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Abstract
Purpose – Recently, deep learning (DL) has been widely applied in various aspects of human endeavors.
However, studies have shown that DL models may also be a primary cause of data leakage, which raises new
data privacy concerns. Membership inference attacks (MIAs) are prominent threats to user privacy from DL
model training data, as attackers investigate whether specific data samples exist in the training data of a
target model. Therefore, the aim of this study is to develop a method for defending against MIAs and
protecting data privacy.
Design/methodology/approach – One possible solution is to propose an MIA defense method that
involves adjusting the model’s output by mapping the output to a distribution with equal probability density.
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This approach effectively preserves the accuracy of classification predictions while simultaneously
preventing attackers from identifying the training data.
Findings – Experiments demonstrate that the proposed defense method is effective in reducing the
classification accuracy of MIAs to below 50%. Because MIAs are viewed as a binary classification model, the
proposed method effectively prevents privacy leakage and improves data privacy protection.
Research limitations/implications – The method is only designed to defend against MIA in black-box
classification models.
Originality/value – The proposed MIA defense method is effective and has a low cost. Therefore, the
method enables us to protect data privacywithout incurring significant additional expenses.

Keywords Artificial intelligence security, Deep learning, Privacy protection, Membership inference attack

Paper type Research paper

1. Introduction
With the rapid advances in machine learning (ML), artificial intelligence is continually
enhancing and surpassing human performance in various endeavors (Lewis et al., 2020).
Deep learning (DL), which has been extensively used in daily life (Tong et al., 2020), has
consequently attracted model-related privacy concerns (Gao et al., 2022). The data used for
training DL models may contain users’ private information, such as human faces in image
data or the content of conversations in voice data. Disclosure of such private information
seriously violates user privacy. Moreover, with the application of DL to medical therapy
(Pandey and Janghel, 2021), patients may face threats because of the leakage of medical
information (Santhi and Saradhi, 2021). Some DLmodels are trained on data monopolized by
firms rather than publicly available data, and disclosure of these data may result in
significant losses for the firms. Membership inference attacks (MIAs) aim to determine
whether given sample data exist in the training data of a target model by analyzing the
target model, which may raise severe privacy issues in the training data of the model (Gao,
2022; Hu et al., 2021).

The MIA task is regarded as a binary classification problem (Chen et al., 2020).
Specifically, the attacker aims to construct an attack model that captures the
discrepancies between the training and non-training sets of the target model on the
target domain. By leveraging such differences, the attacker infers whether a given
sample belongs to the training set of the target model, thereby compromising the
privacy of the training data.

Many defense methods are available for addressing MIAs. Examples include various
regularization techniques (Shokri et al., 2017; Salem et al., 2019; Nasr et al., 2018) used for
reducing the difference between training set outputs and non-training set outputs. These
methods improve the performance of the target model to some extent. However, they have
limited effectiveness in defending against MIAs. When the model is highly overfitted, the
attack still maintains a relatively high accuracy. Jia et al. (2019) proposed the MemGuard,
which adds specially crafted noise to the output of a model to make it difficult to distinguish
between the training set output and the non-training set output. While this method
effectively defends against MIAwithout compromising the performance of the target model,
the cost is relatively high because of the need for repeated iterations to determine the noise.

This study aimed to mitigate the risk of MIAs and enhance the privacy of the target
model training set by reducing the dissimilarities between the training and non-training
sets. The defense method of adjusting the model output, which is similar to that used in
MemGuard, was adopted. To address the problem of excessive noise production in the
MemGuard and further enhance the privacy security of DL models, a generating
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model-based output adjustment defense method was developed. The study is summarized
as follows:

1. Two output reconstruction methods were designed: a non-member mask and a
member mask method:

(1) Multiple classification models were trained on different data sets as target models,
and the proposed defense method was evaluated on all models. The results
indicated that the defense had a minor impact on the models, with most
experiencing a change in accuracy of no more than 2%.

(2) The defense method was compared with two other defense methods, and it was
found that the proposed defense method reduced the attack success rate by at least
9.2%. Additionally, after deploying the defense, the highest attack accuracy was
59.5%, a decrease of 38.88% compared with the accuracy of attacks with no defense.

