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Abstract
Purpose – The purpose of this paper is to help optimize sustainment logistics for US Army brigade combat
teams, whichmay face challenges in transporting their assigned assets.
Design/methodology/approach – This paper develops a simulation framework with an integrated
integer programming optimization model. The integer-programming model optimizes sustainment outcomes
of supported battalions on a daily basis, whereas the simulation framework analyzes risk associated with
shortfalls that may arise over the entire duration of a conflict.
Findings – This work presents a scenario reflecting the steady resupply of an infantry brigade combat team
during combat operations and presents an in-depth risk analysis for possible fleet compositions.
Originality/value – The risk curves obtained allow decision-makers and commanders to optimize vehicle
fleet design in advance of a conflict.
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1. Introduction
The US Army’s primary warfighting unit is the brigade combat team (BCT). Before
2004, the Army’s organizational structure was built around divisions of 15,000 soldiers.
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At the time, divisions were the smallest type of unit capable of deploying and
sustaining themselves without outside support. General Peter Schoomaker, the Chief of
Staff of the Army from 2003 to 2007, led the transformation to create BCTs, which are
self-sufficient formations of approximately 3,000 soldiers. This change was designed to
allow the Army to deploy smaller groups of personnel and equipment based on needs
(Garamone, 2004).

BCTs are standardized across the army based on function. The current types of BCT
formations are infantry, armored and Stryker. The army has directed the manning and
equipping of a brigade support battalion to meet the sustainment needs of the BCT (Field
Manual 3–96, 2015).

Commanders are responsible for ensuring that adequate transportation vehicles, also
termed assets, are available to move supplies and equipment forward in the operational area
(Field Manual 4–0, 2019, p. 7–5). Truck convoys in both the army and Marine Corps are
subject to attack, disrupting sustainment (Giordano, 2012; Lynch, 2019). Recently, the army
identified a shortfall in truck transportation capacity within BCTs, so commanders must
exercise careful judgment in allocating these scarce resources (Bobzin et al., 2019; Bobzin
et al., 2020; Van Howe, 2019).

Mixed integer programming (MIP) has been used to analyze theater-level
distribution of supplies (Hill and Pohl, 2010; Longhorn and Muckensturm, 2019;
Muckensturm and Longhorn, 2019). In addition, MIP can support analytical modeling
of the force design of army logistics units (Connors and Ewing, 2017; Salgado, 2016),
which is particularly important as the army transitions to a greater focus on large-scale
combat operations (Sweeney, 2019).

The convoy movement problem associated with military vehicles is also an established
area of application for MIP models (Bovet et al., 1991; Giordano, 2012; Lam et al., 2020;
Mokhtar et al., 2020). Heuristics and simple algorithms have been found to be effective in
resolving the convoy movement problem (Tuson and Harrison, 2005; Xiong et al., 2017). MIP
approaches are also used for optimizing the use of commercial vehicle fleets (Coelho et al.,
2014; Gorman et al., 2014).

In this paper, we develop a simulation framework with an integrated integer
programming optimization model for the sustainment of an infantry BCT (IBCT). In Section
2, we provide background information on IBCTs and their resupply process. In Section 3, we
describe the components of our framework. In Section 4, we introduce a realistic IBCT
combat scenario and present our computational results. We conclude in Section 5 with a
summary of our contributions and future research opportunities.

2. Background
An IBCT consists of seven battalions: three infantry battalions, one cavalry
(reconnaissance) battalion, one field artillery battalion, one engineer battalion and one
brigade support battalion. The brigade support battalion is relied upon to support the
mobility and endurance of the six other units engaged in combat operations by
conducting regular resupply of needed supplies.

2.1 Supplies
The US Armed Forces divide all military supplies into ten classes (Army Regulation 710–2,
2008; Field Manual 4–0, 2019), shown in Table 1. Estimating daily consumption is often a
tactical focus of logistics planners and is essential to the conduct of battle. Supplies such as
repair parts and construction materials can also be critical to force sustainment.
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For our analysis, we group these ten supply classes into four modified categories: I (water),
III (fuel), V (ammunition) and All Other, a catch-all category that includes Classes I (food), II,
III (prepackaged lubricants), IV, VI, VII, VIII, IX and X.

