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Abstract

Purpose — The purpose is to develop search and detection strategies that maximize the probability of
detection of mine-like objects.

Design/methodology/approach — The author have developed a methodology that incorporates variational
calculus, number theory and algebra to derive a globally optimal strategy that maximizes the expected
probability of detection.

Findings — The author found a set of look angles that globally maximize the probability of detection for a
general class of mirror symmetric targets.

Research limitations/implications — The optimal strategies only maximize the probability of detection
and not the probability of identification.

Practical implications — In the context of a search and detection operation, there is only a limited time to find
the target before life is lost; hence, improving the chance of detection will in real terms be translated into the
difference between success or failure, life or death. This rich field of study can be applied to mine
countermeasure operations to make sure that the areas of operations are free of mines so that naval operations
can be conducted safely.

Originality/value — There are two novel elements in this paper. First, the author determine the set of globally
optimal look angles that maximize the probability of detection. Second, the author introduce the phenomenon of
concordance between sensor images.

Keywords Optimization, Probability, Decisional analysis, Defence
Paper type Research paper

1. Introduction

The aim of a search and detection mission is to detect a target, be it a human body, an
aircraft, a mine or a ship. One technique for detecting a target is analyzing sensor images
and their characteristics, such as a target’s shadow, highlight, orientation, size, contrast,
etc. This paper focuses on mathematical modeling inspired by underwater mine detections.
In a mathematical sense, the aim of a search and detection mission is to maximize the
probability of detection. Given a sensor and a target, we develop a strategy that maximizes
the probability of detection. This goal can be achieved by observing a target from a
sequence of optimal angles. However, the use of aspect angles is often overlooked in
traditional search theories. Indeed, the law of random search (Koopman, 1999) is widely
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used, yet it assumes no angular dependencies. Likewise, Washburn (2002) does not
generally consider angular features. Recently, Onggo and Karatas (2016) described a
number of maritime search operations for stationary and moving targets, but they did not
consider angular constraints.

Both experimental and theoretical research studies have demonstrated that the
probability of detection can be significantly increased by observing a target from more
than one angle. Indeed, target saliency depends on its aspect angle. Fixed sensor arrays
deployed for target localization and tracking benefit from multi-aspect observations (Ash and
Moses, 2008; Bishop et al., 2010; Martinez and Bullo, 2006). The observation of targets in mine-
hunting operations using different looks (by which, we mean different angles) is associated
with significant improvement in their detection. Even greater improvement is evident when
multiple looks are carried out in an optimal manner (Fawcett ef al, 2008; Ji and Liao, 2005;
Johns Hopkins Applied Physics Laboratory, 2019; Nguyen and Hopkin, 2005; Nguyen et al.,
2008, 2014; Runkle et al., 1999; Wettergren and Baylog, 2010; Williams and Hunter, 2015; Zerr
et al., 2000).

In the realm of automatic target recognition using synthetic aperture radar images, many
recent papers describe how to improve the performance of target recognition using multiple
looks (Ding and Wen, 2017; Huan and Pan, 2013; Laubie ef a/., 2015, 2018; Salvador, 2016; Situ
et al., 2016; Zhang et al., 2012). Earlier research (Bhanu and Jones, 2002; Brown, 2003; Jin et al,
2006; Laine and Bauer, 2008; Ruohong et al, 2010; Snyder and Ettinger, 2003; Vespe et al,
2005). This research shows that the performance of target recognition can be significantly
improved through the data fusion of observations at different looks (referred to as aspect
diversity). One feature shared by previous papers on automatic target recognition is the
detailed analysis of the images of realistic targets. By contrast, we provide an analytical
model for a general class of mine-like and symmetrical targets, emphasizing the phenomenon
of concordance.

Determining the globally optimal angles is not a simple feat. The complexities associated
with the computation are nonlinear, multidimensional (each independent look is considered a
separate dimension) and, in brief, NP-hard (Toérns and Zilinska, 2007). Even when the number
of looks is few and the single look probability of detection is simple, the explicit probability of
detection for 7 looks can be hopelessly complicated. Numerical solution (Press ef al, 1992) is
not an option, as it requires a huge number of calculations for each new scenario.
Furthermore, the solution space has many local optima.

Therefore, the problem requires a different approach that is not numerical. We have found
a methodology that incorporates variational calculus, number theory and algebra to derive a
globally optimal strategy that maximizes the expected probability of detection. This globally
optimal solution holds for a large class of targets that exhibit mirror symmetry. The solution
consists of simple angles that are intuitive and have analytical expressions. This simplifies
the task of planning and executing a search and detection mission.

Our methodology makes use of the symmetry of the problem and several reasonable
criteria, such as the periodicity of the single look probability of detection. These criteria apply
generally to a target whose shape can be approximated as an ellipsoid.

We will provide a rigorous proof to show that the solution is globally optimal, avoiding the
false conclusions based on symmetry that have been made in the past (Waterhouse, 1983;
Bouniakovsky, 1854). The concept of symmetry has been used fruitfully many times in
history. It is commonly known that the laws of physics obey symmetries, such as Lorentz
symmetry (French, 2009) and gauge symmetry (Ryder, 1988). In engineering, symmetry has
also played a significant role. For example, symmetry is used in three dimension alignment
(Chaouch and Verroust-Blondet, 2009), in shape matching (Kazhdan et al, 2004), etc.

We describe the modelling assumptions in Section 2. We determine all the local optima (the
set of all critical points) to the expected probability of detection in Section 3. In Section 4, we
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Figure 1.
A manta mine

Figure 2.

