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Abstract
Purpose – Giant orthogonal grid barrel vault is generated by deleting members in the inessential force
transfer path of the two-layer lattice barrel vault. Consisting of members in the essential transfer path only,
giant orthogonal grid barrel vault is a new type of structure with clear mechanical behavior and efficient
material utilization. The paper aims to discuss this issue.
Design/methodology/approach – The geometrical configuration of this structure is analyzed, and the
geometrical modeling method is proposed. When necessary parameters are determined, such as the structural
span, length, vault rise, longitudinal and lateral giant grid number and section height to top chord length ratio
of the lattice member, the structure geometrical model can be generated.
Findings – Numerical models of giant orthogonal grid barrel vaults with different rise–span ratios are built
using the member model that can simulate the pre-buckling and post-buckling behavior. So the possible
member buckle-straighten process and the plastic hinge form–disappear process of the structure under
strong earthquake can be simulated.
Originality/value – Seismic analysis results indicate that when the structure damages under strong
earthquake there are a large number of buckling members and few endpoint plastic hinges in the structure.
Dynamic damage of giant orthogonal grid barrel vault under strong earthquake is caused by buckling
members that weaken the structural bearing capacity.
Keywords Modelling, Damage mechanism, Geometrical configuration, Giant orthogonal grid barrel vault,
Strong earthquake
Paper type Research paper

Introduction
Lattice barrel vault has the advantages of both frame structure and shell structure. It is widely
used for structure roofs of different shapes. In order to make lattice barrel vault span bigger
area, the thickness or the layer number of the structure is usually need to increase. This would
cause the increment of the structure self weight. Li pointed out that the structure layer
increment made an ineffectual effort to improve the stability of the structure (Li et al., 1998).
Consisting of a large number of members, two-layer lattice barrel vault is a structure with
high redundancy. Quite a few members that bear very small load are just for the sake of
construction. By deleting the members on the inessential force transfer path of the two-layer
lattice barrel vault a “hollow” lattice structure can be generated. This structure consists of
giant lattice members which are generated by the remaining members. This structure can also
be generated by replacing the solid web members of giant grid single-layer barrel vault with
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the lattice members. The stiffness of lattice member is big, and the self weight of lattice
member is obviously smaller than that of the solid web member of the same size. So the
lattice member can be used for structural component of big size, and the structure with lattice
member can be used to span bigger area.

Earthquake is one of the most frequent natural disasters. The losses of life and property due
to earthquake are mainly caused by building collapse. Including the barrel vault with lattice
members, seismic designs are needed for all types of structures which locate in the earthquake
region. Study of dynamic damage mechanisms of long-span structures are carried out by
scholars all over the world. Zhou et al. (2014) derived imperfect beam element model for
reticulated shell member by supposing the initial curvature of members as half-wave sinusoids,
they also studied the effect of member geometric imperfection on seismic performance of
suspend-dome structure. Li and Xu (2014) studied the dynamic stability and failure probability
of dome structures under stochastic seismic excitation. Liu and Ye proposed an optimization
method for a single-layer spherical shell that collapses due to instability under earthquake
action. The results show that the optimized structure is subject to ideal strength failure under
earthquake action with clear warning signs prior to collapse (Liu and Ye, 2014). Mahmood and
Morteza established six models of domes with different spans and same number of nodes and
elements as well as loading conditions by finite element method to study the seismic behaviors.
They proposed a formula of the structure natural period and response modification factor of
Schwedler domes (Mahmood and Morteza, 2014). Sedeghi and Pour (2014) studied the site
distance effect on seismic behavior of double layer barrel vaults, and some useful conclusions
are obtained. Kang (2017) proposed a three-dimensional analysis method for determining the
natural frequencies of shallow spherical domes with non-uniform thickness. This new method
can also be used for refined analysis of unconventional long-span structures. Mousavi et al.
(2015). investigated the effects of applying different buckling modes obtained by linearized
eigenvalue buckling analysis as the initial imperfection for double domes free form space
structures. They also suggested a generalized conformable imperfection mode method for the
structural further dynamic analysis. Faghihmaleki et al. (2017) presented a probabilistic
assessment and verify the effectiveness of seismic improvement schemes against earthquake,
blast and progressive collapse.