Our primary method for measuring supported unit supply inventories is days of supply
(DOS), the number of days that a given quantity of supplies will sustain a supported unit
under specific conditions. A DOS is a function of unit size, type and mission. For example,
one DOS of food for a 500-soldier infantry battalion will be more food than one DOS of food
needed to sustain a 300-soldier engineer battalion. One DOS of fuel will be much higher for
the engineers. DOS gives the commander a common unit to understand the supply readiness
of subordinate units. It allows one to quickly grasp the current status of a given unit,
without requiring in-depth knowledge of actual quantities of goods needed for readiness in
one battalion vs another. Unless specified for a mission, units deploy with three DOS on
hand and expect to be resupplied with one DOS every subsequent day. This provides a
cushion for variability of consumption, as well as for the times when resupply is infeasible
for one or two days.

2.2 Transportation assets for supplies
The load handling system in Figure 1 is a primary logistics resupply vehicle. The M1076
Palletized Load SystemTrailer in Figure 2 would be transported by the load handling system
in Figure 1. A trailer can transport the equivalent of eight single stacked pallets. The
Compatible Water Tank Rack (also known as “Hippo”) shown in Figure 3 attaches to
the trailer shown in Figure 2. The Hippo has a capacity of 2,000 gallons of water and requires
the complete volume capacity of the transportation platform. The M978 HEMTT Fueler in
Figure 4 is the army’s prime mover for Class III (fuel). It has a capacity of 2,500 gallons and is
also able to tow a trailer with additional fuel capacity provided by amodular fuel system.

Table 1.
Ten classes of supply

Class Description

Class I Subsistence, including free health and welfare items
Class II Clothing, individual equipment, tentage, tool sets and tool kits, handtools, administrative

and housekeeping supplies and equipment (including maps). This includes items of
equipment, other than major items, prescribed in authorization/allowance tables and items of
supply (not including repair parts)

Class III POL, petroleum and solid fuels, including bulk and packaged fuels, lubricating oils and
lubricants, petroleum specialty products; solid fuels, coal and related products

Class IV Construction materials, to include installed equipment, and all fortification/ barrier materials
Class V Ammunition, of all types (including chemical, radiological and special weapons), bombs,

explosives, mines, fuses, detonators, pyrotechnics, missiles, rockets, propellants and other
associated items

Class VI Personal demand items (nonmilitary sales items)
Class VII Major items: a final combination of end products which is ready for its intended use:

(principal item) for example, launchers, tanks, mobile machine shops, vehicles
Class VIII Medical material, including medical peculiar repair parts
Class IX Repair parts and components, including kits, assemblies and subassemblies, reparable and

nonreparable, required for maintenance support of all equipment
Class X Material to support nonmilitary programs, such as agricultural and economic development,

not included in Class I through Class IX

Source:Army Regulation 710–2 (2008)
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3. Mathematical modeling framework
We introduce a mathematical modeling framework for optimizing resupply that includes
several components:

� a quantitative method for prioritizing distribution decisions (subsection 3.1);
� an integer programming model for optimizing daily distribution (subsection 3.2);
� a simulation-based heuristic algorithm for measuring risk associated with a fixed

fleet of trucks (subsection 3.3); and
� a simulation-based heuristic algorithm for generating risk curves to optimize a

fleet’s composition of trucks (subsection 3.4).

We have used optimization and simulation by designing a series of algorithms that are run in
sequence, and for which, we directly adjust parameters through an iterative search. One
upside of an iterative search is its ability to produce a complete spectrum of strategies with
their associated risks, which can then be considered and acted upon by a leadership team.

3.1 Prioritizing distribution
The central aspect of optimizing distribution is the decision the brigade support battalion
must make on how best to use its distribution assets to resupply supported units. When
allocating a limited number of transportation assets across competing shortages, a
supporting logistics unit would prioritize resupply efforts according to three main criticality
factors that describe the urgency of the need:

Figure 1.
Photo of HEMTT
Load Handling
System downloaded
from https://en.
wikipedia.org/wiki/
M1120_HEMTT_
Load_Handling_
System#/media/File:
HEMTT_M1120A2.
jpg
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Figure 2.
Photo of M1076
Palletized Load
SystemTrailer

downloaded from
https://commons.

wikimedia.org/wiki/
File:¼M1076_PLS_

trailer.jpg

Figure 3.
Photo ofWater Tank

Rack downloaded
from https://asc.
army.mil/web/

portfolio-item/cs-css-
load-handling-

system-compatible-
water-tank-rack-

hippo/
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� Ending inventory level or shortage: when a unit’s current inventory stores fall
below a certain threshold of supply, maneuver options become increasingly
constrained. Any ending inventory level under the target DOS is considered a
shortage.

