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Abstract

Purpose – The purpose is to develop search and detection strategies that maximize the probability of
detection of mine-like objects.
Design/methodology/approach – The author have developed a methodology that incorporates variational
calculus, number theory and algebra to derive a globally optimal strategy that maximizes the expected
probability of detection.
Findings – The author found a set of look angles that globally maximize the probability of detection for a
general class of mirror symmetric targets.
Research limitations/implications – The optimal strategies only maximize the probability of detection
and not the probability of identification.
Practical implications – In the context of a search and detection operation, there is only a limited time to find
the target before life is lost; hence, improving the chance of detection will in real terms be translated into the
difference between success or failure, life or death. This rich field of study can be applied to mine
countermeasure operations to make sure that the areas of operations are free of mines so that naval operations
can be conducted safely.
Originality/value –There are two novel elements in this paper. First, the author determine the set of globally
optimal look angles thatmaximize the probability of detection. Second, the author introduce the phenomenon of
concordance between sensor images.

Keywords Optimization, Probability, Decisional analysis, Defence

Paper type Research paper

1. Introduction
The aim of a search and detection mission is to detect a target, be it a human body, an
aircraft, a mine or a ship. One technique for detecting a target is analyzing sensor images
and their characteristics, such as a target’s shadow, highlight, orientation, size, contrast,
etc. This paper focuses on mathematical modeling inspired by underwater mine detections.
In a mathematical sense, the aim of a search and detection mission is to maximize the
probability of detection. Given a sensor and a target, we develop a strategy that maximizes
the probability of detection. This goal can be achieved by observing a target from a
sequence of optimal angles. However, the use of aspect angles is often overlooked in
traditional search theories. Indeed, the law of random search (Koopman, 1999) is widely
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used, yet it assumes no angular dependencies. Likewise, Washburn (2002) does not
generally consider angular features. Recently, Onggo and Karatas (2016) described a
number of maritime search operations for stationary and moving targets, but they did not
consider angular constraints.

Both experimental and theoretical research studies have demonstrated that the
probability of detection can be significantly increased by observing a target from more
than one angle. Indeed, target saliency depends on its aspect angle. Fixed sensor arrays
deployed for target localization and tracking benefit frommulti-aspect observations (Ash and
Moses, 2008; Bishop et al., 2010;Martinez andBullo, 2006). The observation of targets inmine-
hunting operations using different looks (by which, we mean different angles) is associated
with significant improvement in their detection. Even greater improvement is evident when
multiple looks are carried out in an optimal manner (Fawcett et al., 2008; Ji and Liao, 2005;
Johns Hopkins Applied Physics Laboratory, 2019; Nguyen and Hopkin, 2005; Nguyen et al.,
2008, 2014; Runkle et al., 1999;Wettergren and Baylog, 2010;Williams and Hunter, 2015; Zerr
et al., 2000).

In the realm of automatic target recognition using synthetic aperture radar images, many
recent papers describe how to improve the performance of target recognition using multiple
looks (Ding andWen, 2017; Huan and Pan, 2013; Laubie et al., 2015, 2018; Salvador, 2016; Situ
et al., 2016; Zhang et al., 2012). Earlier research (Bhanu and Jones, 2002; Brown, 2003; Jin et al.,
2006; Laine and Bauer, 2008; Ruohong et al., 2010; Snyder and Ettinger, 2003; Vespe et al.,
2005). This research shows that the performance of target recognition can be significantly
improved through the data fusion of observations at different looks (referred to as aspect
diversity). One feature shared by previous papers on automatic target recognition is the
detailed analysis of the images of realistic targets. By contrast, we provide an analytical
model for a general class of mine-like and symmetrical targets, emphasizing the phenomenon
of concordance.

Determining the globally optimal angles is not a simple feat. The complexities associated
with the computation are nonlinear, multidimensional (each independent look is considered a
separate dimension) and, in brief, NP-hard (T€orns and �Zilinska, 2007). Evenwhen the number
of looks is few and the single look probability of detection is simple, the explicit probability of
detection for n looks can be hopelessly complicated. Numerical solution (Press et al., 1992) is
not an option, as it requires a huge number of calculations for each new scenario.
Furthermore, the solution space has many local optima.

Therefore, the problem requires a different approach that is not numerical.We have found
a methodology that incorporates variational calculus, number theory and algebra to derive a
globally optimal strategy that maximizes the expected probability of detection. This globally
optimal solution holds for a large class of targets that exhibit mirror symmetry. The solution
consists of simple angles that are intuitive and have analytical expressions. This simplifies
the task of planning and executing a search and detection mission.

Our methodology makes use of the symmetry of the problem and several reasonable
criteria, such as the periodicity of the single look probability of detection. These criteria apply
generally to a target whose shape can be approximated as an ellipsoid.

Wewill provide a rigorous proof to show that the solution is globally optimal, avoiding the
false conclusions based on symmetry that have been made in the past (Waterhouse, 1983;
Bouniakovsky, 1854). The concept of symmetry has been used fruitfully many times in
history. It is commonly known that the laws of physics obey symmetries, such as Lorentz
symmetry (French, 2009) and gauge symmetry (Ryder, 1988). In engineering, symmetry has
also played a significant role. For example, symmetry is used in three dimension alignment
(Chaouch and Verroust-Blondet, 2009), in shape matching (Kazhdan et al., 2004), etc.

We describe themodelling assumptions in Section 2.We determine all the local optima (the
set of all critical points) to the expected probability of detection in Section 3. In Section 4, we
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prove the global optimality of the equidistant angles (to be defined later). Section 5 contains
examples based on a nontrivial single look probability of detection. We conclude in Section 6.

2. Modelling assumptions
Here, we assume a large class of targets that has mirror symmetry, such as a cylinder or an
ellipsoid. Most manmade targets (e.g. a ship hull, a mine, etc.) have this symmetry. We focus
on one aspect of target detection: the look angle, for depending on the relative orientation of
the sensor and the target, the sensor picture will look different at different look angles. In
underwater mine-hunting operations, the analysis of other characteristics, such as the
highlight and the size of the target, also contributes to the overall probability of detection.We
believe that observation of these characteristics will also be improved with our search
strategy based on look angles, e.g. highlights change with look angles and different
highlights add more information. Analysis of these characteristics is a topic for future
research.

There are two novel elements in our model. First, we determine the set of globally optimal
look angles that maximizes the probability of detection. Second, we introduce the
phenomenon of concordance between sensor images.

Figure 1 shows an example of an underwater mine known as aManta. Figure 2 shows two
sonar pictures of amine on a relatively benign seabed: one taken at 858 (left) and the other at 08
(right). Some of the sonar imageswere collected by anAutonomous Underwater Vehicle Trial
equipped with a side-scan sonar at Loch Earn, Scotland in November 2010. Machine learning
algorithms have been developed and tested against sonar imagery data (Wang et al., 2014;
Shao and Japkowicz, 2014). While the algorithms discover the optimal angles, this is not the
same as an analytical solution, as presented here. The premise of our assumption is that the

Source(s): https://www.thinkdefence.co.uk/mine-types/

Figure 1.
A manta mine

Figure 2.
Actual mine observed
at 858 (left) and at
08 (right)
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detection probability is maximal if a target is viewed from its broad side, and it gradually
degrades and reaches a minimum if a target is viewed from its short side.

