads) solution resulted in about
15 fewer ship sailings to deliver the same requirements. The T and N values thus reflect
useful effectiveness and efficiency measures, respectively. Across all 16 runs, the average
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s
ds

s
ds

s
ds

s
ds

s
ds

Far Near Far Near Far Near Far Near Far Near

1 14 8 16 10 6 31 18 11 46 14 8 61 14 8
2 14 8 17 16 10 32 20 12 47 11 7 62 14 8
3 14 8 18 16 10 33 20 12 48 13 8 63 14 8
4 15 9 19 16 10 34 14 8 49 14 8 64 14 8
5 20 12 20 16 10 35 14 8 50 14 8 65 14 8
6 20 12 21 16 10 36 14 8 51 14 8 66 14 8
7 20 12 22 20 12 37 14 8 52 14 8 67 14 8
8 10 6 23 20 12 38 14 8 53 13 8 68 14 8
9 10 6 24 20 12 39 14 8 54 14 8 69 14 8
10 14 8 25 16 10 40 14 8 55 14 8 70 14 8
11 20 12 26 18 11 41 14 8 56 14 8 71 14 8
12 14 8 27 18 11 42 14 8 57 13 8 72 14 8
13 10 6 28 18 11 43 14 8 58 13 8 73 14 8
14 10 6 29 19 11 44 14 8 59 14 8 74 14 8
15 10 6 30 19 11 45 14 8 60 14 8

Load rates for LMSR and FSS ships Load rates for RO/RO ships
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Run
Coded variables Natural variables

Reqt Fleet Berth Transit Load Reqt Fleet Berth Transit Load

1 �1 �1 �1 �1 1 31.5M 60 6 Far High
2 1 �1 �1 �1 �1 21.0M 60 6 Far Low
3 �1 1 �1 �1 �1 31.5M 74 6 Far Low
4 1 1 �1 �1 1 21.0M 74 6 Far High
5 �1 �1 1 �1 �1 31.5M 60 10 Far Low
6 1 �1 1 �1 1 21.0M 60 10 Far High
7 �1 1 1 �1 1 31.5M 74 10 Far High
8 1 1 1 �1 �1 21.0M 74 10 Far Low
9 �1 �1 �1 1 �1 31.5M 60 6 Near Low
10 1 �1 �1 1 1 21.0M 60 6 Near High
11 �1 1 �1 1 1 31.5M 74 6 Near High
12 1 1 �1 1 �1 21.0M 74 6 Near Low
13 �1 �1 1 1 1 31.5M 60 10 Near High
14 1 �1 1 1 �1 21.0M 60 10 Near Low
15 �1 1 1 1 �1 31.5M 74 10 Near Low
16 1 1 1 1 1 21.0M 74 10 Near High

Table 3.
Transit time in days for
each ship between
dominant CONUS
coast and Far and Near
theaters

Figure 1.
High and low ship load
rates based on ship
type and number of
load days

Table 4.
Design of experiment
settings for coded and
natural variables
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proportion of light-loaded sailings was about 0.34, so the optimal results suggest that about a
third of all sailings could be light loaded to improve the rate of delivery.

Runs with higher proportions of light-loaded ships generally suggest a faster overall
delivery of forces albeit with additional shiploads required. Run 11 is particularly interesting
as it has the highest proportion of light-loaded sailings, about 0.77, and likewise has the
largest decrease in the weighted average delivery time measure Twith more than eight days
earlier delivery compared to the optimal solution with fully loaded ships. Although the
difference inTmeasures is about eight days, Figure 2 compares the cumulative arrival of the
31.5M sq ft. of unit equipment for the light- and full-load solutions. The full-load solution
delivers the unit equipment up to about 14 days later than the light-load solution, which
would represent a significant delay of critical combat capability to the commander in theater.
Finally, Figure 3 offers a visual comparison of ship berthing activity in CONUS for the 74