Actual mine observed
at 85° (left) and at

0° (right)

prove the global optimality of the equidistant angles (to be defined later). Section 5 contains
examples based on a nontrivial single look probability of detection. We conclude in Section 6.

2. Modelling assumptions

Here, we assume a large class of targets that has mirror symmetry, such as a cylinder or an
ellipsoid. Most manmade targets (e.g. a ship hull, a mine, etc.) have this symmetry. We focus
on one aspect of target detection: the look angle, for depending on the relative orientation of
the sensor and the target, the sensor picture will look different at different look angles. In
underwater mine-hunting operations, the analysis of other characteristics, such as the
highlight and the size of the target, also contributes to the overall probability of detection. We
believe that observation of these characteristics will also be improved with our search
strategy based on look angles, e.g. highlights change with look angles and different
highlights add more information. Analysis of these characteristics is a topic for future
research.

There are two novel elements in our model. First, we determine the set of globally optimal
look angles that maximizes the probability of detection. Second, we introduce the
phenomenon of concordance between sensor images.

Figure 1 shows an example of an underwater mine known as a Manta. Figure 2 shows two
sonar pictures of a mine on a relatively benign seabed: one taken at 85° (left) and the other at 0°
(right). Some of the sonar images were collected by an Autonomous Underwater Vehicle Trial
equipped with a side-scan sonar at Loch Earn, Scotland in November 2010. Machine learning
algorithms have been developed and tested against sonar imagery data (Wang ef al, 2014;
Shao and Japkowicz, 2014). While the algorithms discover the optimal angles, this is not the
same as an analytical solution, as presented here. The premise of our assumption is that the

Source(s): https://www.thinkdefence.co.uk/mine-types/




detection probability is maximal if a target is viewed from its broad side, and it gradually
degrades and reaches a minimum if a target is viewed from its short side.
We make the following assumptions:
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Pictures are captured at the same range;

The detection probability for one look is maximal when a target is viewed at its
broad side;

The detection probability for one look decreases monotonically as the look angle
moves away from the broad side view;

The shadow of a target is a semicircle;

The detection probability for one look is quantitatively proportional to the
normalized and observed cross-section of the target (Nguyen and Mirshak, 2016);

The detection probability for one look is further compounded by 6/z where 6 is the
angle that subtends the shadow of the target as shown in Figure 3;

The detection probability for one look is periodic with a period equal to # due to the
symmetry of the target;

Toillustrate, we assume that the detection probability for one look at the look angle x
and the subtended angle 6 is equal to g(x, ) = (8/x)-(1—-g(x)) where
g(x) = sin (Jc)2 is shown in Figure 4 (this corresponds approximately to the
normalized cross section of an ellipsoid). Note that this probability of detection is not
equal to the area size of the shadow of a target. We interpret 8/ as the normalized
angle of the circular sector, and (1 — g(x)) is the diameter of the circular sector. By
definition, 0 < (1 — g(x)) <1is the normalized cross-section of a target. That is, the
diameter of the circular sector is less than or equal to one. In reality, g(x) depends on
the kind of target that we are looking for. Since we aim to maximize the expected
detection probability, which is an average, the details in g(x) are not expected to
vary the expected value substantially if 1—g(x) is a good representation of the
cross-section of the target.

This means that the detection probability for one look is maximal at the look angle
x=0and

The orientation of the target is uniformly random, i.e. the density distribution of the
look angle is equal to 1/x (we do not know the orientation of the target).

For the sake of argument, we consider the shadow of a target to be a semicircle (Figure 3). The
exact shape of the shadow will not matter. We will show this when we discuss the
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Figure 3.
Shadow of a target




DAL

156

Figure 4.
Probability of not
detecting a single
target as a function of
look angle (6 = x)

Figure 5.
Shadow of a sphere
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phenomenon of concordance. This kind of shape for the shadow of a target is similar to the
shadow of a sphere (Figure 5).

However, unlike a sphere, the shadow of a target has a different diameter (cross section) at
a different look angle x. Therefore, we simulate the cross-section of an ellipsoid using, for
example, sin(x)2 as shown in Figure 4.

The use of g(x) = sin(x)* assumes that the minimal detection probability for one look is
zero percent while the maximal detection probability for one look is 100%. This is not
realistic. Normally, the minimal detection probability for one look (smallest cross section) is
greater than zero percent while the maximal detection probability for one look (largest cross-
section) is less than 100%. Therefore, to accommodate this reality, we model

Gap(X)=a+b -sin(ac)2 where @ + b < 1and a, b > 0. The parameters ¢ and b are related

to the normalized cross section of the target: a corresponds to the broad size of the target while
a + b corresponds to the short size of the target. Nguyen and Mirshak (2016) show that with

Source(s): Virtual Instructor (2021)



a =0and b = 0.8, g, () is similar to the normalized cross-section of an ellipsoid (Figure 6)

with parametrization: a; = 1.60m, as = 0.325m, a3 = 0.325mwhere 7 = (a1 -cos 8-cos ¢,
az-cos 6-sin ¢, ag-sin ).
For completeness, the complement of the normalized cross section of an ellipsoid is shown

below:
g(x)=1- \/cos(x)2 + (%)2.31';1(96)2

We note that there are two kinds of detection probability. The first kind, g, is the single
look detection probability, which depends on the orientation of the target and varies
between 0 and 1. The second kind of detection probability P, with concordance or P,
without concordance is the expected detection probability based on 7 looks, which varies
between 0.5and one (P;, P; = 0.5) as shown later. Here, we refer to the look angle simply
as “the angle,” while the expected detection probability is referred to as “the detection
probability.”