The remainder of this paper is structured as follows. Section 2 presents a review of related
work, and Section 3 provides a detailed explanation of the proposed method. The
experimental results are presented in Section 4, while Section 5 summarizes the findings of
the study.

2. Related work
2.1 Member inference attack
Since the introduction of the concept of MIAs targeting DL in 2017, various types of such
attacks have emerged. These include shadow model-based attacks, binary comparison-
based attacks and difference comparison-based attacks. This section provides a
comprehensive introduction to these methods.

2.1.1 Shadow model-based attack. In the earliest shadow model-based attack, multiple
shadow models are used to replace the target model and extract effective information, as
proposed by Shokri et al. (2017). The attacker prepares n shadow training and testing sets
and uses the n training sets to train multiple shadowmodels similar to the target model. The
trained shadow models are then used to output their corresponding shadow training and
testing set prediction results. These outputs are labeled to produce a data set containing
membership information, which is used to train an attack model. The attack model is then
used to classify the output of a test sample on the target model to determine its membership
status. However, this method requires training a large number of shadow models, which is
costly. Therefore, subsequent research (Salem et al., 2019) has focused on reducing the
number of shadow models to lower the cost of the attack. Another significant drawback of
this method is that the performance of the attack model is closely related to that of the
shadowmodel, which is often significantly different from the target model.

2.1.2 Binary comparison-based attack. To avoid the attack-prevention limitations of the
shadow model and further reduce the cost of constructing numerous shadow models, Salem
et al. (2019) proposed a novel MIA method that does not rely on the shadow model. The
method uses binary comparison and maximum posterior probability to infer the
membership of a sample. The attacker repeatedly queries the target model with numerous
samples, extracts the threshold and uses it to determine if a sample belongs to the training
set of the target model. However, the simplicity of the attack method results in a significant
loss of high-dimensional features from the output of the target model. Moreover, the success
of the attack is heavily reliant on the selected threshold.

2.1.3 Difference comparison-based attack. To eliminate the dependence on attack model
thresholds, Hu et al. (2021) introduced a newMIA called BLINDMI, which does not require a
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shadow model. In this method, a non-training set is constructed, and samples are moved
between the target sample set and the non-training set. By measuring the change in distance
between the target sample set and the non-training set before and after the sample is moved,
the method determines whether the moved sample belongs to the training set of the target
model. However, this approach also relies on the non-training set.

2.2 Membership inference attack defense
The training of the defense model is similar to that of a previous model (Gao et al., 2022),
which makes it difficult to fundamentally separate the member data. Fortunately, the
attacker cannot directly use the information between the training set and the model. MIA
distinguishes members from non-members through the difference between members and
non-members in the target model. The corresponding defense methods narrow this gap,
making it difficult to distinguish between members and non-members. Existing defense
methods against MIAs roughly divide into defense against the generalization capability of
the model, defense against theMIA using knowledge transfer and defense against fitting the
model output:
� Enhancing Model Generalization: L2-regularization by Shokri et al. (2017) uses the

L2 term to punish large parameters, decreasing the difference between the members
and non-members of the model. The adversarial regularization proposed by Nasr
et al. (2018) regularizes the target model by training an additional attack model. The
dropout regularization of Salem et al. (Jia et al., 2019) enhances the generalization
ability of the model. Such methods often fail to eliminate model overfitting. Under
these defenses, a poor model generalization ability does not make the attack any less
potent.

� Knowledge Transfer: Examples of these defenses include the private aggregation of
teacher ensembles, proposed by Nicolas et al. (2017), and the distillation for
membership privacy, proposed by Shejwalkar and Houmansadr (2021). Here, the
target model is transferred to the defense model by distillation to defend against the
MIA. This method effectively prevents the model from being attacked by the MIA;
however, the resultant defense model may not completely substitute the target
model, and the defense considerably influences the target model.