Single-layer latticed domes composed of welded round pipes with different parameters
are modeled, and the seismic responses of the domes with and without material fatigue are
compared by the incremental dynamic analysis.

In this paper, the construction and damage mechanism of giant orthogonal grid barrel vault
are studied. The giant orthogonal grid barrel vault is generated by replacing the solid web
members of giant orthogonal grid single-layer barrel vault with the lattice members. In this
structure, the lateral lattice members are orthogonal to the longitudinal lattice members. This is
a new type of structure with efficient material utilization, and its mechanical behavior need to be
further studied. It is the theoretical basis of the seismic design method to deeply study the
objective laws of the dynamic responses and the damage mechanism of the giant orthogonal
grid barrel vault under strong earthquake. Under the earthquake, the giant orthogonal grid
barrel vault undergoes loading–unloading process repeatedly. It could cause the possible
buckle-straighten processes of the structural members and the form–disappear processes of the
plastic hinges. The member mechanical behavior and the structural bearing capacity are
changing continuously. The refined member calculation model by which the continuous
mechanical behavior changes of the member can be simulated should be founded. There are
two main problems if members of giant orthogonal grid barrel vault are modeled by general
beam element of the general finite element analysis program: the accuracy of the elastic–plastic
element stiffness matrixes. By general finite element analysis program, the material constitutive
relationships of the Gauss integral sections of the general beam element are used to calculate the
element stiffness matrix. The elastic element stiffness matrix can be calculated correctly by this
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arithmetic if the member stays elastic. It is the end section of the member, which is not the
Gauss integral section that first turns into plastic state commonly. Thus when the end section
turns into plastic state, the element stiffness matrix calculated by general finite element analysis
program is still elastic. Because of different loading history, material elastic–plastic constitutive
relationships of different sections of the member are not the same, so it is not rational to
calculate elastic–plastic element stiffness matrix based on the material constitutive relationship
of the Gauss integral section. The simulation of the buckling members. If one structural member
is modeled by a single general beam element of general finite element analysis program,
buckling of the members cannot be simulated and the decrease of the member bearing capacity
is caused by material yielding rather than member buckling. In this case, the member can bear
the load that is bigger than the buckling critical load. Therefore the member bearing capacity is
seriously overestimated. Buckling of the member can be simulated if one member is divided into
more than one general beam element of general finite element analysis program. However, the
post-buckling behaviors of the member and the plastic hinges forming in the end section and
the central section cannot be simulated. How many general beam elements of general finite
element analysis program one structural member should be divided into is also difficult to be
appropriately determined.

To study the damage mechanism of giant orthogonal grid barrel vault under
earthquakes, calculation model of the structure that tallies with the actual situation should
be created. In this paper, refined member calculation model considering the buckling effect
(Qi et al., 2014) is used for the numerical model of giant orthogonal grid barrel vault. The
bearing capacity change process of the structure under strong earthquake resulting from
mechanism behavior change of the members is studied accordingly. Based on the objective
laws of the structural dynamic responses, the damage mechanism of giant orthogonal grid
barrel vault under strong earthquake is studied in this paper.

Geometrical model of the structure
Geometrical parameter
The structure of giant orthogonal grid barrel vault is illustrated in Figure 1. Space truss is used
as the structural lattice member. One space truss consists of two top chords and one bottom
chord. The top chords are connected by horizontal bars, and the top chords and the bottom chord

Figure 1.
Giant orthogonal grid

barrel vault
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are connected by web bars. Lattice members along the arch are connected by inverted square
pyramid joints. The lattice member and the inverted square pyramid joint are shown in Figure 2.

The expressions of the structural geometrical parameters should be analyzed for the
geometrical configuration of giant orthogonal grid barrel vault. The method of building the
structural geometrical model based on the structural span, the length, the rise, longitudinal and
lateral giant grid number and lattice member section height to top chord length ratio also needs
to be developed. Vertical view of the structure is shown in Figure 3, and the plan view of the
structure is shown in Figure 4.