The aim is to maximize the detection probability of # looks. We, and others, have
attempted to solve this problem in the past. To do that, we have assumed that each image is
independent; therefore, the outcomes can be described as a Bernoulli process (a binomial
density distribution). This assumption is not correct, since analyzing the same image twice (at
the same range and the same angle) does not yield additional information. Despite that, we
have shown that the global optimal angles for # looks consist of the equidistant angles, i.e.
0, z/n, ..., (n—1)-x/n). A proof of global optimality was found by identifying all local
critical points and showing that each one gives a detection probability that is less than or
equal to the one of the equidistant angles.

In this paper, we correct that oversight by introducing the phenomenon of concordance.
That is, the pictures are in accord. If the angles are the same, then there is no improvement in
the detection probability. The improvement from two pictures increases as the relative angle
between the two pictures increases. This phenomenon of concordance assumes that the
signal-to-noise ratios of the pictures are high. If the signal-to-noise ratios are low, then signal
averaging (Hassan and Anwar, 2010) from multiple pictures at the same angle reduces the
noise and hence improves the probability of detection. We note that concordance is not the
same as correlation. In probability and statistics, the coefficient of correlation is defined
through the covariance between two variables, and it is not a probability. Concordance in this
paper represents a probability. However, in the community, we sometimes refer loosely to
concordance as correlation.

To illustrate the idea of concordance, we provide three looks at an ellipsoid (Figure 7). The
look angles are 0°, 10°and 90°in Panel A, B and C of Figure 7 (not drawn to scale). Panel A and
B are similar: together they do not yield more information than either one does separately.
However, Panel C is completely different from Panel A and B. Therefore, Panel C adds more
information to Panel A and B. We say that Panel A and B are closely in accord while Panel A
and Panel B are not in accord with Panel C.
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Figure 6.
A mine modeled as an
ellipsoid
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Figure 7.

An example of the
phenomenon of
concordance (the cross
section of an ellipsoid
viewed from different
look angles)

Figure 8.
Cylindrical target
observed at look
angle x

Unsurprisingly, the equidistant angles still globally optimize the detection probability for
nlooks even when concordance is accounted for. This indicates that our probabilistic model
for concordance is correct. The proof for the case with concordance now becomes more
natural. Note that the idea of concordance was previously mentioned in (Nguyen and
Mirshak, 2016).

To clarify: Figure 8 defines the angle x while Figure 9 displays the symmetry of a target,
and Figure 6 shows g as a function of x.

3. A probabilistic model with concordance

Before we describe the general model of concordance for 7 looks, we will derive in detail the
case of two looks. An example of two looks is shown in Figure 10: y, is the first look, and y, is
the second look while x is the orientation of the target.

Theorem 3A. The probability of detection for two looks without concordance.

Without concordance (assuming the two looks are independent such that the circular sectors
are equal to z), the probability of detection for two looks can be written as follows:

®

37/2




(1=t po m) - (1= + 7))

et ) =1- [ Fogloatetn)

/2

The detection
of mine-like

0 objects

159

Figure 9.
Symmetries of the
target

Figure 10.
An example of
two looks
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Figure 11.
Overlapping shadow
illustration

Proof of Theorem 3A. The first equality in Equation (1) holds, since the integral represents
the nondetection probability for two looks one at 4, and the second
at y;. The second equality holds since g(x) has a period equal to z.
The third equality holds since y = py — . QED.

Theorem 3B. The probability of detection for two looks with concordance and the
concordant p.

With concordance (assuming the two looks are not independent), the probability of detection
for two looks can be written as follows:

P, (ﬁ) =1- /()”%'g(x"'ﬂo)'[ﬂ(ﬂl = Ho) + (L= pluy — po))g(x + py)]

Tdx
=1 [ Soa- o)+ (1= pl)et-+ ) ®
where p(p) simulates the phenomenon of concordance. We name p(u) =1—p/x the
concordant.

Proofof Theorem 3B. To derive the probability of detection for two looks with concordance,
we consider two shadows at two different look angles (Figure 11). The
shadow of the first look is the upper blue semicircle while the shadow
of the second look is the red stripe semicircle rotated by u with respect
to the blue semicircle. The diameter of the blue semicircleis (1 — g(x))
while the diameter of the red semicircle is equal to 1. Therefore, the
diameter of the red semicircle is always greater than or equal to the
diameter of the blue semicircle.

We deem that new information occurs only when the two sectors of the two semicircles do not
overlap. That is, new information corresponds to the circular sector with red stripe subtended
by the angle p.

The probability of detection given the first look with look angle x can be expressed as follows:

P~ () = B0 gta)

(where dx/m assumes that the orientation of the target is uniformly random). Similarly, the
probability of no detection given the first look can be expressed as follows:

dx
Q=1-P N;g(x)

The outcomes after the first look are therefore

~

New Information
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That s, P, and @, are probabilities and at the same time represent the outcomes. P; represents
the outcome that the target is detected while @ represents the outcome that the target is not
detected. If the target is detected, it remains detected. If the target is not detected, it can be
detected or remains not detected at the next look.

The second look with look angle x + y has two sectors with two corresponding separate
contributions. The first contribution (u/7) = 1 — p(u) is outside of the sector of the first look,
which is considered nondetected and hence provides additional probability of detection. The
second contribution (1—p/x) = p(u) overlaps with the sector of the first look, which is
already considered as detected and hence does not add to the probability of detection.