� Adding disturbance: MemGuard, proposed by Jia et al. (Yeom et al., 2018), adds noise
to the model output to reduce the discrepancy between members and non-members.
This method effectively defends against some early privacy attacks and maintains
the output accuracy of the target model. However, the cost of noise generation
is relatively high. Our method also aims to adjust the output of the model, but it
uses the generative model to manage all the sample outputs in a unified way, which
considerably improves defense efficiency. The experimental results demonstrate
that our approach is also more effective in defending against the latest attacks.

3. Output regeneration method
3.1 Security threats and design objectives
Because training data are an indispensable component of the MLmodel, and these data may
contain the user’s privacy information, in the application phase of the target model, MIA
steals user privacy by extracting the target model information to determine the member
membership. This attack is regarded as a binary classification task, that is, for a trained ML
model S, the training data are denoted as Xtrain (member data). The attacker uses the attack
modelM to determine whether the given sample x belongs to a specific group Xtrain, as
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represented by equation (1), where x represents the sample to be assessed, S is the target
model, 0 indicates that sample x is not in the member data of the target model and 1
indicates that sample x is in themember data of the target model:

M x; S xð Þ� � ¼ f0; 1g (1)

In the case of the classification model, if the model is overfitted, the difference between the
member and non-member data will be large. This difference is described as two problems.
First, the probability distribution of the member data will be concentrated (maximum
probability value close to 1, others close to 0), unlike that of the non-member data. Second, the
performance of the member data will be significantly better than that of the non-member data.

This problem exists because the target model extracts redundant features during
repeated training. Taking the classification model with SoftMax output as an example, the
ground truth used for training is a vector with a real class of 1 and a rest of 0. When the
model loss is minimal, the output belonging to the training data of the model is extremely
close to the ground truth, which may be determined by the desired characteristics or other
characteristics. These extra features come only from member data. Eventually, the
difference is better represented by the target model output. As noted earlier, the attacker
determines membership in the target sample by exploiting the large discrepancy between
the output of the training data and non-training data. To minimize this discrepancy and
prevent the target model from being attacked by membership inference, a defense method
based on tuning the model output is proposed in this study. The method keeps the relative
output size constant, that is, Y = (y1, y2, y3,. . . yn) is the output probability of the target
model, andY 0 ¼ y 01 ; y

0
2 ; y

0
3 . . . ; y

0
n

� �
is the output probability of the generative model. Every

yi > yj guarantees y 0i > y 0j ; compared with the output of the target model, the adjusted
output probability does not change the classification result of the model, which ensures that
the adjusted model is equivalent to the target model in use. The method is detailed in the
following subsections. Refer to Table 1 for a summary of the notations used in the text. This
table provides a comprehensive overview of the symbols and their correspondingmeanings.

3.2 Overview of generating models
The main structure of the approach is depicted in Figure 1, where X is the input of the target
model, Sm is the target model, Y is the target model output, G is the generator and Y0 is the

Table 1.
Symbols used in the

text

Symbol Meaning

S target model classifier
Xtrain training data of target model (member data)
Xnon non-training data of target model (non-member data)
Y target model outputs
Ytrain target model outputs on the member data
Yl
train labels of Ytrain used to train the generative model

Ynon target model outputs on the non-member data
Yl
non labels of Ynon used to train the generative model

Dtrain training data for generator
G generator
Y 0 probability distribution vectors generated by generator

Source:Authors’ own design
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output when adjusted by the generator. Keeping the target model Sm and the input X
unchanged, the output of the target model is taken as input to the generative model. The
generative model was used to adjust the output probabilities of the target model.
Furthermore, the SoftMax function was enabled for the output layer of the generative model
to ensure that the generative model output remains consistent with the target model.

The output probability distribution structure of the classification model is
straightforward. The role of the generative model is to adjust the target model output to the
same distribution while maintaining the relative probability size. Owing to the simplicity of
this task, the trained generative model has a high generalization ability, and its output is
resistant to MIAs. The effectiveness of the generative model in achieving good results
without the need for complex neural network models was demonstrated experimentally,
where only a simple multi-layer perceptron with fully connected layers (Figure 2) was
trained as the output generator. The generative model first projects its input (i.e. the target
model output) to a higher dimension to capture its high-dimensional features, and then it
gradually restores the high-dimensional transformation to the same dimension as that of the
input through two fully connected neural network layers. Because the generative model
output satisfies the same distribution, and the difference between member and non-member
data is small, the model is better equipped to defend against MIAs after being processed by
the generative model. Additionally, to verify the strong transferability of the generative
model, the same generative model was used to process data with the same number of
categories in subsequent experiments.