We make the following assumptions:

(1) Pictures are captured at the same range;

(2) The detection probability for one look is maximal when a target is viewed at its
broad side;

(3) The detection probability for one look decreases monotonically as the look angle
moves away from the broad side view;

(4) The shadow of a target is a semicircle;

(5) The detection probability for one look is quantitatively proportional to the
normalized and observed cross-section of the target (Nguyen and Mirshak, 2016);

(6) The detection probability for one look is further compounded by θ=πwhere θ is the
angle that subtends the shadow of the target as shown in Figure 3;

(7) The detection probability for one look is periodic with a period equal to π due to the
symmetry of the target;

(8) To illustrate, we assume that the detection probability for one look at the look angle x
and the subtended angle θ is equal to gðx; θÞ ¼ ðθ=πÞ$ð1− gðxÞÞ where

gðxÞ ¼ sinðxÞ2 is shown in Figure 4 (this corresponds approximately to the
normalized cross section of an ellipsoid). Note that this probability of detection is not
equal to the area size of the shadow of a target. We interpret θ=π as the normalized
angle of the circular sector, and ð1− gðxÞÞ is the diameter of the circular sector. By
definition, 0≤ ð1− gðxÞÞ≤ 1 is the normalized cross-section of a target. That is, the
diameter of the circular sector is less than or equal to one. In reality, gðxÞdepends on
the kind of target that we are looking for. Since we aim to maximize the expected
detection probability, which is an average, the details in gðxÞ are not expected to
vary the expected value substantially if 1− gðxÞ is a good representation of the
cross-section of the target.

(9) This means that the detection probability for one look is maximal at the look angle
x ¼ 0 and

(10) The orientation of the target is uniformly random, i.e. the density distribution of the
look angle is equal to 1=π (we do not know the orientation of the target).

For the sake of argument, we consider the shadow of a target to be a semicircle (Figure 3). The
exact shape of the shadow will not matter. We will show this when we discuss the

Figure 3.
Shadow of a target
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phenomenon of concordance. This kind of shape for the shadow of a target is similar to the
shadow of a sphere (Figure 5).

However, unlike a sphere, the shadow of a target has a different diameter (cross section) at
a different look angle x. Therefore, we simulate the cross-section of an ellipsoid using, for

example, sinðxÞ2 as shown in Figure 4.
The use of gðxÞ ¼ sinðxÞ2 assumes that the minimal detection probability for one look is

zero percent while the maximal detection probability for one look is 100%. This is not
realistic. Normally, the minimal detection probability for one look (smallest cross section) is
greater than zero percent while the maximal detection probability for one look (largest cross-
section) is less than 100%. Therefore, to accommodate this reality, we model

ga;bðxÞ ¼ aþ b$sinðxÞ2 where aþ b < 1 and a; b > 0. The parameters a and b are related
to the normalized cross section of the target: acorresponds to the broad size of the target while
aþ b corresponds to the short size of the target. Nguyen and Mirshak (2016) show that with

Source(s): Virtual Instructor (2021)
Figure 5.
Shadow of a sphere

Figure 4.
Probability of not
detecting a single
target as a function of
look angle ðθ ¼ πÞ
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a ¼ 0 and b ¼ 0:8, ga;bðxÞ is similar to the normalized cross-section of an ellipsoid (Figure 6)

with parametrization: a1 ¼ 1:60m; a2 ¼ 0:325m; a3 ¼ 0:325mwhere r
* ¼ ða1$cos θ$cosw;

a2$cos θ$sinw; a3$sin θÞ.
For completeness, the complement of the normalized cross section of an ellipsoid is shown

below:

geðxÞ ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosðxÞ2 þ

�
a2

a1

�2

$sinðxÞ2
s

We note that there are two kinds of detection probability. The first kind, g, is the single
look detection probability, which depends on the orientation of the target and varies
between 0 and 1. The second kind of detection probability Pn with concordance or P 0

n

without concordance is the expected detection probability based on n looks, which varies
between 0:5 and one ðP1; P

0
1 ¼ 0:5Þ as shown later. Here, we refer to the look angle simply

as “the angle,” while the expected detection probability is referred to as “the detection
probability.”

The aim is to maximize the detection probability of n looks. We, and others, have
attempted to solve this problem in the past. To do that, we have assumed that each image is
independent; therefore, the outcomes can be described as a Bernoulli process (a binomial
density distribution). This assumption is not correct, since analyzing the same image twice (at
the same range and the same angle) does not yield additional information. Despite that, we
have shown that the global optimal angles for n looks consist of the equidistant angles, i.e.
ð0; π=n; . . . ; ðn− 1Þ$π=nÞ. A proof of global optimality was found by identifying all local
critical points and showing that each one gives a detection probability that is less than or
equal to the one of the equidistant angles.

In this paper, we correct that oversight by introducing the phenomenon of concordance.
That is, the pictures are in accord. If the angles are the same, then there is no improvement in
the detection probability. The improvement from two pictures increases as the relative angle
between the two pictures increases. This phenomenon of concordance assumes that the
signal-to-noise ratios of the pictures are high. If the signal-to-noise ratios are low, then signal
averaging (Hassan and Anwar, 2010) from multiple pictures at the same angle reduces the
noise and hence improves the probability of detection. We note that concordance is not the
same as correlation. In probability and statistics, the coefficient of correlation is defined
through the covariance between two variables, and it is not a probability. Concordance in this
paper represents a probability. However, in the community, we sometimes refer loosely to
concordance as correlation.

To illustrate the idea of concordance, we provide three looks at an ellipsoid (Figure 7). The
look angles are 08, 108and 908 in Panel A, B and C of Figure 7 (not drawn to scale). Panel A and
B are similar: together they do not yield more information than either one does separately.
However, Panel C is completely different from Panel A and B. Therefore, Panel C adds more
information to Panel A and B. We say that Panel A and B are closely in accord while Panel A
and Panel B are not in accord with Panel C.

Figure 6.
A mine modeled as an

ellipsoid
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Unsurprisingly, the equidistant angles still globally optimize the detection probability for
n looks even when concordance is accounted for. This indicates that our probabilistic model
for concordance is correct. The proof for the case with concordance now becomes more
natural. Note that the idea of concordance was previously mentioned in (Nguyen and
Mirshak, 2016).

To clarify: Figure 8 defines the angle xwhile Figure 9 displays the symmetry of a target,
and Figure 6 shows g as a function of x.

3. A probabilistic model with concordance
Before we describe the general model of concordance for n looks, we will derive in detail the
case of two looks. An example of two looks is shown in Figure 10: μ0 is the first look, and μ1 is
the second look while x is the orientation of the target.

Theorem 3A. The probability of detection for two looks without concordance.