The outcomes are now as follows:

(Pr+ Q)W) + (1= p)) =P+ Qupu) + (1 = p(n))

The above equality holds since the detection of the first look (the event P)) is not affected by
the second look. However, the nondetection of the first look (the event §;) can be affected.
That is, the second look could provide detection after the first look nondetection. There are
two possibilities following the first look nondetection:

(1) Q1-(1—=p(p))corresponds to the nonoverlapping sector between the shadow of the
first look and that of the second look. Hence, this contributes to new information
with additional detection probability @;-(1—p(u))-(1—g(x+p)) where
(1—g(x+ p)) is the normalized cross section of a target at the second look angle
(x+p);

(2) Q1-p(u) corresponds to the area that has already been observed. Hence, this has no
contribution to the detection probability.

Summing the probabilities of detection, we get the detection probability for two looks (one
with look angle x and another with look angle x + y) can be written as follows:

P =P+ @i(1—p(u)(1 —g(x+p))

where P is the probability of detection due to the first look, and @ (1 — p(p))(1 —g(x + u)) is
the additional detection probability due to the second look with concordance. Simple algebra
dictates that

dx
Py =1-g(x)(pu) + 1 —pu))g(x+m)—
Integrating over all possible angles x, with concordance, the probability of detection for two
looks can be written as follows:

Pa(R) =1 [ Sttt = o) + (1= plos = )+ )]

T dx
=1 [ gt o)+ (1= pl)ets + ) ®)
where p(u) simulates the phenomenon of concordance: g(x)-p(u) represents information
from the first look but no new information from the second look at u while
g(x)-(1=p(u))-g(x + u) represents information from the first look in addition to new
information from the second look. QED.
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Theorem 3C. Properties of the concordant p(u).

o /. 0<p<m)2
1—p(u)f{1_,¢/ﬂ m/2<u<n ¥

Due to the symmetry of the problem, the function p(x) must satisfy a number of criteria:
O p=lul
@ 12p(u)20;
(3) p(p) decreases as a function of ;

@ plu+m)=pu);
) p(0) =1and

(6) Appropriate periodic extensions.

Proof of Theorem 3C. Theorem 3B shows that p(u) = 1—pu/z. Criterion a implies
that the function p(u) does not distinguish one look from
another: only their difference matters. Criterion b implies that
the function p(u) is a probability. Criterion ¢ implies that there
is less concordance when p increases. Criterion d implies the
target has a symmetry that is periodic with period equal to .
Criterion e implies that there is no new information if it is
the same look, i.e. g(x)- (p(u) +(1=p(u))g(x + u))],—o = &()-
Criterion f implies that

0< 2
T=plw) = {1 ﬁ/:tr/ﬂ 71/2M§<,uf;/ﬂ

This is so, since an ellipsoidal target is symmetric: the left hand side is the mirror of the
right hand side. QED.

Knowing that for small y, p(u) ~ ¢ /", we propose a general model of concordance such
that

e 0<u<n/2
p(ﬂ) - {e—ll‘(ﬂ—ﬂ) 7[/2 < ﬂSﬂ' (5)

This function satisfies all the properties listed above with appropriate periodic extensions in
addition to the appealing characteristic that p(a)-p(b) = p(a + b). That is, the concordance
between two looks separated by a + bis the product of the function p(u) at @and the function
p(u) at b. The corresponding geometry is shown in Figure 12.

The function in Equation (5) is of course an assumption. The exact expression of the
function p(u) depends on the shape and characteristics of the target. However, our model of
concordance is flexible in the choice of @ and allows us to simulate the phenomenon of
concordance with some generalities.

For illustration, we plot p as a function of y in Figure 13. Knowing p(y) allows us to
determine the probability of detection for two looks. There are many ways to optimize the
probability of detection for two looks. Here, we plot out the probability of detection for two

looks as a function u in Figure 14 with g(x) = sin(x)z. Figure 14 shows that the probability
of detection for two looks is maximal when y = z/2 in both cases with and without



concordance. We also observe that if y = 0, x, we have two identical images. Yet, in the case
without concordance (green curve), there is an improvement from one look (blue curve) to two
looks. This indicates that the probability of detection without concordance is incorrect as we
essentially analyze only one image (two identical images). What is more, in the case with
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Figure 12.
Transitivity of the
exponential function

Figure 13.
p as a function of y for
three values of a

Figure 14.
Probability of detection
for one look and two
looks as a function of u




JD AL concordance (red curve), the probability of detection for two looks is the same as the one for
59 onelook,i.e.when u = 0, z. This indicates that the probability of detection with concordance
’ is correct and has the right limits.

Theorem 3D. Probability of detection without concordance for # looks.

pa

- 1 dx =
164 P, (H) =1- . /75’(95 + o) H[P(//‘z = i) + (1= plp — pi1))8(x + py)]
; i=1
1
- %{MO Uy B Hey -y Py _)/’l()}
- %{circular permutationsof y; (1 =0, ..., n—1)} (6)

Proof of Theorem 3D. Equation (2) is technically correct but is difficult to generalize

from two looks to n looks. We need to make it symmetric.
That is,

The first integral corresponds to the fact that y, is accorded with y;, and the second
integral corresponds to the fact that u; is accorded with p, where p, > p, (modx).
Using the characteristics of g(x) and the characteristics of p(u), we show that
Equation (7) is the same as Equation (2). We can now generalize to the case of # looks
(n>2):

n—1

P, (/7) =1- % /%g(x + ) [ [lows — pica) + (1= pl; — piy))g(x + )]

=1

1 dx
= | o= b By ey = o
0

1 [dx, . .