3.3 Generative model training
To preserve the original model’s classification outcomes, the generative model is trained
independently of the target model. Instead, the target model’s output results serve as the
training data for the generative model. Assuming the model owner is the defender, they
have full access to the training set data and easily augment the volume of the non-training
set data for the model.

This paper introduces two strategies, namely, member mask and non-member mask, to
obfuscate the distinction betweenmember and non-member data based on the output distribution
characteristics of the generative model’s task. The primary distinction between the two
approaches lies in the labels used for the generativemodel during supervised learning.

3.3.1 Member mask. The member mask is used to mask non-member output as member
output. Figure 3 depicts the implementation process of this method. As mentioned above,
the defender has all the member data Xtrain for the target model, meaning it easily obtains a
non-member data Xnon. The output probabilities Y are obtained using the target model. The
member data Xtrain and non-member data Xnon are processed separately according to their
respective characteristics.

Figure 1.
Schematic diagram of
output regeneration
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Figure 2.
Generative model

used for CIFAR-100
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As mentioned above, the output of the member data is extremely close to the ground truth
set during the training of the target model. Therefore, a label similar to the target model
ground truth is constructed for the member mask to train the generation model to simulate
the member output, as expressed in equation (2):

yl ¼ y; x 2 Xtrain
max yð Þ ¼ 1; other ¼ 0; x 2 Xnon

�
(2)

As shown in equation (2) specifically, in the case of member data, the output is a probability
distribution vector with a maximum probability value close to 1, while the remaining
probabilities are close to 0. To preserve the maximum output information of the target
model, the label for member data Yl

train is assigned as its output on the target model without
any additional transformations during the generative model training process.

For non-member data, the maximum probability value output on the target model is set
to 1, whereas the rest is set to 0, serving as the corresponding label Yl

non for the generative
model. Subsequently, the output Y of member data and non-member data on the target
model is used as input for the generative model, which is then trained with the
corresponding labels. Finally, the trained generative model is used to adjust the target
model, with mean square error loss = mse(Y, Y1) set as the loss function for the member
mask.

Algorithm 1: Training data for member mask
Input: Y
Output: Dtrain

1. for each y [ Y do
2. if y [ Ytrain then
3. yl/ y
4. else if y [ Ynon then
5. yl/ max(y) = 1, other = 0
6. Dtrain/ Dtrain| {(y, yl)}
7. return Dtrain

Figure 3.
Member masquerade
diagram
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According to the description provided in Algorithm 1, the output Y of the target model is
used as input, and the output Y and its corresponding label Y l are used as the training set
Dtrain for the generative model. For the output y of all samples, if y is the output of a member
sample, the corresponding label is y itself. On the contrary, if y is a non-member output, the
corresponding label is a vector of the same dimension, where the maximum value is 1 and
the remaining values are 0. Finally, y and the corresponding yl are added to the training set
of the generative model.

3.3.2 Non-member mask. As shown in Figure 4, similar to the member mask, the non-
member mask method starts with a data set that includes both member data Xtrain and non-
member data Xnon. The probability distribution of the outputs Ytrain and Ynon is obtained
using the target model. Because the features outputted by non-members are generally more
diverse than those outputted by members, and unlike the member mask, the non-member
mask processes all outputs equally when creating labels. The specific method is as follows.

For all outputs Y, let Y = Ytrain | Ynon. Rank the probability distributions in decreasing

order of magnitude: y1 � y2 � y3. . .� yn. Create labels yl ¼ yl1; y
l
2; y

l
3; . . . ; y

l
n

� �
, where

1
k < yl1 <

2
k simultaneously satisfies yl1 > yl2 > yl3 > . . . > ylk, y

l
1 þ yl2 þ yl3þ . . .þ ylk ¼ 1

and yli ¼ 0 when i> k. Use the labels to train the generative model to adjust the output of the
target model. For the non-member mask, it is recommended to use cross-entropy loss =
CrossEntropyLoss(Y,Yl) as the loss function.