Without concordance (assuming the two looks are independent such that the circular sectors
are equal to π), the probability of detection for two looks can be written as follows:

Figure 7.
An example of the
phenomenon of
concordance (the cross
section of an ellipsoid
viewed from different
look angles)

Figure 8.
Cylindrical target
observed at look
angle x
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P 0
2

�
μ
*
�
¼ 1�

Z π

0

dx

π
$
�
1� gðxþ μ0; πÞ

�
$
�
1� gðxþ μ1; πÞ

�
¼ 1�

Z π

0

dx

π
$gðxÞ$gðxþ μ1 � μ0Þ ¼ 1�

Z π

0

dx

π
$gðxÞ$gðxþ μÞ (1)

Figure 10.
An example of

two looks

Figure 9.
Symmetries of the

target
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Proof of Theorem 3A. The first equality in Equation (1) holds, since the integral represents
the nondetection probability for two looks one at μ0 and the second
at μ1. The second equality holds since gðxÞ has a period equal to π.
The third equality holds since μ ¼ μ1 − μ0. QED.

Theorem 3B. The probability of detection for two looks with concordance and the
concordant ρ.

With concordance (assuming the two looks are not independent), the probability of detection
for two looks can be written as follows:

P2

�
μ*
�
¼ 1�

Z π

0

dx

π
$gðxþ μ0Þ$½ρðμ1 � μ0Þ þ ð1� ρðμ1 � μ0ÞÞgðxþ μ1Þ�

¼ 1�
Z π

0

dx

π
$gðxÞ$½ρðμÞ þ ð1� ρðμÞÞgðxþ μÞ� (2)

where ρðμÞ simulates the phenomenon of concordance. We name ρðμÞ ¼ 1− μ=π the
concordant.

Proof of Theorem 3B. Toderive theprobability of detection for two lookswith concordance,
weconsider twoshadowsat twodifferent lookangles (Figure11).The
shadowof the first look is the upper blue semicirclewhile the shadow
of the second look is the red stripe semicircle rotatedbyμwith respect
to theblue semicircle.Thediameterof theblue semicircle is ð1− gðxÞÞ
while the diameter of the red semicircle is equal to 1. Therefore, the
diameter of the red semicircle is always greater than or equal to the
diameter of the blue semicircle.

We deem that new information occurs only when the two sectors of the two semicircles do not
overlap. That is, new information corresponds to the circular sector with red stripe subtended
by the angle μ.
The probability of detection given the first look with look angle x can be expressed as follows:

P1 ∼
dx

π
$
π
π
ð1� gðxÞÞ ¼ dx

π
$ð1� gðxÞÞ

(where dx=π assumes that the orientation of the target is uniformly random). Similarly, the
probability of no detection given the first look can be expressed as follows:

Q1 ¼ 1� P1 ∼
dx

π
$gðxÞ

The outcomes after the first look are therefore

Figure 11.
Overlapping shadow
illustration
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P1 þ Q1

That is,P1 andQ1 are probabilities and at the same time represent the outcomes.P1 represents
the outcome that the target is detected while Q1 represents the outcome that the target is not
detected. If the target is detected, it remains detected. If the target is not detected, it can be
detected or remains not detected at the next look.

The second look with look angle xþ μ has two sectors with two corresponding separate
contributions. The first contribution ðμ=πÞ ¼ 1− ρðμÞ is outside of the sector of the first look,
which is considered nondetected and hence provides additional probability of detection. The
second contribution ð1− μ=πÞ ¼ ρðμÞ overlaps with the sector of the first look, which is
already considered as detected and hence does not add to the probability of detection.

The outcomes are now as follows:

ðP1 þ Q1ÞðρðμÞ þ ð1� ρðμÞÞÞ ¼ P1 þ Q1ðρðμÞ þ ð1� ρðμÞÞÞ
The above equality holds since the detection of the first look (the event P1) is not affected by
the second look. However, the nondetection of the first look (the event Q1) can be affected.
That is, the second look could provide detection after the first look nondetection. There are
two possibilities following the first look nondetection:

(1) Q1$ð1− ρðμÞÞ corresponds to the nonoverlapping sector between the shadow of the
first look and that of the second look. Hence, this contributes to new information
with additional detection probability Q1$ð1− ρðμÞÞ$ð1− gðxþ μÞÞ where
ð1− gðxþ μÞÞ is the normalized cross section of a target at the second look angle
ðxþ μÞ;

(2) Q1$ρðμÞ corresponds to the area that has already been observed. Hence, this has no
contribution to the detection probability.

Summing the probabilities of detection, we get the detection probability for two looks (one
with look angle x and another with look angle xþ μ) can be written as follows:

P2 ¼ P1 þ Q1ð1� ρðμÞÞð1� gðxþ μÞÞ
where P1 is the probability of detection due to the first look, and Q1ð1− ρðμÞÞð1− gðxþ μÞÞ is
the additional detection probability due to the second look with concordance. Simple algebra
dictates that

P2 ¼ 1� gðxÞðρðμÞ þ ð1� ρðμÞÞgðxþ μÞÞ$dx
π

Integrating over all possible angles x, with concordance, the probability of detection for two
looks can be written as follows:

P2

�
μ*
�
¼ 1�

Z π

0

dx

π
$gðxþ μ0Þ$½ρðμ1 � μ0Þ þ ð1� ρðμ1 � μ0ÞÞgðxþ μ1Þ�

¼ 1�
Z π

0

dx

π
$gðxÞ$½ρðμÞ þ ð1� ρðμÞÞgðxþ μÞ� (3)

where ρðμÞ simulates the phenomenon of concordance: gðxÞ$ρðμÞ represents information
from the first look but no new information from the second look at μ while
gðxÞ$ð1− ρðμÞÞ$gðxþ μÞ represents information from the first look in addition to new
information from the second look. QED.
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Theorem 3C. Properties of the concordant ρðμÞ.

1� ρðμÞ ¼
�

μ=π 0≤ μ < π=2
1� μ=π π=2≤ μ≤ π

(4)

Due to the symmetry of the problem, the function ρðμÞmust satisfy a number of criteria:

(1) μ ¼ jμj;
(2) 1≥ ρðμÞ≥ 0;

(3) ρðμÞ decreases as a function of μ;

(4) ρðμþ πÞ ¼ ρðμÞ;
(5) ρð0Þ ¼ 1 and

(6) Appropriate periodic extensions.

Proof of Theorem 3C. Theorem 3B shows that ρðμÞ ¼ 1− μ=π. Criterion a implies
that the function ρðμÞ does not distinguish one look from
another: only their difference matters. Criterion b implies that
the function ρðμÞ is a probability. Criterion c implies that there
is less concordance when μ increases. Criterion d implies the
target has a symmetry that is periodic with period equal to π.
Criterion e implies that there is no new information if it is
the same look, i.e. gðxÞ$ðρðμÞ þð1−ρðμÞÞgðxþ μÞÞ�μ¼0 ¼ gðxÞ.
Criterion f implies that

1� ρðμÞ ¼
�

μ=π 0≤ μ < π=2
1� μ=π π=2≤ μ≤ π

This is so, since an ellipsoidal target is symmetric: the left hand side is the mirror of the
right hand side. QED.