� The relative importance of a supply class: supply class importance is
determined by the maneuver commander. For example, in the army’s response
to COVID-19, Class VIII (medical) may be the top priority for support in certain
areas.

� The relative importance of the unit: any mission order will designate one unit
as the main effort in a particular phase of an operation, indicating that the
actions of this unit among all others are essential to accomplishing the
mission.

We assign these quantitative scores to the replenishment of specific supplies for specific
units and use them to optimize resupply. Typically, avoiding low inventory levels is the
highest priority, supply classes are next and prioritization based on unit ranks lower.
However, relative priorities may differ bymission.

3.2 Optimizing distribution
We develop an integer programming model to allocate shipping capacity for classes of
supplies to units, to best meet operational priorities. The model is framed in terms of
truckloads because the decision of interest is shipping trucks, so shortages tracked in DOS

Figure 4.
Photo of M978
HEMTTFueler
downloaded from
https://commons.
wikimedia.org/wiki/
File:M978_tank_
truck_in_Beatty,
_Nevada.jpg
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must be converted to truckloads. Trucks may be shipped at partial capacity when fully
resupplying a unit to max capacity.

Indices and sets:
� t [ T – truck type;
� i [ I – class of supply;
� ti [ T – truck type of supply class i [ I;
� It ( I – supply classes using truck type t [ T; and
� j [ J – supported unit.

Parameters:
� ct – distribution capacity measured in number of trucks of type t [ T;
� di – distribution capacity measured in number of trucks of type ti for class i [ I;
� sij – shortage of class i [ I at unit j [ J (measured in trucks); and
� pij – prioritization weight for supply level of class i [ I for unit j [ J.

Decision variables:
� xij – integer number of trucks of supply i [ I shipped to unit j [ J; and
� yij – binary decision to ship a partial truckload of supply i [ I to unit j [ J.

Integer programmingmodel:

Maximize
X
i2I

X
j2I

xij � yij dsije � sij
� �� �

pij (1)

subject to
X
i2It

X
j2J

xij# ct 8t 2 T (2)

X
j2J

xij# di 8i 2 I (3)

xij# d sij e 8i 2 I ; j 2 J (4)

xij � yij# b sij c 8i 2 I ; j 2 J (5)

xij 2 Zþ 8i 2 I ; j 2 J (6)

yij 2 f0; 1g 8i 2 I ; j 2 J (7)
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Our objective function (1) prioritizes shipments based on the current level of supply, by
class of supply and unit, seeking to maximize aggregate value. The model allocates
transportation capacity subject to four main constraint types. Constraint (2) ensures
distribution of all supplies using a truck type does not exceed capacity for that truck
type. Constraint (3) ensures that each supply class transported does not exceed its
available transportation capacity. To differentiate between constraints (2) and (3),
consider water, which is limited both by the number of water racks and by the number
of load handling systems. Constraint (4) ensures that no more than the amount of trucks
required to meet demand may be shipped, which is necessary because our objective
maximizes prioritization points. To ensure the binary variables enforced in
constraint (7) are activated when partial-truck demand uses full-trucks for shipments,
constraint (5) acts as a linking constraint, by rounding down the shortage amount
measured in vehicles to less the actual shortage amount allowed in constraint (4), and
when the shortage is already an integer value, constraints (4) and (5) become redundant.
Constraint (6) ensures that our decision variables are integers, as distribution assets
cannot be divided owing to the specialized shipping requirements of each class of
goods.

3.3 Assessing risk for a given number of trucks
Our integer programming model (1)–(7) optimizes distribution plans for a single day.
To use the model for upfront planning in advance of a conflict, it is important to
understand the relationship between the number of trucks in a BCT’s fleet and the
BCT’s ability to sustain distribution over the duration of a conflict. To do so, we need to
introduce a measure for risk, which tracks supply levels falling below certain
thresholds.