As shown in Algorithm 2, similar to Algorithm 1, the outputY of the target model is used
as input, and the output Y and its corresponding label Yl are used as the training set Dtrain
for the generative model. The specific procedure is as follows: to ensure that the labels
conform to the same distribution, the first k largest values of the labels, i.e.
yl1_row; y

l
2_row; y

l
3_row; . . . ; y

l
k_row, are fixed. Then, the maximum value yl1_row is determined,

satisfying 1
k < yl1_row < 2

k, and the subsequent values are determined based on the previous

value, ensuring that yli_row < yli�1_row. When 1�
Xi�1
n¼1

yln_row > yli�1_row, y
l
i_row=1�

Xi�1
n¼1

yln_row

is set to ensure that yl1 þ yl2 þ yl3 þ . . .þ ylk ¼ 1, and k is determined at this point. Then, the

Figure 4.
Non-member

masquerade diagram
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k values are assigned to the negative values of the first k largest values of y, i.e. yli ¼ yli_row
when i# k, and the rest are set to 0, as the labels of y. Finally, y and the corresponding yl are
added to the training set of the generative model:

Algorithm 2: Training data for non-member mask
Input: Y
Output: Dtrain
1. yl1_row  random 1

k ;
2
k

� �
2. i/ 2
3. while: true do

4. if 1�
Xi�1
n¼1

yln_row > yli�1_row then

5. yli_row  random 0; yli�1_row
� �

6. i/ iþ 1
7. continue
8. else then

9. yli_row  1�
Xi�1
n¼1

yln_row

10. k/ i
11. break
12. for each y [ Y do
13. j/ 1
14. while true do
15. If j#k then
16. ylj  yli_row
17. j/ jþ 1
18. continue
19. else if j# len(y) then
20. ylj  0

21. j/ jþ 1
22. continue
23. else
24. break
25. Dtrain/ Dtrain| {(y, yl)}
26. return Dtrain

4. Results
This section first introduces the experimental environment and data set used in the
experiment, comparing the performance of different target models before and after
deployment of defense, as well as during defense against two methods of attack and, finally,
comparing the twomethods of defense under the same attack.

4.1 Experimental environment
The experimental environment was a computer equipped with an R7-4800h CPU and an
RTX2060 graphics card; running Windows 10. Python 3.7 was the programming language;
and TensorFlow2.3 was the main DL tool.
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4.2 Data set
As shown in Table 2, the following data sets were used in accordance with the number of
categories:
� EyePACS: EyePACS is a competition data set for diabetic retinopathy in Kaggle.

There were five categories, including 35,108 images. Among them, 10,000 images
were used as the training data, whereas 10,000 images were used as the test data.

� CH-MNIST (Kather et al., 2016): CH-MNIST is a human colorectal cancer-related
data set that is now publicly available for direct loading on TensorFlow data sets,
with a total of eight categories and 5,000 images. Among them, 2,500 images were
used as the training data, whereas 2,500 images were used as the test data.

� CIFAR-100: CIFAR-100 is a data set consisting of 60,000 32 � 32 color images of
100 categories. The data set is loaded and used on Keras. Here, 10,000 images were
used as the training data, whereas 10,000 images were used as the test data.

� Caltech-UCSD Birds 200 (Welinder et al., 2010): Caltech-UCSD Birds 200 is a data
set consisting of 11,788 images of 200 bird species, which is available for download
from Kaggle. Among them, 5,994 images were used as the training data, whereas
5,794 images were used as the test data.

� Texas100: Texas100 is a data set that includes hospital discharge data. The data set
contained inpatient information from multiple medical facilities and was published
by the Texas Department of Health Services. A total of 67,330 processed data were
obtained by Shokri (Salem et al., 2019), which recorded 6,170 binary characteristics
of external causes of harm (e.g. suicide and drug abuse), diagnosis (e.g.
schizophrenia and illegal abortion), procedures performed by patients (e.g. surgery)
and general information such as gender, age, ethnicity, hospital ID and length of
stay. These data had 100 categories, and 10,000 disjoint data were selected as the
training data and 10,000 as the test data.