Knowing that for small μ, ρðμÞ≈ e−μ=π, we propose a general model of concordance such
that

ρðμÞ ¼
�

e−α$μ 0≤ μ≤ π=2
e−α$ðπ−μÞ π=2 < μ≤ π

(5)

This function satisfies all the properties listed above with appropriate periodic extensions in
addition to the appealing characteristic that ρðaÞ$ρðbÞ ¼ ρðaþ bÞ. That is, the concordance
between two looks separated by aþ b is the product of the function ρðμÞat aand the function
ρðμÞ at b. The corresponding geometry is shown in Figure 12.

The function in Equation (5) is of course an assumption. The exact expression of the
function ρðμÞ depends on the shape and characteristics of the target. However, our model of
concordance is flexible in the choice of α and allows us to simulate the phenomenon of
concordance with some generalities.

For illustration, we plot ρ as a function of μ in Figure 13. Knowing ρðμÞ allows us to
determine the probability of detection for two looks. There are many ways to optimize the
probability of detection for two looks. Here, we plot out the probability of detection for two

looks as a function μ in Figure 14 with gðxÞ ¼ sinðxÞ2. Figure 14 shows that the probability
of detection for two looks is maximal when μ ¼ π=2 in both cases with and without
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concordance. We also observe that if μ ¼ 0; π, we have two identical images. Yet, in the case
without concordance (green curve), there is an improvement from one look (blue curve) to two
looks. This indicates that the probability of detection without concordance is incorrect as we
essentially analyze only one image (two identical images). What is more, in the case with
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Figure 13.
ρ as a function of μ for

three values of α

Figure 12.
Transitivity of the

exponential function

Figure 14.
Probability of detection
for one look and two

looks as a function of μ
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concordance (red curve), the probability of detection for two looks is the same as the one for
one look, i.e. when μ ¼ 0; π. This indicates that the probability of detectionwith concordance
is correct and has the right limits.

Theorem 3D. Probability of detection without concordance for n looks.

Pn

�
μ*
�
¼ 1� 1

n
$

Zπ
0

dx

π
$gðxþ μ0Þ$

Yn−1
i¼1

½ρðμi � μi−1Þ þ ð1� ρðμi � μi−1ÞÞgðxþ μiÞ�
8<:

9=;
� 1

n
$ μ0 → μ1; μ1 → μ2; . . . ; μn−1 → μ0f g

� 1

n
$ circular permutations of μi ði ¼ 0; . . . ; n� 1Þf g (6)

Proof of Theorem 3D. Equation (2) is technically correct but is difficult to generalize
from two looks to n looks. We need to make it symmetric.
That is,

P2

�
μ
*
�
¼ 1� 1

2
$

Zπ
0

dx

π
$gðxþ μ0Þ$½ρðμ1 � μ0Þ þ ð1� ρðμ1 � μ0ÞÞgðxþ μ1Þ�

8<:
9=;

� 1

2
$

Zπ
0

dx

π
fμ0 ↔ μ1g (7)

The first integral corresponds to the fact that μ0 is accorded with μ1; and the second
integral corresponds to the fact that μ1 is accorded with μ0 where μ1 ≥ μ0 ðmod πÞ.
Using the characteristics of gðxÞ and the characteristics of ρðμÞ, we show that
Equation (7) is the same as Equation (2). We can now generalize to the case of n looks
ðn≥ 2Þ:

Pn

�
μ*
�
¼ 1� 1

n
$

Zπ
0

dx

π
$gðxþ μ0Þ$

Yn−1
i¼1

½ρðμi � μi−1Þ þ ð1� ρðμi � μi−1ÞÞgðxþ μiÞ�
8<:

9=;
� 1

n
$

Zπ
0

dx

π
$fμ0 → μ1; μ1 → μ2; . . . ; μn−1 → μ0g

� 1

n
$

Zπ
0

dx

π
fcircular permutations of μi ði ¼ 0; :::; n� 1Þg

where the looks μi ði ¼ 0; . . . ; n− 1Þ are sorted in increasing order such that
0 ¼ μ0 ≤ μ1 ≤ . . . ≤ μn−1 ≤ π. Note that due to the periodicity of gðxÞ, we can always set
μ0 ¼ 0. From this point on we will use μ0 ¼ 0 to alleviate the notation. For example, with
n ¼ 3 looks, the probability of detection can be written as follows:
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P3

�
μ*
�
¼ 1� 1

3
$

Zπ
0

dx

π
$gðxÞ$½ρðμ1Þ þ ð1� ρðμ1ÞÞgðxþ μ1Þ�$½ρðμ2 � μ1Þ þ ð1� ρðμ2 � μ1ÞÞgðxþ μ2Þ�

8<:
9=;

� 1

3
$

Zπ
0

dx

π
$gðxþ μ1Þ$½ρðμ2 � μ1Þ þ ð1� ρðμ2 � μ1ÞÞgðxþ μ2Þ�$½ρðμ2Þ þ ð1� ρðμ2ÞÞgðxÞ�

8<:
9=;

� 1

3
$

Zπ
0

dx

π
$gðxþ μ2Þ$½ρðμ2Þ þ ð1� ρðμ2ÞÞgðxÞ�$½ρðμ1Þ þ ð1� ρðμ1ÞÞgðxþ μ1Þ�

8<:
9=;

(8)

QED

Equation (8) is amodel with concordancewherewe assume concordance between consecutive
looks only. Technically, based on our definition of concordance, each look is accorded to all
other looks. For example, with four looks, the first look is accorded with the second, the third
and the fourth look, while the second look is accorded with the first, the third and the fourth
look, etc. This topic awaits further investigation. However, we believe that the optimal look
angles will stay the same.

4. Global optimization
Naturally, we search for the look angles that will maximize the probability of detection for n
looks so that we can find the target as quickly as possible. In previous unpublished work, we
show that the probability of detection for n lookswithout concordance is globallymaximalwith

the equidistant angles μe
* ¼ ð0; π=n; . . . ; ðn− 1Þ$π=nÞ. Here, we assert that the equidistant

angles also globally maximize the probability of detection for n looks with concordance.

Theorem 4A. Globally optimal looks.

The globally optimal looks are the equidistant angles μe
* ¼ ð0; π=n; . . . ; ðn− 1Þ$π=nÞ.

Proof of Theorem 4A. Gelfand and Fomin (1963) dictate that if F is the integrand in

Equation (7) and Kðμ*Þ is the constraint such that μ*are constant

parameters equal to C
*
that are independent of x:

F
�
μ
*
�
¼ 1

n
$gðxÞ$

Yn−1
i¼1

ðρðμi � μi−1Þ þ ð1� ρðμi � μi−1Þ$gðxþ μiÞÞÞ

þðcircular permutations of μiði ¼ 0; . . . ; n� 1ÞÞ

K
�
μ*
�
¼ μ* ¼ C

*

(9)

then there exists a function λ
*ðxÞ such that

Fμi þ λiðxÞ$Kμi ¼ 0 (10)

for i ¼ 0; . . . ; n− 1 where λ
*ðxÞ is invariant if we replace μ* by −μ

*
.

