Design a degradation condition monitoring system scheme for rolling bearing using EMD and PCA
Abstract
Purpose
Rolling bearings based on rotating machinery are one of the most widely used in industrial applications because of their low cost, high performance and robustness. The purpose of this paper is to describe how to identify degradation condition of rolling bearing and predict its fault time in big data environment in order to achieve zero downtime performance and preventive maintenance for the rolling bearing.
Design/methodology/approach
The degradation characteristic parameters of rolling bearings including intrinsic mode energy and failure frequency were, respectively, extracted from the pre-processed original vibration signals using EMD and Hilbert transform. Then, Spearman’s rank correlation coefficient and PCA were used to obtain the health index of the rolling bearing so as to detect the appearance of degradations. Furthermore, the degradation condition of the rolling bearings might be identified through implementing the monotonicity analysis, robustness analysis and degradation analysis of the health index.
Findings
The effectiveness of the proposed method is verified by a case study. The result shows that the proposed method can be applied to monitor the degradation condition of the rolling bearings in industrial application.
Research limitations/implications
Further experiment remains to be done so as to validate the effectiveness of the proposed method using Apache Hadoop when massive sensor data are available.
Practical implications
The paper proposes a methodology for rolling bearing condition monitoring representing the steps that need to be followed. Real-time sensor data are utilized to find the degradation characteristics.
Originality/value
The result of the work presented in this paper form the basis for the software development and implementation of condition monitoring system for rolling bearings based on Hadoop.
Keywords
Acknowledgements
The authors are grateful to the technical editor and all reviewers for their valuable and constructive comments. The research is supported by the National Natural Science Foundation of China (NSFC) under Grant No. 51475189 and 51375181, the Foundation of the National Key Intergovernmental Special Project Development Plan of China under Grant No. 2016YFE0121700, and Fundamental Research Funds for the Central Universities under Grant No. 2016YXMS050.
Citation
Wu, J., Wu, C., Lv, Y., Deng, C. and Shao, X. (2017), "Design a degradation condition monitoring system scheme for rolling bearing using EMD and PCA", Industrial Management & Data Systems, Vol. 117 No. 4, pp. 713-728. https://doi.org/10.1108/IMDS-11-2016-0469
Publisher
:Emerald Publishing Limited
Copyright © 2017, Emerald Publishing Limited