4.3 Influence of the generative model on the target model
DL has abundant and diverse potential applications (Gao et al., 2022). In this study, four
commonly used models in computer vision, namely, residual neural network (ResNet) (He
et al., 2016), visual geometry group (VGG) (Simonyan and Zisserman, 2014), densely
connected convolutional networks (DenseNet) (Huang et al., 2017) and convolutional neural
networks (CNN), were primarily selected as classification models. Detailed information
about the model is shown in Table 3. The training data used for this study were member
data. To showcase the transferability of our approach, the same generative model was used
to process the output of different classifier models on the same data set. The differences in
classification accuracy between the models adjusted using our defense method and the
target model are illustrated below.

Table 2.
Details of each data

set, training data and
test data

Data set No. of categories Training data size Test data size

EyePACS 5 10,000 10,000
CH-MNIST 8 2,500 2,500
CIFAR-100 100 10,000 10,000
Caltech-UCSD 200 5,994 5,794
Texas100 100 10,000 10,000

Source:Authors’ own design
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Figures 5–8 illustrate the accuracy results of using ResNet (He et al., 2016), VGG (Simonyan
and Zisserman, 2014), DenseNet (Huang et al., 2017) and CNN to develop classification
models for EyePACS, CH-MNIST (Kather et al., 2016), CIFAR-100 and Caltech-UCSD Birds
200 (Welinder et al., 2010). The results of applying our defense method to these models show
that, with the exception of the CH-MNIST data set (for which the model accuracy difference
was approximately 0.06), the classification accuracy of the other models remained almost
unaffected. The difference between the adjusted model accuracy and the unadjusted model
accuracy was maintained at approximately 0.02 or less for both the training and test data
sets.

4.4 Performance of defense method under attack
4.4.1 Attack model. Existing attack models are mainly divided into two categories
according to the use of a shadow model. The first category is the attack that includes the
shadow model. This model simulates the output distribution of the target model by creating
a shadow model of the known training data, which is also the primary mode of the early
member inference attack. Here, the attack mode with shadow model Ml-leaks of Salem et al.
(2019) is selected. The other category is the shadow model-free attack mode; that is, no
shadow model training is required. Classification is performed using methods such as
comparing the threshold differences or directly differentiating between the performance of
the target model on training data and non-training data. The attack mode without the
shadowmodel used in this study was the blindmembership proposed by Hui et al. (2021):

Figure 5.
Pre- and post-defense
accuracy of each
model on EyePACS

Table 3.
Number of layers
constructed for each
classification model

Model No. of layers

ResNet 50
VGG 16
DenseNet 121
CNN 2

Source:Authors’ own design
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Figure 6.
Pre- and post-defense

accuracy of each
model on CH-MNIST

Figure 7.
Pre- and post-defense

accuracy of each
model on CIFAR-100

Figure 8.
Pre- and post-defense

accuracy of each
model on Caltech-
UCSD Birds 200
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� Ml-leaks (Salem et al., 2019): Ml-leaks trains a shadow model across the known
training data. Then, it takes the known training data and non-training data to
output with the shadow model; takes the first three maximum probability values of
the probability output; and conducts supervised learning according to the two labels
of both data outputs to obtain the classifier used to distinguish both outputs. The
classifier is then used to classify the output of the target model to determine whether
the input samples are the training samples for the target model. For Ml-leakage
(Salem et al., 2019), a black-box setup is used, where the attacker knows the true
class of the sample.

� BlindMI (Hui et al., 2021): BlindMI uses the difference between the output of the
member data on the model and the output of the non-member data on the model.
Assuming the attacker has a data set containing data from a member of the target
model, the attacker refers to this as the target data set. The attacker constructs a
non-member data set with no member data and moves a target sample to the non-
member data set. The change in distance between the non-member data set and the
target data set before and after motion is then used to determine whether the moved
sample belongs to the training data of the target model. For BlindMI, the Blackbox-
Blind of Hui et al. (2021) was adopted; that is, the attacker knows only the output of
the model but not the ground truth of the sample.