Run
MIP (light loads) MIP (full loads) Deltas

T L N IP time T N IP time ΔT ΔN

1 79.64 0.26 243 11,393 81.60 235 24 1.96 �8
2 58.88 0.08 158 311 59.01 153 8 0.12 �5
3 73.24 0.09 253 9,422 73.69 241 18 0.45 �12
4 51.22 0.57 178 20,649 54.19 162 10 2.97 �16
5 77.84 0.01 236 1,646 77.86 235 2 0.02 �1
6 54.43 0.34 163 134 55.47 156 4 1.03 �7
7 67.68 0.35 260 3,532 69.21 248 7 1.53 �12
8 49.84 0.04 168 702 49.90 167 3 0.05 �1
9 58.03 0.17 250 66,872 58.66 233 57 0.64 �17
10 39.87 0.63 167 192 43.15 151 16 3.28 �16
11 48.84 0.77 271 29,677 57.01 232 31 8.18 �39
12 40.44 0.61 201 144,473 42.47 150 7 2.03 �51
13 52.90 0.54 250 5,416 54.53 235 2 1.63 �15
14 39.42 0.09 160 59 39.81 153 4 0.39 �7
15 48.61 0.12 258 284 48.98 244 7 0.37 �14
16 33.87 0.75 185 69 36.26 164 3 2.39 �21
Avg 54.67 0.34 213 18,427 56.36 198 13 1.69 �15

Note(s): GAMS/CPLEX optimality tolerance set at 1% for each MIP solution

Table 5.
Design of experiment
results for each MIP

and comparisons

Figure 2.
Cumulative delivery to
theater, given light- or

full-load results for
Run 11
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loading
strategy

111



ships in Run 11. The graphic shows no berthing in CONUS after Day 77 in the light-load
solution, whereas the last ship berths on Day 91 in the full-load solution, which accounts for
the 14-day delay in equipment delivered to theater.

Statistical analyses
We conducted various statistical analyses on the MSLP outputs, including multiple linear
regression, to identify significant predictors for the outcome measures T and L, correlation
analyses of ship speed and size against L and χ2 tests for ship speed and size with L.

Table 6 shows the fitted multiple linear regression models for outcome measures T and L for
the MIP (light loads) as well as the multiple linear regression model for outcome measure T for
the MIP (full loads). Each fitted model was statistically significant at the α5 0.001 level, with the
majority of variance accounted for based on adjustedR2values (Field, 2013, p. 312). In terms of the
deliverymeasureT for theMIPs, the statistically significant predictors wereReqt,Fleet,Berth and
Transit, along with one or more two-way interactions, as depicted in Table 6. Two-way
interactions not included in the table were insignificant with p-values > 0.05. The coded design
variables were structured such that positive values should decrease expected delivery times, i.e.
fewer requirements tomove,more ships available, more berth space in CONUS and shorter transit
times. Therefore, the negative B values for each predictor (Reqt, Fleet, Berth, Transit) support the
decrease inT for increases in the predictors. In terms of the light-loaded proportionmeasure L for
the MIP (light loads) results, the statistically significant predictors were Fleet, Berth, Transit and
Load. The predictorReqtwas not significant at the α5 0.01 level. Again, the corresponding signs
of the B values suggest higher proportions of light-loaded ships with more ships, fewer berths,
shorter transit times and higher rates of cargo loaded while berthed.

Next, we computed for each ship s the number of sailings (n) and the proportion of light-
loaded sailings (Ls) as an average across the ship’s n sailings for the MIP (light loads), as shown
in Table 7. We then computed pairwise Pearson correlations between ship capacity (caps),
speed (spds) and Ls, as provided in Table 8. The correlation between caps and spds was
not statistically significant, but the correlations between caps and Ls and between spds and Ls
were statistically significant at the α5 0.001 level and the α5 0.01 level, respectively. For the
correlation between caps and Ls, the negative value suggests that ships with a higher capacity

Figure 3.
Ship berthing activity
by day for Run 11 with
gray boxes
representing ships
with light loads and
black boxes
representing ships
with full loads
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are less likely to be light loaded. The strength of correlation, as reported in the 95% confidence
interval (CI), ranged frommedium to large (Cohen, 1988, p. 413). For the correlation between spds
and Ls, the positive value suggests that ships with a higher speed are more likely to be light
loaded. Finally, the strength of correlation reported in the 95%CI ranged from small to large per
Cohen’s criteria.