- /—x{mrcular permutationsof y; (1 =0, ..., n — 1)}
b/
0

where the looks u; (1 =0, ..., n—1) are sorted in increasing order such that
0=py<m < ... <y, <z Note that due to the periodicity of g(x), we can always set
#o = 0. From this point on we will use y, = 0to alleviate the notation. For example, with
n = 31ooks, the probability of detection can be written as follows:



: - .
- é{ [ g0 lp) + (0 o))+ ) ol — ) + (1= pl = g w)]} he detection
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/d%g(x + ) [p(ps — pn) + (1= p(py — p1))g(x + po)] - [p(p2) + (1 = P(ﬂz))g(x)]}
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/ %zg(x +p2) - [p(p2) + (1 = p(uy))g ()] [p(p1) + (1 = p(uy))g (% + )] }

©)
QED

Equation (8) is a model with concordance where we assume concordance between consecutive
looks only. Technically, based on our definition of concordance, each look is accorded to all
other looks. For example, with four looks, the first look is accorded with the second, the third
and the fourth look, while the second look is accorded with the first, the third and the fourth
look, etc. This topic awaits further investigation. However, we believe that the optimal look
angles will stay the same.

4. Global optimization

Naturally, we search for the look angles that will maximize the probability of detection for 7
looks so that we can find the target as quickly as possible. In previous unpublished work, we
show that the probability of detection for 7 looks without concordance is globally maximal with

the equidistant angles u, = (0, z/n, ..., (n—1)-x/n). Here, we assert that the equidistant

angles also globally maximize the probability of detection for # looks with concordance.
Theorem 4A. Globally optimal looks.

The globally optimal looks are the equidistant angles y, = (0, z/n, ..., (n—1)-z/n).

Proof of Theorem 4A. Gelfand and Fomin (1963) dictate that if I is the integrand in
Equation (7) and K () is the constraint such that y are constant

parameters equal to C that are independent of «:

n-1

F(i) = 2 [0~ ) + (0 plas — ) 8+ )

=1

+(circular permutationsof y;(: = 0, ..., n—1)) ®)
() -5-¢
then there exists a function z(x) such that
F,+%(x)K, =0 (10)

fori =0, ..., n—1where A(x) is invariant if we replace j by — .

This signifies that the critical points u =y occur when F (ﬁ*) =F (—ﬁ*) if we
set yy = 0. There are two symmetries involved. The first allows the freedom to set any
angle p; =0. That is, {;,i=0, ...,n=1} = {p —p;,i=0, ..., n—1} (mod ).
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Figure 15.
Symmetries of
{240 =0, ..., 3}
=0, n/2, =, 3 ﬂ/2}

The second allows the freedom to set all angles to their negative values. That is,
{u',i=0, ...,n-1} = {—yl,z—O , n—1} (mod x).

Forexample letn = 4andlet y = (O 77:/4 2-m/3, 3-m/4); weplotout 2- uonacircle
in Figure 15. The roots are symmetrical with respect to the horizontal axis in Panel A. We
rotate the roots by 7 around the horizontal axis in Panel B and by 7/2 clockwise in Panel C. In
all three panels, the roots are symmetrical with respect to the horizontal axis. This example
determines all the critical points for the probability of detection with 7 looks.

Upon inspection, there are two types of critical points that satisfy both symmetries. Type
1 critical points consist of two sets. The first set can be writtenas {0, z/m, ..., (m—1)-z/m}
while the second set as {0, z/(2-m), ..., (2:m—1)-z/(2-m)}. Each set of points could
appear more than once in a way such that 1 <m, 2-m <n. Type 2 critical points consist of one
set {0, 4, ..., (n—=1)-u} that can also appear more than once where u=m-2
and m=1, ..., n—1

The commonality of these critical points is that the zero root occurs at least twice
except for the equidistant angles. We will show that if the zero root occurs more than once,
then the corresponding critical point cannot be globally optimal.

We will show this by replacing the second zero root by — & the new probability of
detection will be greater than the one with two zeroes. For example, assuming three looks, the
critical points are as follows:

@ (0,0,0)
(2) (0,0, z/2) equivalent to (0, /2, z/2) and
&) (07 7[/3’ 2”/3)

Examining the second critical point (0, 0, z/2), we will show that (—e¢, 0, z/2) yields a
better detection probability than the one based on (0, 0, z/2) for € > 0 and infinitesimal.
The two detection probabilities can be written as follows:

P((0, 0, z/2)) = P((0, z/2))

o o ) (o) 5 D) [l -606) + 0300

0

For clarity, we define

@) (b) ©



B [ Faw(o(5)+ (1-r(3)) #(++3))

P((=¢,0,7/2) =1— (A+B+C)

A=y [ ”—x-gw—e)-ws) w1 pe) g [o(3) + (1-0(5)) a(x+7)]

B—g @ p(3) + (1-r(3)) el + )] oG +e)
gl —

(1 ﬂ( )) g(x )]

Expanding in terms of ¢ such as
glx — &) = g(x) —e:g'(x) + O(¢%)
p(e) = p(0) — a-e-p(0) + O(¢?)

And the local optimality of the critical point (obtained through symmetry) such as

5 / “ () p(0) + (1= p(0) 2@ [p(5) + (1-0(3) ) -2(x+3)] =0

We can show that the O(e) of A, Band C are such that

Asia =5 [ w0r b 5) s (1-0(5) )

Therefore,

A+B+C<g,

This means that
P((-¢, 0, z/2))> P((0, 0, z/2))
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JDAL which implies that P((0, 0, z/2)) cannot be the globally maximal detection probability.
59 This pattern holds in general. That is, if there are two zero roots (0, 0, *) (possibly more),
’ then we replace them by (—¢, 0, *); the replacement will generate a greater detection
probability than the one with two zero roots (*represents the remaining roots that are
unchanged).
The only critical point that does not have at least two zero roots consists of the
168 equidistant angles (roots). This shows that the equidistant angles generate the globally
maximal detection probability since they represent the only critical point among all critical
points that is not sub-optimal. QED. The general proof is shown in Appendix 1.
We observe that for the equidistant angles each integral in Equation (7) is equal to one
another. To determine the probability of detection, we only need to perform one integral.