This signifies that the critical points μ* ¼ μ*
*
occur when Fðμ**Þ ¼ Fð−μ*

*Þ if we
set μ *

0 ¼ 0. There are two symmetries involved. The first allows the freedom to set any

angle μ *
i0
¼ 0. That is, fμ *

i ; i ¼ 0; . . . ; n− 1g ¼ fμ *
i − μ *

i0
; i ¼ 0; . . . ; n− 1g ðmod πÞ.
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The second allows the freedom to set all angles to their negative values. That is,
fμ *

i ; i ¼ 0; . . . ; n− 1g ¼ f−μ *
i ; i ¼ 0; . . . ; n− 1g ðmod πÞ.

For example, let n ¼ 4and let μ
* ¼ ð0; π=4; 2$π=3; 3$π=4Þ; we plot out 2$μ

*
on a circle

in Figure 15. The roots are symmetrical with respect to the horizontal axis in Panel A. We
rotate the roots by π around the horizontal axis in Panel B and by π=2 clockwise in Panel C. In
all three panels, the roots are symmetrical with respect to the horizontal axis. This example
determines all the critical points for the probability of detection with n looks.

Upon inspection, there are two types of critical points that satisfy both symmetries. Type
1 critical points consist of two sets. The first set can bewritten as f0; π=m; . . . ; ðm− 1Þ$π=mg
while the second set as f0; π=ð2$mÞ; . . . ; ð2$m− 1Þ$π=ð2$mÞg. Each set of points could
appear more than once in a way such that 1≤m; 2$m≤ n. Type 2 critical points consist of one
set f0; μ; . . . ; ðn− 1Þ$μg that can also appear more than once where μ ¼ m$π

n

and m ¼ 1; . . . ; n− 1.
The commonality of these critical points is that the zero root occurs at least twice

except for the equidistant angles. We will show that if the zero root occurs more than once,
then the corresponding critical point cannot be globally optimal.

We will show this by replacing the second zero root by − ε: the new probability of
detection will be greater than the one with two zeroes. For example, assuming three looks, the
critical points are as follows:

(1) ð0; 0; 0Þ;
(2) ð0; 0; π=2Þ equivalent to ð0; π=2; π=2Þ and
(3) ð0; π=3; 2$π=3Þ

Examining the second critical point ð0; 0; π=2Þ, we will show that ð−ε; 0; π=2Þ yields a
better detection probability than the one based on ð0; 0; π=2Þ for ε > 0 and infinitesimal.
The two detection probabilities can be written as follows:

Pðð0; 0; π=2ÞÞ ¼ Pðð0; π=2ÞÞ

¼ 1� 1

2
$

Zπ
0

dx

π
$gðxÞ$

�
ρ
�π
2

�
þ
�
1� ρ

�π
2

��
$g
�
xþ π

2

��
� 1

2
$

Zπ
0

dx

π
$g
�
xþ π

2

�
$
�
ρ
�π
2

�
þ
�
1� ρ

�π
2

��
$gðxÞ

�

¼ 1�
Zπ
0

dx

π
$gðxÞ$

�
ρ
�π
2

�
þ
�
1� ρ

�π
2

��
$g
�
xþ π

2

��

For clarity, we define

(a) (b) (c)

Figure 15.
Symmetries of
f2$μiji ¼ 0; . . . ; 3g
¼ f0; π=2; π; 3$π=2g
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bg2 ¼ Z π

0

dx

π
$gðxÞ$

�
ρ
�π
2

�
þ
�
1� ρ

�π
2

��
$g
�
xþ π

2

��
Pðð−ε; 0; π=2ÞÞ ¼ 1� ðAþ Bþ CÞ

where

A ¼ 1

3
$

Z π

0

dx

π
$gðx� εÞ$½ρðεÞ þ ð1� ρðεÞÞ$gðxÞ�$

h
ρ
�π
2

�
þ
�
1� ρ

�π
2

��
$g
�
xþ π

2

�i
B ¼ 1

3
$

Z π

0

dx

π
$gðxÞ$

h
ρ
�π
2

�
þ
�
1� ρ

�π
2

��
$g
�
xþ π

2

�i
$
h
ρ
�π
2
þ ε
�

þ
�
1� ρ

�π
2
þ ε
��

$gðx� εÞ
i

C ¼ 1

3
$

Z π

0

dx

π
$g
�
xþ π

2

�
$
h
ρ
�π
2
þ ε
�
þ
�
1� ρ

�π
2
þ ε
��

$gðx� εÞ
i
$½ρðεÞ

þ ð1� ρðεÞÞ$gðxÞ�

Expanding in terms of ε such as

gðx� εÞ ¼ gðxÞ � ε$g0ðxÞ þ O
�
ε2
	

ρðεÞ ¼ ρð0Þ � α$ε$ρð0Þ þ O
�
ε2
	

And the local optimality of the critical point (obtained through symmetry) such as

1

3
$

Z π

0

dx

π
$g0ðxÞ$½ρð0Þ þ ð1� ρð0ÞÞ$gðxÞ�$

h
ρ
�π
2

�
þ
�
1� ρ

�π
2

��
$g
�
xþ π

2

�i
¼ 0

We can show that the OðεÞ of A; B and C are such that

A≤
1

3
$bg2 � α$ε

3
$

Zπ
0

dx

π
$gðxÞ$ð1� gðxÞÞ$

h
ρ
�π
2

�
þ
�
1� ρ

�π
2

��
$g
�
xþ π

2

�i

B≤
1

3
$bg2 � α$ε

3
$

Zπ
0

dx

π
$gðxÞ$ð1� gðxÞÞ$ρ

�π
2

�
$
h
ρ
�π
2

�
þ
�
1� ρ

�π
2

��
$g
�
xþ π

2

�i

C ≤
1

3
$bg2 � α$ε

3
$

Zπ
0

dx

π
$
�
1� ρ

�π
2

��
$gðxÞ$ð1� gðxÞÞ$g

�
xþ π

2

�
Therefore,

Aþ Bþ C ≤bg2
This means that

Pðð−ε; 0; π=2ÞÞ> Pðð0; 0; π=2ÞÞ
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which implies that Pðð0; 0; π=2ÞÞ cannot be the globally maximal detection probability.
This pattern holds in general. That is, if there are two zero roots ð0; 0; * Þ (possibly more),
then we replace them by ð−ε; 0; * Þ; the replacement will generate a greater detection
probability than the one with two zero roots (*represents the remaining roots that are
unchanged).

The only critical point that does not have at least two zero roots consists of the
equidistant angles (roots). This shows that the equidistant angles generate the globally
maximal detection probability since they represent the only critical point among all critical
points that is not sub-optimal. QED. The general proof is shown in Appendix 1.

We observe that for the equidistant angles each integral in Equation (7) is equal to one
another. To determine the probability of detection, we only need to perform one integral.