In our computational results, we use six thresholds measured in DOS to assess
risk. These DOS thresholds (3.0, 2.5, 2.0, 1.5, 1.0 and 0.5) are tracked for each
supply class, unit and day. For example, if the cavalry unit starts Day 7 with 2.3
DOS of fuel, some level of Day 7 risk would be associated with the 3.0 and 2.5 DOS
categories, but not with the 2.0, 1.5, 1.0 and 0.5 categories. It is useful to
distinguish between the risk categories for decision-making purposes. A
commander may be willing to accept risk of units occasionally having between 2.0
and 2.5 DOS of fuel over the course of a conflict. However, that commander will
take stronger measures to avoid risk of units starting a day with less than 0.5 DOS
of some types of supplies, because that corresponds to running out of those
supplies completely.

Although one could introduce any number of risk functions, we simply sum the
number of units experiencing a supply class shortage on a given day and divide by
the total number of units to obtain an average risk for a supply class on that day. We
then average the risk over the number of days in the conflict. To ensure the risk
measure is robust, it should not be a function of a single sample, so we again compute
its average value over a sufficient number of simulation runs. Note: these averages are
by DOS threshold, so information on the severity of shortages is retained in the risk
measure.

Our method for assessing risk for a given number of trucks is summarized in
Algorithm 1.
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Algorithm 1. This function computes risk of supply shortages, for a given fleet of
trucks. The call to the runOptimization function solves an instance of our integer
programming model (1)-(7) for each day in the specified time horizon. Risk is
averaged.

3.4 Optimizing truck capacity
Intuitively, with an infinite number of trucks, we would always have shipping capacity to
fully sustain all units, with all supplies, on all days. Similarly, with very few trucks, we
would certainly not be able to sufficiently sustain all units. However, determining the
optimal number of trucks that provides sustainment coverage is a more challenging
problem to solve.

We introduce a method for computing risk curves for each number of trucks, which
allows the decision-maker to focus on the region of interest, in which risk is small and
falls to zero. Owing to interdependencies between supply classes and truck types, when
analyzing one truck type we assume infinite capacity of other truck types. For example,
water requires its own unique set of tank racks (shown in Figure 3) but also uses load
handling systems (shown in Figure 1). So, to compute risk curves for water, we assume
an infinite number of load handling systems, which transforms our interdependent
problem into a computationally simpler independent one.

For each truck type, we can iteratively increase from having zero to one to two trucks,
etc., and compute a risk assessment using Algorithm 1, until we reach a point where the risk
level decreases to 0 or below some user-specified cutoff value, at which point we have
identified the maximum capacity a decision-maker would consider. Recall though that our
risk measure is indexed by supply classes, not by truck types, so the stopping condition
must ensure the risk level is sufficiently low for all supply classes that use the given truck
type.

Our method for computing risk curves, so a decision-maker can optimize truck capacity,
is summarized in Algorithm 2.
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Algorithm 2. This function computes risk versus number of trucks required to sustain
supplies for a given truck type, for risk levels less than some input cutoff. Additional inputs
include number of days and number of runs for the simulation performed in
runRiskAssessment (Algorithm 1).

4. Scenario and computational results
We developed a detailed scenario with input from subject matter experts in army IBCT
operations. First we discuss the scenario parameters followed by computational results.

4.1 Prioritizing distributions
Recall the three aspects of prioritizing distribution discussed in subsection 3.1:

(1) Ending inventory level or shortage: we use a piecewise-linear prioritization
function p1(z) in equation (8) to obtain a prioritization coefficient for a given supply
level zmeasured in DOS:

p1 zð Þ ¼
1� 0:5z 0# z# 1

0:5� 0:3 z� 1ð Þ 1# z# 2

0:2� 0:2 z� 2ð Þ 2# z# 3

8>><
>>:

(8)

Notice that p1(3) = 0, p1(2) = 0.2, p1(1) = 0.5 and p1(0) = 1, so that low supply is prioritized in
an increasingly strong manner.

(2) The relative importance of a supply class: we analyze four categories: Class I
(water), Class III (fuel), Class V (ammunition) and All Other, a catch-all
category that includes Classes I (food), II, III (prepackaged lubricants), IV, VI,
VII, VIII, IX and X. The prioritization coefficient p2(i) of supply class i [ I is
provided in Table 2.