5. Examples — g, ,(x)= a + b X sin(x)®

In Nguyen and Mirshak (2016), the detection probability of # equidistant angles without
concordance:

P (,7) =1 —% §8)

(n-1)m

r n

where u, = (0 L ), g(x) =sin(x)* and we make use of the following
identity:

n—1

sino-5) ~flsine )

Theorem 5A. The detection probability for 7 equidistant angles with concordance can
be written as follows:

P(i) =1 g {0+ v - v 12)

where for simplicity, we write p = p (ﬁ) here and in the remainder of the paper.

Proof of Theorem 5A. We make use of two identities from (Gradshteyn and Ryzhik,
1979a, b):

n-1

k=0

a

1 +a-cos(x)  1—a?

with ¢* < 1. We also observe that

| {cosh — cos(

/ﬂd- cos(n-x) T .<\/1—a2—1>n

cosh(n-¢) — cos(n-x)
)} 271 cosh(¢) — cos(x)

= C(x)

k=1



where the lower bound of 2 = 1. As well,

ﬁ{ﬂ+ (1 P)'sinz(x+k;)} = :_; { (1#) - (1%'0) 'cos<2~x+2.z.ﬂ)}
= (l%p>" :li {cosh(cb) - cos<2-x+ 2'5”>}

— u {COSI/L(VL ¢) — COS(Z n- JC)}

22 n—1
~ D)
) - . T
sin' ()] {p+<1—p>~sm ( 7)} — D) €0}
cos h(¢) zl—ﬁzu

cosh(n-¢) = {(cos h(¢) + sinh(¢))" + (cos h(p) — sin h(¢))"}
:Q-{(u+\/ﬁ)"+(u_ uz_l)"}
(1 _ﬂ) COS//l(ﬂ ¢) 1 {(1 + \/—)2 n ( \/ﬁ)zn}

QED

For illustration, we plot the probability of detection as a function of number of looks in
Figure 16.

The first order effect is that the probability of detection almost doubles from one look to
two looks whether we consider concordance or not. This illustrates the benefit of
multiple looks.

Probability of detection as a function of number of looks
with and without concordance
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Figure 16.
Probability of detection
as a function of number

of looks with and
without concordance
assuming

g(x) = sin(x)*
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Figure 17.
Probability of detection
as a function of number
of looks assuming
&(x) =gap

(x) = a + b-sin(x)?
with b = 0.8 and =1

The second-order effect is the difference between two cases with and without
concordance. With concordance, we assume a =1, 2. Without concordance, the
probability of detection approaches 100% as the number of looks increases. However, with
concordance, the probability of detection reaches an asymptotic value that is less than 100%.
In fact, the limit as # — oo can be determined to be

finp (1) <1

which is the probability of detection for one look compounded with the minimal concordance.
As a — oo, we recover the case without concordance. That is, &m lm P,(i,) = 1. Note that

aA—00 N—00

there are two conflicting patterns in the case with concordance. That is, as the number of
looks increases, the probability of nondetection decreases as 1/4”. However, the concordance
also increases, i.e. p — 1, which reduces the probability of detection. This can be seen in the
first term of Equation (12), ie. (1+ /p »*"71. As a whole, however, the probability of
detection with concordance still increases with the number of looks. Generally, the difference
in the probability of detection between the case without concordance and the case with
concordance (a = 1) is about ten percent for three looks or more. If we consider five targets,
the probability of detection for each target without concordance is 0.993, while the probability
of detection with concordance is 0.855. The probability of detecting all five targets without
concordance is 0.993% = 0.962and with concordance is 0.855° = 0.458. This is substantial as
there is a probability of 0.542 that we do not detect at least one target with concordance.

Figure 17 shows the significant improvement in the probability of detection due to
multiple looks especially from one look to two looks. However, this improvement must be
tempered by the phenomenon of concordance since it yields a lower probability of detection
than the one without concordance. Therefore, when planning for search and detection, we
must be cautious because of concordance.

.e—a~ﬂ/2 (13)

Theorem 5B. Assuming g,;(x) =a —H)-sin(x)2 , the probability of detection with
concordance for 7 looks can be written as follows:

P (i) —1—%'{(1”1—?2)"'(1‘%)

+(1—\/1‘—7“2)"-<1+N+_ﬂ>} (14)

1-p)

Probability of detection as a function of number of looks
for multiple values of a
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where
SSTIRYAT) 5

and
(1-p)t

<1 (16)
p+(1—p)-(a+§)

y =

Proofof Theorem 5B. The same methodology as applied in Theorem in 5A can be used to
determine the probability of detection for #n equidistant
angles. QED.

There is also an asymptotic limit to the probability of detection with concordance for
equidistant angles when we assume the two parameters a and b:

lm Py (ﬁe) -1 (d i é) S (1_a—%) )

2

If we leta = Oand b = 1, we obtain results consistent with Equation (10). The asymptotic limit
is not only of academic interest. We could design an experiment with many looks, measure the
associated probability of detection experimentally and from this determine the parameter a that
models concordance. It is expected that o depends on the sensor and the type of target.
Figure 17 shows the probability of detection as a function of number of looks with and without
concordance. It is seen that the probability of detection with concordance is less than the
probability of detection without concordance. As discussed earlier, the probability of detection
without concordance is over estimated. This is potentially dangerous: one could infer that all the
targets such as explosive mines are detected with some confidence level while it is not the case.