The final statistical analysis we conducted was χ2 tests to evaluate the relationship
between categorical groups (Bruce and Bruce, 2017, p. 111), specifically ship speed, ship
capacity and light-loaded sailings. We intended the χ2 tests to confirm associations between
certain groups of these key ship characteristics and the light-loaded proportions from theMIP
results. The groupings we selected were as follows: ship speed (<20 knots, ≥ 20 knots), ship
capacity (≤ 150K sq ft., 150–200K sq ft., ≥ 200K sq ft.) and light-loaded sailings (Yes, No).
Table 9 shows the χ2 test results across the 16 runs for the MIP (light loads) results. Ship
speed and light-loaded sailings had a statistically significant association at the α 5 0.001
level, with a test statistic of 33.505 with one degree of freedom; however, the strength of
the association is small with a phi coefficient of about 0.1 (Field, 2013, p. 740). Similarly, the
association between ship capacity and light-loaded sailingswas statistically significant at the
α5 0.001 level, with a test statistic of 25.164 with two degrees of freedom. However, the effect
size was small with a phi coefficient of about 0.09.

Analysis of the cross-tabulation results from Table 9 provides important insights about
the nature of the association. For the ship speed and light-load χ2 test, more of the fast ships
(speed ≥ 20 knots) were light loaded (829) than expected (753) across all MIP runs, whereas

s n Ls s n Ls s n Ls s n Ls s n Ls

1 55 0.545 16 72 0.431 31 40 0.225 46 52 0.212 61 26 0.577
2 56 0.482 17 43 0.209 32 37 0.297 47 59 0.203 62 26 0.538
3 55 0.400 18 44 0.205 33 36 0.250 48 55 0.418 63 27 0.556
4 46 0.239 19 44 0.295 34 51 0.196 49 51 0.412 64 24 0.417
5 37 0.324 20 45 0.267 35 55 0.218 50 57 0.439 65 26 0.462
6 37 0.243 21 47 0.277 36 58 0.345 51 58 0.448 66 24 0.458
7 39 0.333 22 37 0.243 37 54 0.296 52 57 0.421 67 24 0.500
8 65 0.415 23 36 0.222 38 58 0.328 53 52 0.385 68 24 0.417
9 61 0.246 24 36 0.250 39 52 0.250 54 59 0.373 69 27 0.519
10 49 0.143 25 46 0.283 40 50 0.180 55 56 0.393 70 27 0.630
11 40 0.325 26 40 0.175 41 59 0.356 56 59 0.441 71 22 0.364
12 50 0.260 27 41 0.244 42 54 0.333 57 58 0.483 72 25 0.520
13 72 0.361 28 41 0.220 43 58 0.397 58 52 0.327 73 22 0.318
14 61 0.262 29 41 0.220 44 51 0.235 59 58 0.466 74 24 0.500
15 65 0.385 30 42 0.214 45 56 0.321 60 58 0.379

Variable cap spd L

cap 1 0.189 �0.459
p-value 5 0.106 p-value <0.001

95% CI [�0.600, �0.290]
spd 1 0.355

p-value < 0.01
95% CI [0.184, 0.526]

L 1

Note(s): CI 5 Confidence interval

Table 7.
Number of sailings and
average light-loaded
proportions for MIP
(light loads) runs

Table 8.
Correlations between
ship capacity, speed
and proportion of light-
loaded sailings for MIP
(light loads)
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fewer of the slow ships (speed < 20 knots) were light loaded (323) than expected (399). This
insight further supports the correlational analysis results that faster ships are more likely to
be light loaded than slower ships. For the ship capacity and light-load χ2 test, more of the
lower capacity ships (≤ 150K sq ft.) were light loaded (455) than expected (400) across all MIP
runs, whereas fewer of the higher capacity ships (≥ 200 sq ft.) were light loaded (352) than
expected (413). The observed and expected counts for medium capacity ships were nearly
identical. This insight further supports the correlational analysis results that lower capacity
ships are more likely to be light loaded than higher capacity ships.