Class I (water) provides basic life support that supersedes all other supply priorities in our
scenario. Class III (fuel) is essential to unit mobility but is less important than Class V
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(ammunition), which provides for self-defense. Although certain parts or materials might be
deemed critical, taken together, the All Other class will not be more important than I (water),
III (fuel) or V (ammunition).

(3) The relative importance of the unit: the prioritization coefficient p3(j) of supported
unit j [ J is provided in Table 3.

Our main effort is the first infantry unit, whose actions are only slightly more important
than the other two infantry battalions. Next, the field artillery and cavalry units are more
likely to provide essential support to the infantry battalions and, therefore, the combat
mission overall. Of the six units, we consider the engineer battalion the lowest priority
during large scale combat operations. Although the importance of a unit to the overall
mission varies greatly with circumstance and might change over the course of an entire
operation, we hold these relative priorities constant in our scenario. Note: the relative
priorities provided are estimates informed by subject matter experts but are not defined in
anymilitary doctrinal reference.

4.1.1 Overall prioritization. The overall prioritization function p(z, i, j) = p1(z)p2(i)p3(j) is
used to compute the parameter P for our integer programming model. Low supply will have
the greatest impact, followed by relative importance of the supply class and then supporting
unit.

4.2 Optimizing truck capacity
The integer programming model produces plans to distribute supplies and, in particular,
decides on the number of each type of truck sent to each supported unit. The simplest unit of
measure for describing and analyzing most aspects of our framework is DOS. So, to optimize
and enforce the integrality constraint for the number of trucks, we need a unit measure
conversion table that is specific to our scenario. For example, a conversion factor from DOS
to number of trucks would be higher for units with more people because they need a larger
volume of supplies than the same type of unit with fewer people. The DOS to truck
conversion factors are provided in Table 4, along with additional information regarding
personnel and DOS quantity requirements.

Table 3.
Relative priority of

supported units

Supported unit Relative importance

Infantry 1 1.0
Infantry 2 0.95
Infantry 3 0.95
Field artillery 0.9
Cavalry 0.85
Engineer 0.75

Table 2.
Relative priority of

supply classes

Supply class Relative importance

I (water) 1.0
III (fuel) 0.5
V (ammunition) 0.7
All Other 0.3
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4.3 Assessing risk through simulation
We incorporate twomain aspects of uncertainty in our simulation:

(1) uncertainty in the number of trucks available, owing to maintenance and personnel
availability; and

(2) uncertainty in consumption, owing to climate and mission needs.

Historical data are unavailable, so we rely on subject matter expertise and use triangular
distributions for both these sources of uncertainty. The algorithms we present incorporate
uncertainty through sampling and are agnostic to distribution assumptions. Therefore, if
data were to become available to support more precise distribution assumptions, it could be
easily incorporated.

4.3.1 Uncertainty in truck availability. Uncertainty in truck availability is owing to both
maintenance and driver availability. The distribution for trucks is provided in Table 5.
Water racks are assumed to always be available; however, they are attached to load
handling systems, which are not always available. If an insufficient number of load
handling systems are available, the optimization model will account for it and prioritize
distribution accordingly.

4.3.2 Uncertainty in consumption. The distribution for consumption is provided in
Table 6. Given the small volume of Class V (ammunition) required for all supported units
except the field artillery battalion, as seen in Table 4, their distribution is likely to be
handled separately, e.g. in other types of armored vehicles. We set Class V (ammunition)
simulation parameters accordingly and assume no consumption, when consumption volume
is negligible, so resupply will not be handled by load handling systems.