Figure 17 shows the probability of detection as a function of number of looks for multiple
values of a. The parameter a generates the same effect as that of the single look probability of
no detection: as a decreases, the probability of detection increases.

Figure 18 shows the probability of detection as a function of number of looks for multiple
values of b. Like parameter g, parameter b generates the same effect as that of the single look
probability of no detection: as b decreases, the probability of detection increases.

Probability of detection as a function of number of looks
for multiple values of b
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Figure 18.
Probability of detection
as a function of number

of looks assuming

g(x) = &up

(x) = a + b-sin(x)?
witha =0.1and =1
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Figure 19.

Search patterns: one
look (A), two looks (B)
and three looks (C)

5.1 Search patterns

Based on the optimal look angles, we have developed corresponding search patterns
(Figure 19). The colored map shows the density distribution of targets in the search area.
Targets are more densely distributed in the center of the search area than around its borders.
Panel A of Figure 19 corresponds to one look, Panel B to two looks and Panel C to three looks.
As we have shown by our proof of global optimality for 4 = z/#, the optimal offset between
the angles of a given number of looks is given by dividing 180° by the number of looks. Hence,
when 7 looks = 2, the optimal angle between the two looks is 7/2, (90 deg), when n looks = 3,
the optimum between them is /3, (60 deg) and so on. Panel A shows a lawn mowing pattern
done with a single look angle. Panel B shows two looks, using the optimal 90 deg offset. Panel
C shows three looks, again with the optimal offset between the three, which is 60 deg, as noted
above. The probabilities of detection without concordance in Panel 19 A, 19 B and 19 C are,
respectively, 0.5-4, 0.875-1 and 0.969- 4 where A is a parameter that includes other factors,
such as the dependency on the range from the target to the searcher or highlights, etc. The
corresponding probabilities of detection with concordance are, respectively, 0.5-4, 0.797- 1
and 0.84-Awith @ = 1.

The illustration shows evidence of superior target detection ability as we increase the
number of looks and offset each of their angles optimally (brighter colors indicate greater
detection probabilities).

Note that in the multiple look case, multiple searchers can carry out the searches at the
same time or one searcher can carry out a set of parallel searches (lawn mowing pattern).
When completed, the same searcher can carry out the next set of parallel searches. Other
search patterns can be found in Bays ef al (2011).

6. Discussion and conclusion

This paper describes a phenomenon, concordance, that is little known in the open literature.
Concordance suitably determines the probability of detection. Without concordance, the
probability of detection is over estimated, an oversight that affects resource planning for
search and detection operations and puts personnel in danger, especially in mine
countermeasure operations.

In addition, we have derived the functional expression for the function p(u). Using the
function p(u) and the model of concordance, we have established that the equidistant angles
globally maximize the probability of detection. The global optimality holds for a large class of
targets that have mirror symmetry. We also note that the corresponding optimization problem
is NP-hard. Without symmetry, it is intractable even if we seek numerical values only.

We have also derived the asymptotic limit of the probability of detection as the number of
looks approaches infinity. This allows parameter « that defines the function p(u) through

(b)



experiments to be measured. For illustration, we model the single look probability of
detection as a normalized cross-section of an ellipsoid. The resulting probability of detection
for # looks has a closed form of expression that accounts for the number of looks, the cross-
section of the target from different angles as well as its short side and its broad side.

It is our hope that this material will be taught to and used by search and rescue operators
because it fundamentally changes the way we model detection theory from analyses of sensor
images.

In a Bayesian approach, such as the search for the Scorpion submarine (Richardson and
Stone, 1971), we could plan for the number of looks 7 to obtain a desired probability of
detection for each grid. Each time a grid is visited, the Bayesian probabilities are updated. A
grid could be visited » times. However, when a grid is revisited, the searcher would scan the
area with an offset that corresponds to 7 /7. For example, with three looks, there will be three
scans as shown in Panel C of Figure 19. Each scan will yield a different look.

Our approach may also generate optimal solutions for objects that display a different type
of symmetry, such as rotational symmetry (looks similar after rotation), cyclic symmetry
(several mirror planes passing through a fixed axis) and dihedral symmetry (several mirror
planes passing through a fixed axis with one perpendicular to the axis) (Chaouch and
Verroust-Blondet, 2009; Li et al, 2016).

We note that important symmetrical targets may appear nonsymmetrical: they may be
partially hidden or fragmented. In these cases, multiple looks still provide valuable
information. Detailed knowledge of the target also adds to an optimal search path.

Laine and Bauer (2008) describe how to recognize nonsymmetrical targets with multiple
sources and multiple looks. Situ ef al. (2016) also considers multiple looks for synthetic aperture
radar combat identification. Situ ef al (2016) and Laine and Bauer (2008) both provide robust
classifying algorithms to identify a target with a high confidence level. These papers examine
false positive and false negative events. Several other techniques, including concatenating
images, a Bayesian classifier, wavelet decomposition and principal components analysis, also
show improved performance in target recognition (Huan and Pan, 2013; Ding and Wen, 2017,
Laubie et al., 2015, 2018; Salvador, 2016; Situ ef al, 2016; Zhang et al, 2012).

Other search and detection approaches are drawn from game theory (Dambreville and Le
Cadre, 2007) as well as exhaustive searches that include integration of the concept of multiple
look angles into the search models (Chung and Silvestrini, 2014).

These papers examine the recognition and identification of a target but in less detail than
our approach. Generally, our strategy yields detections of potential targets which
complement the goals of previous research. Also, to the best of our knowledge, these
previous techniques do not provide an analytical model.

Once an object is deemed a potential target, further information may be obtained by taking
more pictures at additional looks or by making a video, enabling identification of the potential
target as a friend or an enemy. A mistake in identification could lead to friendly fire and
damage to infrastructure.