Discussion
The empirical results in this paper identify operational circumstances and specific ship
characteristics affecting the proportion of ships that should be light loaded during deployments,
which we have shown to decrease overall delivery timelines. Limited CONUS berth space is one
such operational circumstance identified in this empirical analysis. Military doctrine notes that
ships require access to limited,militarily-useful berth space at CONUS seaports during large-scale
contingency operations (US Chiefs of Staff, 2013a). The present research confirms this doctrinal
reference by showing available berth space as a statistically significant predictor for the delivery
measure T and light-loaded proportion measure L. More importantly, the analysis shows that a
higher proportion of ships should be light loaded when berth space is constrained, which is a key
insight for military logistics planners and decision-makers.

Furthermore, an examination of optimal ship stow factors provides additional insights for
military logistics personnel. The optimal ship stow factors across the MIP (light loads) runs
had a mean of 61.2%, with n 5 3,401 sailings, and a 95% CI of [60.9%, 61.5%]. Comparing
optimal ship stow factors by ship type is perhaps more insightful: FSS (mean 58.8%, n5 396,
95% CI [57.8%, 59.9%]), RO/RO (mean 61.6%, n5 2,480, 95% CI [61.3%, 61.8%]) and LMSR
(mean 61.6%, n5 525, 95%CI [60.9%, 62.2%]. The average optimal stow factors for FSS and
LMSR ships in our empirical analysis align well with actual ship stow factors of
approximately 60% for FSS ships and approximately 59%–61% for LMSR ships duringOEF
and OIF (Kurinovich, 2005). The average RO/RO stow factors in our analysis are slightly
higher than actual ship stow factors of approximately 57%during OEF andOIF (Kurinovich,
2005). Based on this aggregate stow factor analysis, loading ships to the 65% historical
planning ship stow factor could lead to sub-optimal ship schedules, resulting in forces
delivered about 3% later (1.69/54.67), on average, across the scenarios studied, but up to

Group
Light loaded
No Yes Total

Speed < 20 Observed 855 323 1,178
Expected 779 399

≥ 20 Observed 1,394 829 2,223
Expected 1,470 753 χ2 statistic df p-value w
Total 2,249 1,152 3,401 33.505 1 <0.001 0.099

Capacity ≤ 150K Observed 726 455 1,181
Expected 781 400

150–200K Observed 656 345 1,001
Expected 662 339

≥ 200K Observed 867 352 1,219
Expected 806 413 χ2 statistic df p-value w
Total 2,249 1,152 3,401 25.164 2 <0.001 0.086

Note(s): w 5 Phi coefficient (effect size)

Table 9.
Cross tabulation of

observed and expected
values and chi-square
( χ2) test results from
aggregated MIP (light

loads) runs

Best ship
loading
strategy

115



about 16% later (8.18/48.84) in the most extreme case (Run 11). Instead, average ship stow
factors ranging from 59 to 62% are empirically shown here to improve the rate of delivery
albeit at the expense of additional ship sailings required.

The preceding aggregate stow factor analysis covers a breadth of deployment
circumstances, including situations with few light-loaded ships (e.g. Run 5 with
approximately 1% light-loaded sailings) and situations with many light-loaded ships
(e.g. Run 11 with approximately 77% light-loaded sailings). Not surprisingly, the average
ship stow factors are approximately 65% for each ship type in Run 5; however, the average
ship stow factors in Run 11 were: FSS (mean 57.4%, n5 28, 95% CI [54.4%, 60.3%]), RO/RO
(mean 59.6%, n 5 204, 95% CI [59.3%, 60.0%]) and LMSR (mean 57.5%, n 5 39, 95% CI
[54.6%, 60.1%]. As such, Run 11 represents somewhat of a lower bound in terms of
recommended optimal ship stow factors for a stressing deployment with large amounts of
equipment deploying and limited CONUS berth space. Based on this supposition, ship stow
factors for FSS and LMSR ships should be no lower than approximately 54%–55% and RO/
RO ships should be no lower than approximately 59%,which represent the respective 95%CI
lower bounds. This lower bound on ship stow factors is consistent with several papers in the
split load literature. Nowak et al. (2008) first quantified the benefits of split loads for land-
based logistics stating that the highest benefits were achieved when load sizes were just over
half of the vehicle capacity. Later, Sahin et al. (2013) showed experimentally a roughly 32%
improvement in key output measures, with load sizes ranging between 51 and 60% of vehicle
capacity. Similarly, the present research quantifies suggested optimal ship loads ranging
from 54 to 65%, depending on the operational circumstances and specific ships available
during the deployment.