5. Examples – ga;bðxÞ¼ a þ b3 sinðxÞ2
In Nguyen and Mirshak (2016), the detection probability of n equidistant angles without
concordance:

P 0
n

�
μe
*
�
¼ 1� 2

4n
(11)

where μe
* ¼

�
0; π

n
; . . . ; ðn− 1Þ$π

n

�
, gðxÞ ¼ sinðxÞ2 and we make use of the following

identity:

sinðn$xÞ2
22$n−2

¼
Yn−1
k¼0

sin
�
xþ k$

π
n

�2

Theorem 5A. The detection probability for n equidistant angles with concordance can
be written as follows:

Pn

�
μe
*
�
¼ 1� 1

4n
$
n
ð1þ ffiffiffi

ρ
p Þ2$n−1 þ ð1� ffiffiffi

ρ
p Þ2$n−1

o
(12)

where for simplicity, we write ρ ¼ ρ
�
π
n

�
here and in the remainder of the paper.

Proof of Theorem 5A. We make use of two identities from (Gradshteyn and Ryzhik,
1979a, b):

cos hðn$fÞ � cosðn$xÞ ¼ 2n−1$
Yn−1
k¼0

(
cos hðfÞ � cos

�
xþ 2$k$π

n

�)
Z π

0

dx$
cosðn$xÞ

1þ a$cosðxÞ ¼
πffiffiffiffiffiffiffiffiffiffiffiffiffi

1� a2
p $

 ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2

p
� 1

a

!n

with a2 < 1. We also observe thatYn−1
k¼1

n
cos hðfÞ � cos

�
xþ 2$k$π

n

�o
¼ 1

2n−1
$
cos hðn$fÞ � cosðn$xÞ
cos hðfÞ � cosðxÞ

¼ CðxÞ

JDAL
5,2

168



where the lower bound of k ¼ 1. As well,Yn−1
k¼0

(
ρþ ð1� ρÞ$sin2

�
xþ k$π

n

�)
¼
Yn−1
k¼0

(�
1þ ρ
2

�
�
�
1� ρ
2

�
$cos

�
2$xþ 2$k$π

n

�)

¼
�
1� ρ
2

�n

$
Yn−1
k¼0

(
cos hðfÞ � cos

�
2$xþ 2$k$π

n

�)

¼ ð1� ρÞn
22$n−1

$fcos hðn$fÞ � cosð2$n$xÞg
¼ DðxÞ

sin2ðxÞ$
Yn−1
k¼1

(
ρþ ð1� ρÞ$sin2

�
xþ k$π

n

�)
¼ 1

1� ρ
$fDðxÞ � ρ$CðxÞg

cos hðfÞ ¼ 1þ ρ
1� ρ

¼ u

cos hðn$fÞ ¼ 1

2
$
n
ðcos hðfÞ þ sin hðfÞÞn þ ðcos hðfÞ � sin hðfÞÞn

o
¼ 1

2
$
n�

uþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 � 1

p �n
þ
�
u�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 � 1

p �no
ð1� ρÞn$cos hðn$fÞ ¼ 1

2
$
n
ð1þ ffiffiffi

ρ
p Þ2$n þ ð1� ffiffiffi

ρ
p Þ2$n

o

QED

For illustration, we plot the probability of detection as a function of number of looks in
Figure 16.

The first order effect is that the probability of detection almost doubles from one look to
two looks whether we consider concordance or not. This illustrates the benefit of
multiple looks.

Figure 16.
Probability of detection
as a function of number

of looks with and
without concordance

assuming

gðxÞ ¼ sinðxÞ2
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The second-order effect is the difference between two cases with and without
concordance. With concordance, we assume α ¼ 1; 2. Without concordance, the
probability of detection approaches 100% as the number of looks increases. However, with
concordance, the probability of detection reaches an asymptotic value that is less than 100%.
In fact, the limit as n→∞ can be determined to be

lim
n→∞

Pn

�
μe
*
�
¼ 1� 1

2
$e−α$π=2 (13)

which is the probability of detection for one look compounded with the minimal concordance.

As α→∞, we recover the case without concordance. That is, lim
α→∞

lim
n→∞

Pnðμe*Þ ¼ 1. Note that

there are two conflicting patterns in the case with concordance. That is, as the number of
looks increases, the probability of nondetection decreases as 1=4n. However, the concordance
also increases, i.e. ρ→ 1; which reduces the probability of detection. This can be seen in the

first term of Equation (12), i.e. ð1þ ffiffiffi
ρ

p Þ2$n−1. As a whole, however, the probability of
detection with concordance still increases with the number of looks. Generally, the difference
in the probability of detection between the case without concordance and the case with
concordance ðα ¼ 1Þ is about ten percent for three looks or more. If we consider five targets,
the probability of detection for each target without concordance is 0:993, while the probability
of detection with concordance is 0:855. The probability of detecting all five targets without
concordance is 0:9935 ¼ 0:962and with concordance is 0:8555 ¼ 0:458. This is substantial as
there is a probability of 0:542 that we do not detect at least one target with concordance.

Figure 17 shows the significant improvement in the probability of detection due to
multiple looks especially from one look to two looks. However, this improvement must be
tempered by the phenomenon of concordance since it yields a lower probability of detection
than the one without concordance. Therefore, when planning for search and detection, we
must be cautious because of concordance.

Theorem 5B. Assuming ga;bðxÞ ¼ aþ b$sinðxÞ2 , the probability of detection with
concordance for n looks can be written as follows:

Pa;b;n

�
μe
*
�

¼ 1� tn

2n$ð1� ρÞ$
(�

1þ
ffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p �n
$

�
1� ρ

t$
ffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p
�

þ
�
1�

ffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p �n
$

�
1þ ρ

t$
ffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p
�)

(14)

Figure 17.
Probability of detection
as a function of number
of looks assuming
gðxÞ ¼ ga;b
ðxÞ ¼ aþ b$sinðxÞ2
with b ¼ 0:8 and ¼ 1
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where

t ¼ ρþ ð1� ρÞ$
�
aþ b

2

�
(15)

and

r ¼ ð1� ρÞ$b
2

ρþ ð1� ρÞ$
�
aþ b

2

� < 1 (16)

Proof of Theorem 5B. The samemethodology as applied in Theorem in 5A can be used to
determine the probability of detection for n equidistant
angles. QED.

There is also an asymptotic limit to the probability of detection with concordance for
equidistant angles when we assume the two parameters a and b:

lim
n→∞

Pa;b;n

�
μe
*
�
¼ 1�

�
aþ b

2

�
$e

−α$π$

�
1−a−b

2

�
(17)

If we let a ¼ 0 and b ¼ 1, we obtain results consistent with Equation (10). The asymptotic limit
is not only of academic interest. We could design an experiment with many looks, measure the
associated probability of detection experimentally and from this determine the parameterα that
models concordance. It is expected that α depends on the sensor and the type of target.
Figure 17 shows the probability of detection as a function of number of looks with andwithout
concordance. It is seen that the probability of detection with concordance is less than the
probability of detection without concordance. As discussed earlier, the probability of detection
without concordance is over estimated.This is potentially dangerous: one could infer that all the
targets such as explosive mines are detected with some confidence level while it is not the case.