In the context of a search and detection operation, there is limited time to find the target
before life is lost. In real terms, improving the chance of detection translates into the difference
between success or failure, life or death.
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Appendix 1

Global optimality of the equidistant angles

In this Appendix, we prove that the equidistant angles yield the global optimal detection probability. In

Section 4, we identified two types of critical points. Type 1 critical points consist of

{0, z/m, ..., (m—1)-n/m} and {0, z/(2-m), ..., (2-m—1)-7/(2-m)}. Each of them could

appear more than once in a way such that 1<m, 2-m <n. Type 2 critical points consist of

{0, 4, ..., (n=1)-u} that can also appear more than once where 4 =m-Zand m =1, ..., n—-1
Due to concordance, any angle that is repeated more than once has the same effect as if it is single

look angle. For example,

P((0, 0, z/2)) = P((0, z/2))

This implies that the detection probability of either Type 1 critical points or Type 2 critical points can be
written as follows:

P((O’ H, 2”7 ) (3_1)/’[))

where s-u = 7 and none of the angles in the set {0, y, 2., ..., (s—1)-u} is repeated. With the
exception for the equidistant angles, we can assume that s < 7. We will show that

P((_Ev 0, 4, 2:p, ..., (3_1)'M))2P((0’ Hy 205 (S_ 1)/"))

That is, the probability of detection on the LHS at angle —e and the angles {0, p, 2-p, ..., (s—1)-u}is
greater than or equal to the one on the RHS at the angles {0, y, 2-4, ..., (s—1)-u} only. Since s < #,
the probability of detection on the LHS corresponds to s + 1(<#) looks. This ensures that the LHS is
within the constraint of 7 looks. This is so since if not, we could argue that with more than z looks the
corresponding probability of detection could be greater than those with 7 looks or less. Hence, it would
not show the optimality of # looks.

Before we provide the proof, we define the notation below:

2= [0 (o) + (1= ) )+ (1= () + (5 = 1))

Py =P((0, p, ._.’(371)7,;)):17@5
Pe:P((_E70’ﬂ7 "'7(5_1)'”)):1_§g



Gy /
gx —e)-[p(e) +q(e)-g(x)]-[p(u) + q(u)-g(x + p)]-
o) +q(u)-gx+ (s —1)-w)]+
g)-lp(u) +a(u)-gx+m)- ... lp(w) +q(u)-glx+ (s —1)-p)]-
p(u+e)+alu+e)glx—e)l+ (A1)
gl +pu)-lp(u) +au)-gax+2-p)]- ... [pu) +q(u)-g(x + (s = 1)-p)]-
lo(u+€) +q(u+e)glx—e)-lple) +aqle)-g(x)+
o+
gt (s—1)-u)lplu+e) +aqlu+e)glx—e)[ple) +a(e)-gx)]
lo(u) +a(w)-g(x + p)]-
o) +a(u)-glx + (s = 2)-p))

h\\&

where g(x) = 1-p(x).

There are s + 1 terms in g,. We will show that each of them is less than or equal to g,. Hence, g, < g,
which implies that P, =1-g,>1-g, = P,. This shows that Ps cannot be the globally optimal
probability of detection since there is another set of look angles {—¢, 0, y, 2-p, ..., (s—1)-u} that
yield a greater probability of detection than P;. Since Ps is the probability of detection of any critical
points except the set of equidistant angles. By elimination, the set of equidistant angles must be the
globally optimal critical point.

Even though there are s + 1 terms in g,, there are only three types of dependencies on &

1) g(x—e)-lple) +q(e)-g(x)}
@ [pu+e)+qlu+e) glx—e)and
@ lpu+e)+qu+e) -gx—e)lpe) +q(e) &)

For each type, we expand to the first order of O(¢) and show that the contribution O(e®) = O(1) < &
while the O(¢) is negative. This indicates that

s+1
s+1 <Zg‘_“M> (A2)

<g,

where M is a finite positive number. To do that, we gather O(1) terms and O(¢e) terms. Any O(e) terms
involving g’ (x) will be equal to zero due to the symmetry and the local optimality of the critical point. As

number M. For illustration, we perform the expansion of typé A. Given that for an infinitesimal ¢,
g(x—€) = g(x) —eg (1) + O(&)

and
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As (0) = 1, substituting the two expressions above into type A we get
g(x—e):[p(e) +a(e)-g()] = g(x) — a-e-g(x)- (1 - g(x)) — e-g'(x) + O(¢?)

This entails that

[ Begtem 0 lpte) +a(e) 2 o)+ a) 2o+ ) oo) + 00 5+ (5= 1)
0

n

=s%' /d—,f [g() —aeg(x)-(1-2(x) — &g (1) + O(£) ] - [p(k) +a () 2w + )]

o lp() +a(u) gt (s = 1) p)]
1 ) ”'dx'
s+l / T

le(0) —a-e-g(x)-(1—g(x) +0(e)] [p() + a(p) g (x+p)]
“clp() +a(p) g+ (s —1)-p)]

- (@—a-a [l (-] o) +alu-a-+ ) -[p(u)+q<m»g(x+<s—1>-m]+0(62)>
0

(A3)

The first equality is due to the expansion in & The second equality is due to the local optimality, i.e.
Jo du-g () [p(u) +a(u)-g(x+p)]- ... - [p(u) + q(u)-g(x + (s = 1)-)] = 0.The third equality is due
to rearranging the second equality so that the O(¢) is evident. The following inequality is due to the fact
each term making up O(¢) is nonnegative. Similar results can be drawn with type b and type c. QED.
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