Table 4.
Unit measure
conversion factors
from DOS to number
of trucks, by supply
class and supported
unit

Supported unit # Personnel Supply class DOS quantity # Trucks per DOS

Infantry 1 through 3 459 I (food) 2,066 gallons 1.0328
Infantry 1 through 3 459 III (fuel) 1,486 gallons 0.2972
Infantry 1 through 3 459 V (ammunition) 145 pounds 0.0625
Infantry 1 through 3 459 All Other 17 pallets 1.0625
Field artillery 556 I (food) 2,502 gallons 1.2510
Field artillery 556 III (fuel) 3,126 gallons 0.6252
Field artillery 556 V (ammunition) 22,509 pounds 1.1255
Field artillery 556 All Other 17 pallets 1.0625
Cavalry 343 I (food) 1,544 gallons 0.7718
Cavalry 343 III (fuel) 1,833 gallons 0.3666
Cavalry 343 V (ammunition) 80 pounds 0.0625
Cavalry 343 All Other 14 pallets 0.8750
Engineer 533 I (food) 2,399 gallons 1.1993
Engineer 533 III (fuel) 5,156 gallons 1.0312
Engineer 533 V (ammunition) 68 pounds 0.0625
Engineer 533 All Other 20 pallets 1.2500

Table 5.
Triangular
distribution for
percentage of trucks
available

Truck type Min (%) Mode (%) Max (%)

Water 100 100 100
Fuel 60 80 100
Load handling system 60 80 100
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4.3.3 Simulation dynamics. The simulation tracks daily inventory levels, measured in DOS,
by supply class and supported unit. We assume that each unit can only hold three DOS on-
hand owing to limited storage and holding space. If the optimization model sends two trucks
when only one and a half trucks are needed to reach 3.0 DOS, then the inventory level will be
set to 3.0 DOS, which is both the target amount of supplies and the maximum allowed. Any
amount of inventory below 3.0 DOS reflects a shortage of a particular supply, for a given
unit. We assume that resupply occurs early enough in the day for supplies to be available for
consumption that day.

4.4 Results and discussion
We developed our framework in Python 3.7, using CPLEX V12.10.0 to solve the integer
programming subproblems. We ran the scenario for a conflict duration of 63 days and
simulated 100 runs to produce robust risk curves. We also ran the scenario as an expected
value problem, where supply of trucks and consumption remained constant (i.e. the average
values in Tables 5 and 6), for comparison.

4.4.1 Simulation with 100 runs. First, we review the risk curves for optimizing Class
III (fuel) truck capacity over a 63-day conflict simulation, which are provided in Figure 5.
To ensure no risk of always maintaining 3.0 DOS, the fleet would need eleven fuel trucks.
With minimal risk, nine or ten fuel trucks would suffice. By reducing the buffer from 3.0
DOS to 2.5 DOS, fuel supplies can robustly be maintained with eight trucks. Having less
than seven fuel trucks would introduce risk for maintaining even 2.0 DOS consistently.
The status quo for this scenario is five fuel trucks, which maintains only 1.5 DOS with
almost no risk.

Figure A1 in the Appendix provides risk curves for all supply classes.
4.4.2 Expected value problem. Next, we repeat this analysis using the risk curves

obtained by solving the expected value problem for optimizing Class III (fuel) truck capacity
over 63 days of conflict, which are provided in Figure 6. Using expected value, no more than
nine fuel trucks would be needed to robustly maintain 3.0 DOS. Only five fuel trucks, the
status quo for this scenario, would be required to maintain 2.0 DOSwith almost no risk.

Figure A2 in the Appendix provides risk curves for all supply classes.

Table 6.
Triangular

distribution for
consumption in DOS,
by supply class and

supported unit

Supported unit Supply class Min Mode Max

Infantry 1 through 3 I (food) 0.75 1.00 1.25
Infantry 1 through 3 III (fuel) 0.75 1.00 1.25
Infantry 1 through 3 V (ammunition) 0.00 0.00 0.00
Infantry 1 through 3 All Other 0.85 1.00 1.15
Field artillery I (food) 0.75 1.00 1.25
Field artillery III (fuel) 0.85 1.00 1.15
Field artillery V (ammunition) 0.90 1.00 1.10
Field artillery All Other 0.85 1.00 1.15
Cavalry I (food) 0.75 1.00 1.25
Cavalry III (fuel) 0.40 1.00 1.60
Cavalry V (ammunition) 0.00 0.00 0.00
Cavalry All Other 0.70 1.00 1.30
Engineer I (food) 0.75 1.00 1.25
Engineer III (fuel) 0.90 1.00 1.10
Engineer V (ammunition) 0.00 0.00 0.00
Engineer All Other 0.70 1.00 1.30
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4.4.3 Randomly generated truck availability vs expected truck availability. Intuitively, we
can understand the relationship between the tails of the simulation using randomly
generated truck availability versus the expected value problem. In the expected value
problem, 80% of the fuel trucks are available, so with nine trucks that would leave seven
trucks available. When simulating a day with 60% truck availability, with eleven trucks
then seven would also be available. So, the tails in both Figures 5 and 6 are owing to the
same need for seven trucks to be always operational to experience no risk of maintaining 3.0
DOS.