Conclusion
The primary decision of the MSLP is the assignment of unit equipment to a heterogeneous
fleet of sealift ships during the deployment, with the primary goal being the fastest possible
delivery to theater seaports. The available literature most closely related to the MSLP seems
to be ship scheduling that considers flexible cargo loads, i.e. scheduling or assignment
problems inwhich the amount of cargo to load onto the ship is a decision variable. In addition,
research on split cargo loads, which allow the cargo to be split into multiple loads across
multiple ships, is also pertinent to the MSLP.

This research largely supports the doctrinal planning factor for ship stow factors (set at
65%of the ship’s total capacity); however, we provide empirical evidence that suggestswhich
ships should be light-loaded to improve the speed of delivery. The research presented in this
paper suggests that light loading ships improve delivery timelines up to 16% under certain
circumstances, such as when CONUS berth space is constrained, ship fleet size is robust (or
has excess ships compared to the deployment requirements) and the transit time between
CONUS and theater seaports is relatively short. Conversely, the empirical analysis in this
paper shows that light loading ships occur infrequently when berth space is less constrained,
fleet size is small and transit times are relatively long.

Our research adds the perspective of military deployers to the diverse literature on ship
routing and scheduling. The military perspective differs from industry, in that the primary
consideration during military deployments is speed of delivery, even at the cost of additional
ship voyages. More importantly, this research provides important new insights that should
be adopted by sealift planners at the US Transportation Command when assigning unit
equipment to ships during future contingency operations. Specifically, our empirical analysis
suggests optimal ship stow factors ranging from 54 to 65%, depending on various
operational conditions. The proposed optimal stow factor goals align well with actual ship
loads observed during sealift-intensive operations in support of OEF and OIF.
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Future work
The present research assumes no distinction between specific seaports on the dominant
CONUS coast, i.e. the number of berths on the dominant coast are aggregated. This assumption
is valid in terms of transit times between ports on the dominant CONUS coast (East or West)
and some theater locations, because the sail times are nearly identical regardless of the CONUS
seaport selected. However, some real-world differences between seaports could affect theMSLP
and is a suggested line of research for follow-on efforts. In particular, seaport infrastructure
limits such as staging areas, pier strength and crane capabilities at the CONUS and theater
seaports could be incorporated into future MSLP variants to improve the precision of the
analysis. In addition, seaport access restrictions could affect the amount of unit equipment
loaded onto vessels, e.g. shallow channel depths to the seaport could necessitate light loads or
low bridges in the channel could necessitate heavy ship loads to clear the obstructions.
Therefore, future work on the MSLP could incorporate distinct seaports to incorporate
additional problem realities albeit at the expense of increased problem complexity. In addition,
the exact MIP solutions in this paper were obtained within about 5 h, on average, for plausible
input data. However, the MSLP complexity will inherently increase as distinct seaports are
incorporated into the problem formulation. As such, future researchers should consider
introducing heuristics to solve the MSLP in a reasonable amount of time.

Finally, an ancillary effect of light-loaded ships, although not explicitly studied in this
paper, may be that less fuel is consumed and thereby fewer emissions produced. Previous
research suggests that a ship’s fuel consumption is directly related to sailing speed and
payload (Gao and Hu, 2021; Andersson et al., 2015; Psaraftis and Kontovas, 2014). Reductions
in ship speed would be counter to the MSLP objective of faster cargo delivery; however,
reduced payloads are a direct result of light loading ships during a military deployment.
Therefore, the aggregate fuel and emission effects of light loading ships during deployments
may indeed warrant further study.
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