The target model was ResNet; the shadow model used in the Ml-leaks was VGG; and our
defense method was evaluated by both attacks. The results are presented in Tables 4 and 5.
For the Ml-leaks attacks, our defense method effectively controlled the classification
accuracy of the attack to approximately 0.5 or less. The precision rate of the Ml-leaks attack
tends to zero when the data set with more classification categories is classified under the
non-member mask because the attack at this point classifies all samples in the non-
membership data. To achieve the goal of having the attacker mistake a non-member sample
for a member sample, the member mask also effectively improves the recall rate of the Ml-
leaks attack while maintaining the precision at approximately 0.5.

For the BlindMI attack, although our defense method effectively reduced the accuracy of
the attack to approximately 0.5, it cannot control the classification result of the attack
through the defense. This is because the Ml-leaks attack uses the shadow model to simulate
the output of the target model to train the attack classifier with a known member; moreover,
its essence is to create a high probability for the attack classifier through the similarity
between the output of the shadow model and the output of the target model. In contrast, for

Table 4.
Pre- and post-defense
accuracy of attack
model on CIFAR-100

Attack method Metric No. defended Non-member mask Member mask

Ml-leaks Accuracy 0.9134 0.5000 0.5396
Precision 0.9033 0.0000 0.5206
Recall 0.9702 0.0000 0.9999
F1-score 0.9355 – 0.6847

BlindMI Accuracy 0.8830 0.5010 0.5031
Precision 0.8119 0.5005 0.5039
Recall 0.9969 1.0000 0.4033
F1-score 0.8958 0.6671 0.4480

Source: Authors’ own data, using the Ml-leaks described by Salem et al. and BlindMI described by Hui
et al.
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BlindMI, the attack is judged solely by the distance of the target data from the non-member
data before and after the sample movement, and the distance is considered constant. After
deploying the defense method, the difference between the target and non-member data
decreases, so moving the sample does not change the distance between the two data sets.
Eventually, all of the target data are classified as member data. Thus, the recall rate of Blind-
MI attacks on the CIFAR-100 data set may approximate 1. The attack classification
accuracy was significantly reduced to approximately 0.5, and the attack was also invalid.
Although the attack detected a change in distance in some cases, its accuracy rate was low,
and these changes were not used to determine membership.

To control the difference in distance between the model outputs, the training times of the
target models were controlled. The difference distance was measured using the centroid
distance from the Hilbert space constructed by the Gaussian kernel used in BlindMI (Hui
et al., 2021). As shown in Figure 9, the difference distance of the target model output
increased rapidly as the training time increased, whereas the output fitted by our defense
method tended to be steady and did not increase significantly. Our defense system
effectively controls the difference in model outputs. Figure 10 shows that the accuracy of the

Table 5.
Pre- and post-defense

accuracy of attack
model on Caltech-
UCSD Birds 200

Attack method Metric No. defended Non-member mask Member mask

Ml-leaks Accuracy 0.9838 0.5000 0.5950
Precision 0.9691 0.0000 0.5566
Recall 1.0000 0.0000 1.0000
F1-score 0.9843 – 0.7152

BlindMI Accuracy 0.9801 0.0101 0.4983
Precision 0.9623 0.0000 0.5143
Recall 1.0000 0.0000 0.2397
F1-score 0.9808 – 0.3270

Source: Authors’ own data, using the Ml-leaks described by Salem et al. and BlindMI described by Hui
et al.

Figure 9.
Difference distance
with target model

training times
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model output fitted by the defense method was consistent with that of the target model
during the training process, indicating that the classification accuracy of the model is almost
unaffected by the defense. The classification accuracy of BlindMI for the entire model
training process is illustrated in Figure 11. The attack classification accuracy for the
defense-free model increased rapidly in parallel with the increase in training time, rendering
the model vulnerable to BlindMI attack. For the post-defense model attack, the accuracy
increased slightly during the training process for the target model, and then it gradually
tended to a steady state before eventually dropping to approximately 0.5. In the case of MIA
as a binary classification, the result of the attack classification is unreliable, and the defense
effectively protects the model.