Figure 17 shows the probability of detection as a function of number of looks for multiple
values of a. The parameter agenerates the same effect as that of the single look probability of
no detection: as a decreases, the probability of detection increases.

Figure 18 shows the probability of detection as a function of number of looks for multiple
values of b. Like parameter a, parameter b generates the same effect as that of the single look
probability of no detection: as b decreases, the probability of detection increases.

Figure 18.
Probability of detection
as a function of number

of looks assuming
gðxÞ ¼ ga;b

ðxÞ ¼ aþ b$sinðxÞ2
with a ¼ 0:1 and ¼ 1
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5.1 Search patterns
Based on the optimal look angles, we have developed corresponding search patterns
(Figure 19). The colored map shows the density distribution of targets in the search area.
Targets are more densely distributed in the center of the search area than around its borders.
Panel A of Figure 19 corresponds to one look, Panel B to two looks and Panel C to three looks.
As we have shown by our proof of global optimality for μ ¼ π=n, the optimal offset between
the angles of a given number of looks is given by dividing 1808 by the number of looks. Hence,
when n looks5 2, the optimal angle between the two looks is π=2, (90 deg), when n looks5 3,
the optimum between them is π=3, (60 deg) and so on. Panel A shows a lawn mowing pattern
donewith a single look angle. Panel B shows two looks, using the optimal 90 deg offset. Panel
C shows three looks, again with the optimal offset between the three, which is 60 deg, as noted
above. The probabilities of detection without concordance in Panel 19 A, 19 B and 19 C are,
respectively, 0:5$λ, 0:875$λ and 0:969$λ where λ is a parameter that includes other factors,
such as the dependency on the range from the target to the searcher or highlights, etc. The
corresponding probabilities of detection with concordance are, respectively, 0:5$λ, 0:797$λ
and 0:84$λwith α ¼ 1.

The illustration shows evidence of superior target detection ability as we increase the
number of looks and offset each of their angles optimally (brighter colors indicate greater
detection probabilities).

Note that in the multiple look case, multiple searchers can carry out the searches at the
same time or one searcher can carry out a set of parallel searches (lawn mowing pattern).
When completed, the same searcher can carry out the next set of parallel searches. Other
search patterns can be found in Bays et al. (2011).

6. Discussion and conclusion
This paper describes a phenomenon, concordance, that is little known in the open literature.
Concordance suitably determines the probability of detection. Without concordance, the
probability of detection is over estimated, an oversight that affects resource planning for
search and detection operations and puts personnel in danger, especially in mine
countermeasure operations.

In addition, we have derived the functional expression for the function ρðμÞ. Using the
function ρðμÞ and the model of concordance, we have established that the equidistant angles
globally maximize the probability of detection. The global optimality holds for a large class of
targets that have mirror symmetry. We also note that the corresponding optimization problem
is NP-hard. Without symmetry, it is intractable even if we seek numerical values only.

We have also derived the asymptotic limit of the probability of detection as the number of
looks approaches infinity. This allows parameter α that defines the function ρðμÞ through

(a) (b) (c)

Figure 19.
Search patterns: one
look (A), two looks (B)
and three looks (C)
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experiments to be measured. For illustration, we model the single look probability of
detection as a normalized cross-section of an ellipsoid. The resulting probability of detection
for n looks has a closed form of expression that accounts for the number of looks, the cross-
section of the target from different angles as well as its short side and its broad side.

It is our hope that this material will be taught to and used by search and rescue operators
because it fundamentally changes thewaywemodel detection theory from analyses of sensor
images.

In a Bayesian approach, such as the search for the Scorpion submarine (Richardson and
Stone, 1971), we could plan for the number of looks n to obtain a desired probability of
detection for each grid. Each time a grid is visited, the Bayesian probabilities are updated. A
grid could be visited n times. However, when a grid is revisited, the searcher would scan the
area with an offset that corresponds to π=n. For example, with three looks, there will be three
scans as shown in Panel C of Figure 19. Each scan will yield a different look.

Our approachmay also generate optimal solutions for objects that display a different type
of symmetry, such as rotational symmetry (looks similar after rotation), cyclic symmetry
(several mirror planes passing through a fixed axis) and dihedral symmetry (several mirror
planes passing through a fixed axis with one perpendicular to the axis) (Chaouch and
Verroust-Blondet, 2009; Li et al., 2016).

We note that important symmetrical targets may appear nonsymmetrical: they may be
partially hidden or fragmented. In these cases, multiple looks still provide valuable
information. Detailed knowledge of the target also adds to an optimal search path.

Laine and Bauer (2008) describe how to recognize nonsymmetrical targets with multiple
sources andmultiple looks. Situ et al. (2016) also considersmultiple looks for synthetic aperture
radar combat identification. Situ et al. (2016) and Laine and Bauer (2008) both provide robust
classifying algorithms to identify a target with a high confidence level. These papers examine
false positive and false negative events. Several other techniques, including concatenating
images, a Bayesian classifier, wavelet decomposition and principal components analysis, also
show improved performance in target recognition (Huan and Pan, 2013; Ding and Wen, 2017;
Laubie et al., 2015, 2018; Salvador, 2016; Situ et al., 2016; Zhang et al., 2012).

Other search and detection approaches are drawn from game theory (Dambreville and Le
Cadre, 2007) as well as exhaustive searches that include integration of the concept of multiple
look angles into the search models (Chung and Silvestrini, 2014).

These papers examine the recognition and identification of a target but in less detail than
our approach. Generally, our strategy yields detections of potential targets which
complement the goals of previous research. Also, to the best of our knowledge, these
previous techniques do not provide an analytical model.

Once an object is deemed a potential target, further informationmay be obtained by taking
more pictures at additional looks or bymaking a video, enabling identification of the potential
target as a friend or an enemy. A mistake in identification could lead to friendly fire and
damage to infrastructure.

In the context of a search and detection operation, there is limited time to find the target
before life is lost. In real terms, improving the chance of detection translates into the difference
between success or failure, life or death.
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Appendix 1
Global optimality of the equidistant angles
In this Appendix, we prove that the equidistant angles yield the global optimal detection probability. In
Section 4, we identified two types of critical points. Type 1 critical points consist of
f0; π=m; . . . ; ðm− 1Þ$π=mg and f0; π=ð2$mÞ; . . . ; ð2$m− 1Þ$π=ð2$mÞg. Each of them could
appear more than once in a way such that 1≤m; 2$m≤ n. Type 2 critical points consist of
f0; μ; . . . ; ðn− 1Þ$μg that can also appear more than once where μ ¼ m$ π

n
and m ¼ 1; . . . ; n− 1.