In Figure 3, R is the curvature radius of the arch, H is the rise and S is the span. The
relationship of is given as follow:

R2 ¼ 1
2
S

� �2

þ R�Hð Þ2: (1)

Based on Equation (1), the expression of R can be given as follow:

R ¼ S2þ4H 2

8H
: (2)

As shown in Figure 3, 2θ is the central angle corresponding to one arch lattice member. N is
the number of arch lattice members. So the central angle corresponding to the arch in
Figure 3 is 2θN. Based on the geometry theory, the expression of θ can be given as follow:

y ¼
arctan S

2 R�Hð Þ
N

: (3)

Figure 2.
Lattice member

H

S

R

�

2�

Figure 3.
Vertical view of the
structure
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Geometrical parameters of one arch lattice member are shown in Figure 5. In Figure 5, A is
the top length of the lattice member, and a is the length of one top chord in the lattice
member. The relationship between A and a is given as follow:

A ¼ na (4)

where n is the number of top chords in one lattice member.
In Figure 5, h1 is the section height of the lattice member. h2 is the height of the inverted

square pyramid joint. lx is the length of the end bottom chord. Based on the geometry theory,
the relationship of h1, h2, lx and a is given as follow:

lx�
1
2
a

� �2

þh21 ¼
1
2
a

� �2

þh22: (5)

L

S

Figure 4.
Plan view of the

structure
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As shown in Figure 5, the angle between the joint median and the lattice member height is θ,
and the relationship of θ, h1 and h2 is given as follow:

1
2
aU tan yþh2

� �
cos y ¼ h1: (6)

The bottom length of one lattice member is Ab. Based on the geometrical relationship in
Figure 3, the expression for Ab can be given by:

Ab ¼ 2RU sin y: (7)

Let h1¼ nga, where ng is the lattice member section height to top chord length ratio. Based
on Equations (3), (5) and (6), the expression of the top chord length a is given as follow:

a ¼ 2 sin yU cos y
1�2UngaU sin yþnU cos y

S2

8H
þ0:5H

 !
: (8)

Based on Equations (6) and (8), the expression of h2 is given as follow:

h2 ¼ nga cos yþ sin yU tan yð Þ�0:5aU tan y: (9)

Based on Equations (5), (6) and (8), the expression of the end bottom chord length lx is given
as follow:

lx ¼
1
2
2R sin y� n�1ð Þa½ �: (10)

Modeling processes
Modeling processes for giant orthogonal grid barrel vault are illustrated in Figure 6.

Detailed explanation of the processes is as follows:

(1) The structural span S, the structural riseH and the number of arch lattice memberN
should be first determined. Based on Equations (2), (3) and (8), the geometrical
parameters of R, θ and a can be calculated. When the value of ng is specified, h1 can
be determined by a and ng, and h2 also can be calculated by Equation (9). When the
top node coordinate of the square pyramid joint at the end of an arch lattice member
is specified, all of the nodal coordinates of the square pyramid joint can be
determined based on h2 and a. So the square pyramid joint at one end of this arch
lattice member is constructed by connecting every node with solid web bars.

(2) The square pyramid joint at the other end of the lattice member can be constructed
by rotating the completed square pyramid joint to an angle of 2θ along an arc with
the center at the curvature center and the radius equal to R.

(3) The top chord line of the lattice member is constructed by connecting the bottom
node of the inverted square pyramid. The bottom chord line of the lattice member is
constructed by connecting the vertex of the inverted square pyramid.

(4) When the top chord line is separated at an equal distance of a, and the bottom
chord line is separated at distances of a and lx, the endpoints of top chords, bottom
chords and web members are then determined. The top chords, bottom chords and
web members of the giant lattice member can be constructed by connecting
the endpoints.
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(5) Repeat this process from Step (2) to Step (4) and then a complete lattice arch can be
constructed.

(6) Copy the lattice arch at an equal distance calculated by dividing the structural
length by the longitudinal giant grid number. Then the top chord lines and the
bottom chord lines of the longitudinal lattice members are constructed by
connecting vertexes of the inverted square pyramid joints along the structural
longitudinal direction. The endpoints of top chords, bottom chords and web
members can be determined when the top chord lines and the bottom chord lines
are equally separated. The top chords, bottom chords and web members of the
longitudinal lattice members can be constructed by connecting the endpoints. The
structure geometrical model is then constructed.