Figure 10.
Accuracy with target
model training times

Figure 11.
Attack accuracy with
target model training
times
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4.5 Comparison of defense methods
The method selected for comparison with our defense method is MemGuard proposed by Jia
et al. (2019), which also adapts the output of the model, and the dropout defense method
proposed by Salem et al. (2019), which adjusts the model to improve its generalization
ability.

For the purpose of comparison, MemGuard (Jia et al., 2019) was selected, which also
adapted the output of the model, and the dropout defense method (Salem et al., 2019), which
adjusted the model to improve its generalization ability. MemGuard (Jia et al., 2019) uses an
output adjustment technique to defend against MIA and adds noise to the model output to
reduce the difference between member and non-member outputs while preserving the model
classification results. The Texas100 data set was chosen to train the target model. The
effectiveness of the defense method was evaluated using BlindMI as the MIA, and
the results are presented in Table 6. Although MemGuard has minimal impact on the
classification accuracy of the target model (with only a reduction of 0.007 in the test data
accuracy), the noise generated by MemGuard retains the original output characteristics,
resulting in residual output differences that are detected by BlindMI to distinguish between
member and non-member (the precision of the BlindMI attack under MemGuard is 0.5930).
In contrast, our defense method achieves a maximum classification accuracy of only 0.5
against Blind attacks. In binary classification, an attack at this level is not effective in
distinguishing betweenmembers and non-members, rendering the attack invalid.

Our method was also compared with the dropout defense (Nicolas et al., 2017). The attack
method used was BlindMI, and the CIFAR-100 and ResNet models were used. Our defense
method and dropout defense were applied to defend against BlindMI for comparison
purposes.

Table 6.
Performance of

BlindMI attack in
various defenses

Evaluation indicators No. defended MemGuard Non-member mask Member mask

Training accuracy 1.0000 1.0000 1.0000 1.0000
Test accuracy 0.5680 0.5610 0.5680 0.5590
BlindMI accuracy 0.7485 0.5930 0.5000 0.5010
BlindMI precision 0.7934 0.7236 0.5000 0.5005
BlindMI recall rate 0.6720 0.3010 0.9990 1.0000
BlindMI F1-score 0.7277 0.4251 0.6664 0.6671

Source: Authors’ own data, using the Ml-leaks described by Salem et al. and BlindMI described by Hui
et al.

Table 7.
BlindMI in models

with different
overfitting degrees

and defense methods

Training accuracy Test accuracy
Attack accuracy
with dropout

Attack accuracy with
member mask

Attack accuracy with
non-member mask

0.5234 0.3024 0.7652 0.5009 0.5035
0.7792 0.3255 0.8580 0.5009 0.4905
0.9554 0.3542 0.8641 0.5027 0.5010

Source: Authors’ own data, using the Ml-leaks described by Salem et al. and BlindMI described by Hui
et al.
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As shown in Table 7, as the discrepancy between the accuracy of the training data and that
of the testing data increases (i.e. the degree of model overfitting increases), the classification
accuracy of the attack under dropout defense gradually increases, eventually reaching
0.8641. At this point, the dropout defense becomes vulnerable to BlindMI. However, the
attack accuracy under our defense method remains at approximately 0.5 and is unaffected
by the degree of model overfitting, indicating that our defense method effectively
withstands the BlindMI attack.

5. Conclusion
This paper proposes a cost-effective and straightforward approach for safeguarding against
MIAs by adjusting ML model outputs. The defense strategy involves a simple generative
model structure, resulting in a low defense cost. The experimental findings demonstrate that
the proposed method successfully preserves the classification information of the original
model while simultaneously reducing the disparities between member and non-member
outputs, thus effectively mitigating the risks associated with MIAs. Additionally, the
proposed approach proves successful in classification models with simple output structures,
but the effectiveness is reduced in generative models with more complex outputs. As the
method does not account for the classification categories of non-member outputs, it is
vulnerable when attackers have knowledge of the true sample categories. Finally, the
method is suitable for black-box scenarios, and further investigation and enhancement are
required for white-box scenarios.
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