Due to concordance, any angle that is repeated more than once has the same effect as if it is single
look angle. For example,

Pðð0; 0; π=2ÞÞ ¼ Pðð0; π=2ÞÞ
This implies that the detection probability of either Type 1 critical points or Type 2 critical points can be
written as follows:

Pðð0; μ; 2$μ; . . . ; ðs� 1Þ$μÞÞ
where s$μ ¼ π and none of the angles in the set f0; μ; 2$μ; . . . ; ðs− 1Þ$μg is repeated. With the
exception for the equidistant angles, we can assume that s < n. We will show that

Pðð−ε; 0; μ; 2$μ; . . . ; ðs� 1Þ$μÞÞ≥Pðð0; μ; 2$μ; . . . ; ðs� 1Þ$μÞÞ
That is, the probability of detection on the LHS at angle−εand the angles f0; μ; 2$μ; . . . ; ðs− 1Þ$μg is
greater than or equal to the one on the RHS at the angles f0; μ; 2$μ; . . . ; ðs− 1Þ$μg only. Since s < n,
the probability of detection on the LHS corresponds to sþ 1ð≤nÞ looks. This ensures that the LHS is
within the constraint of n looks. This is so since if not, we could argue that with more than n looks the
corresponding probability of detection could be greater than those with n looks or less. Hence, it would
not show the optimality of n looks.

Before we provide the proof, we define the notation below:

bgs ¼Z π

0

dx

π
$gðxÞ$ðρðμÞ þ ð1� ρðμÞÞ$gðxþ μÞÞ$ . . . $ðρðμÞþð1� ρðμÞÞ$gðxþ ðs� 1Þ$μÞÞ

Ps ¼ Pðð0; μ; . . . ; ðs� 1Þ$μÞÞ ¼ 1� bgs
Pε ¼ Pðð−ε; 0; μ; . . . ; ðs� 1Þ$μÞÞ ¼ 1� bgε

JDAL
5,2

176



bgε ¼ 1

sþ 1
$

Zπ
0

dx

π
$

gðx� εÞ$½ρðεÞ þ qðεÞ$gðxÞ�$½ρðμÞ þ qðμÞ$gðxþ μÞ�$
. . . $½ρðμÞ þ qðμÞ$gðxþ ðs� 1Þ$μÞ�þ

gðxÞ$½ρðμÞ þ qðμÞ$gðxþ μÞ�$ . . . $½ρðμÞ þ qðμÞ$gðxþ ðs� 1Þ$μÞ�$
½ρðμþ εÞ þ qðμþ εÞ$gðx� εÞ�þ

gðxþ μÞ$½ρðμÞ þ qðμÞ$gðxþ 2$μÞ�$ . . . $½ρðμÞ þ qðμÞ$gðxþ ðs� 1Þ$μÞ�$
½ρðμþ εÞ þ qðμþ εÞ$gðx� εÞ�$½ρðεÞ þ qðεÞ$gðxÞ�þ

. . .þ
gðxþ ðs� 1Þ$μÞ$½ρðμþ εÞ þ qðμþ εÞ$gðx� εÞ�$½ρðεÞ þ qðεÞ$gðxÞ�$

½ρðμÞ þ qðμÞ$gðxþ μÞ�$
. . . $½ρðμÞ þ qðμÞ$gðxþ ðs� 2Þ$μÞ�

8>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>>>>>;

(A1)

where qðxÞ ¼ 1− ρðxÞ.
There are sþ 1 terms in bgε. We will show that each of them is less than or equal to bgs. Hence, bgε ≤bgs

which implies that Pε ¼ 1−bgε ≥ 1−bgs ¼ Ps. This shows that Ps cannot be the globally optimal
probability of detection since there is another set of look angles f−ε; 0; μ; 2$μ; . . . ; ðs− 1Þ$μg that
yield a greater probability of detection than Ps. Since Ps is the probability of detection of any critical
points except the set of equidistant angles. By elimination, the set of equidistant angles must be the
globally optimal critical point.

Even though there are sþ 1 terms in bgε, there are only three types of dependencies on ε:

(1) gðx− εÞ$½ρðεÞ þ qðεÞ$gðxÞ�;
(2) ½ρðμþ εÞ þ qðμþ εÞ$gðx− εÞ� and
(3) ½ρðμþ εÞ þ qðμþ εÞ$gðx− εÞ�$½ρðεÞ þ qðεÞ$gðxÞ�.

For each type, we expand to the first order of OðεÞ and show that the contribution Oðε0Þ ¼ Oð1Þ≤ bgs
sþ1

while the OðεÞ is negative. This indicates that

bgε ≤ 1

sþ 1
$

 Xsþ1

i¼1

bgs � α$ε$M

!
≤bgs

(A2)

whereM is a finite positive number. To do that, we gather Oð1Þ terms and OðεÞ terms. AnyOðεÞ terms
involving g0ðxÞwill be equal to zero due to the symmetry and the local optimality of the critical point. As

a result, each term in Equation (A2) is less than or equal to
bgs
sþ1

− α$ε$M for some finite and positive

number M. For illustration, we perform the expansion of type A. Given that for an infinitesimal ε,

gðx� εÞ ¼ gðxÞ � ε$g0ðxÞ þ O
�
ε2
	

and

ρðεÞ ¼ ρð0Þ$ð1� α$εÞ þ O
�
ε2
	

¼ 1� α$εþ O
�
ε2
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As ð0Þ ¼ 1, substituting the two expressions above into type A we get

gðx� εÞ$½ρðεÞ þ qðεÞ$gðxÞ� ¼ gðxÞ � α$ε$gðxÞ$ð1� gðxÞÞ � ε$g0ðxÞ þ O
�
ε2
	

This entails that

1

sþ 1
$

Zπ
0

dx

π
$gðx� εÞ$½ρðεÞþqðεÞ$gðxÞ�$½ρðμÞþqðμÞ$gðxþμÞ�$ . . .$½ρðμÞþ qðμÞ$gðxþðs� 1Þ$μÞ�

¼ 1

sþ 1
$

Zπ
0

dx

π
$


gðxÞ�α$ε$gðxÞ$ð1� gðxÞÞ� ε$g0ðxÞþO

�
ε2
	�
$½ρðμÞþqðμÞ$gðxþμÞ�

$ . . .$½ρðμÞþqðμÞ$gðxþðs� 1Þ$μÞ�

¼ 1

sþ 1
$

Zπ
0

dx

π
$


gðxÞ�α$ε$gðxÞ$ð1� gðxÞÞþO

�
ε2
	�
$½ρðμÞþ qðμÞ$gðxþμÞ�

$ . . .$½ρðμÞþqðμÞ$gðxþðs� 1Þ$μÞ�

¼ 1

sþ 1
$ bgs�α$ε$

Zπ
0

dx

π
$½gðxÞ$ð1� gðxÞÞ�$½ρðμÞþqðμÞ$gðxþμÞ�$ . . .$½ρðμÞþqðμÞ$gðxþðs� 1Þ$μÞ�þO

�
ε2
	0@ 1A

≤
1

sþ 1
$bgs

(A3)

The first equality is due to the expansion in ε. The second equality is due to the local optimality, i.e.R π
0 dx$g0ðxÞ$½ρðμÞ þ qðμÞ$gðxþ μÞ�$ . . . $½ρðμÞ þ qðμÞ$gðxþ ðs− 1Þ$μÞ� ¼ 0. The third equality is due
to rearranging the second equality so that theOðεÞ is evident. The following inequality is due to the fact
each term making up OðεÞ is nonnegative. Similar results can be drawn with type b and type c. QED.
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