When faced with limited resources, a decision-maker might be tempted to equip the fleet
with only five fuel trucks, based off the expected value risk curves in Figure 6, with
mistaken confidence about the risk involved. Figure 5 shows that the risk is actually not
insignificant: about 20% of the time, units would fall short of 2.0 DOS in fuel. This

Figure 6.
Expected value
problem: risk of Class
III (fuel) shortage as a
function of fuel truck
capacity for a 63-day
conflict, using
expected values for
truck availability and
consumption

Figure 5.
Simulation with 100
Runs: risk of Class III
(fuel) shortage as a
function of fuel truck
capacity for a 63-day
conflict, using
triangular
distributions to
generate random
samples for truck
availability and
consumption
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highlights the usefulness of simulating the entire range of uncertainty vs simplifying the
dynamics with expected values.

5. Conclusions
Our framework for optimizing IBCT sustainment logistics informs strategic decisions for
fleet design in advance of a conflict. It can be directly applied to analyze risk and pinpoint
opportunities for mitigation. Realistically, not all equipment a unit has will be available for
operational use. Both planned and unplanned maintenance limit the number of vehicles
available at a given time. Similarly, consumption of goods is not constant from day to day
but depends on required tasks, weather conditions and a host of other factors.

In the absence of modeling frameworks that can capture these sources of uncertainty,
decision-makers may rely on averages and expectations. As we show in subsection 4.4,
introducing such simplifications can hide potential risks and lead to less effective decisions.
We incorporate this variability in our model through simulation. We thereby provide a more
robust method for measuring risk and informing decisions that effectively mitigate it. Our
method proved effective both in terms of the quality of results produced and in terms of
computational tractability.

The risk curves our framework produces are designed to be easily interpreted by
decision-makers who are faced with challenging resource decisions. One can easily prioritize
certain supply classes over others and understand the associated fleet requirements.
Commanders can also quickly generate what-if scenarios to test how changes in vehicle
availability or consumption would affect the risk of supply shortages, for example, if new
vehicle technology is introduced andworst-case downtime increases from 40% to 50%.

5.1 Future work
While our framework is designed for logistics planning in advance of a conflict, the
optimization model we introduce in subsection 3.2 can also be used to assist in daily
planning during a conflict. Such plans can provide a starting point that commanders adapt
while taking into account additional details that are informed by in-depth knowledge of
actions on the ground. One aspect that can be incorporated into future modeling efforts is
risk owing to attack and interception of vehicles (Hudson et al., 2017; Sweeney, 2019).

The US Army is currently piloting Autonomous Ground Resupply technology through
the ongoing Expedient Leader-Follower program. Autonomous vehicles will reduce
personnel requirements and thereby increase available road time. However, uncertainty will
also increase because of unknowable maintenance requirements. Designing fleet
requirements in the absence of historical experience and data will rely heavily on the
development of analytical models. The framework presented in this paper can be readily
adapted to meet such needs. Other mathematical frameworks for optimizing decisions under
uncertainty, such as a combined simulation-optimization approach, stochastic programming
or chance-constrained programming, may provide opportunities for complementary
analyses and for future methodological research.
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Appendix

FigureA1.
Simulation with 100
Runs: risk of supply
shortage as a function
of truck capacity for a
63-day conflict, using
triangular
distributions to
generate random
samples for truck
availability and
consumption

Notes: Each subfigure corresponds to a unique supply class. The demand for load handling
systems is driven by the All Other supply class, as opposed to Class V (ammunition)
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FigureA2.
Expected value
problem: risk of

supply shortage as a
function of truck

capacity for a 63-day
conflict, using

expected values for
truck availability and

consumption
Notes: Each subfigure corresponds to a unique supply class. The demand for load  handling
systems is driven by the all other supply class, as opposed to Class V (ammunition)
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