The geometrical modeling process of the giant orthogonal grid barrel vault is illustrated by
Figure 7.

(1) (2) (3) (4)

(5) (6)

Figure 6.
Modeling processes

Construct the first
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pyramid joint

Rotate
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Figure 7.
The structure
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Member buckling
Buckling is usually the key point of lattice structures. In this paper, member buckling is
taken into consideration in the study of damage mechanism of giant orthogonal grid barrel
vault under strong earthquake.

Member buckling prediction
Steel circular hollow sections are used as members of giant orthogonal grid barrel vault.
Through extensive experiments, ISO summarize the instability equation of steel circular
hollow section as follows (Steel Structures: Materials and Design, 1997):

I sc;sb1; sb2ð Þ ¼ sc
Nc

þ 1
Nb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xm1sb1
1� sc

Ne1

 !2

þ xm2sb2
1� sc

Ne2

 !2
vuut ; (11)

where σc¼N/ψ is the axial compressive stress; N and ψ are the axial force and the member
cross section area, respectively; σb1 and σb2 are the maximum flexural stresses about the two
main axes, respectively; σb1¼M1/We and σb2¼M2/We, whereWe is elastic section modulus,
andM1 andM2 are the maximum bending moments about the two main axes, respectively;
ξm1 and ξm2 are reduction factors at the ends of the member, where ξm1¼ ξm2¼ 0.85; Ne1
and Ne2 are the Euler critical buckling stresses about the two axes, where Ne1 ¼ Nyc=l

2
1,

Ne2 ¼ Nyc=l
2
2, l1 ¼ k1L1=pr

ffiffiffiffiffiffiffiffiffiffiffiffi
Nyc=w

p
, l2 ¼ k2L2=pr

ffiffiffiffiffiffiffiffiffiffiffiffi
Nyc=w

p
; L1 and L2 are the

unsupported lengths of the member about the two axes; k1 and k2 are the effective length
factors for L1 and L2; ρ is the radius of the section; χ is Young’s modulus; Nc and Nb are the
characteristic axial compression force and the characteristic bending force, respectively, and
they are given by:

Nc ¼
1:0�0:28l2
� �

Nyc lp1:34
0:89282978

l2
Nyc l41:34

8<
: ; (12)

Nb ¼

WP
We

ss
ssf
wt p0:0517

1:133386�2:58ssfwt
� �

WP
We

ss 0:0517ossf
wt p0:1034

0:945198�0:76ssfwt
� �

WP
We

ss 0:1034ossf
wt p 120ss

w

8>>>><
>>>>:

; (13)

where Nyc is given by:

Nyc ¼

ss 5ssfwt p0:170

1:04654873�0:27381606
5ssfwt
3wt

� �
ss 0:170o5ssfwt p1:911

0:6wt
f 5ssfwt 41:911

8>>>>><
>>>>>:

; (14)

where σs is the yielding strength; t and f are thickness and diameter of the member,
respectively; λ ¼ max(λ1, λ2); WP¼ [f3−(f−2t)3]/6.
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Generally when I(σc, σb1, σb2)⩾1.0, member buckling is predicted. However, if the member
is imposed with heavy bending moment but relative small axial compression force, it is
possible that I(σc, σb1, σb2)⩾1.0, which indicates a pseudo-buckling prediction. Hence,
strength equation should be further employed, which is given by:

T sc; sb1;sb2ð Þ ¼ sc
Nyc

þ 1
Nb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2b1þs2b2

q
(15)

Therefore, buckling criterion for steel circular hollow section member is defined as follows:

I sc; sb1;sb2ð ÞX1:0
	
T sc;sb1; sb2ð Þp1:0: (16)

When I(σc, σb1, σb2)¼ 1.0 and T(σc, σb1, σb2)⩽1.0, the steel circular hollow section is under
critical buckling status, and the critical axial compression force is given by:

Ncr ¼ scc: (17)

Member buckling type
There are two possible buckling types of the compression members of lattice structures:
Buckling Type I: the plastic hinge forms in the end section of the member, and slenderness
ratio of the member gets bigger. This may cause the buckling of the member. The
members of latticed structures bear concentrated forces at the nodes only, so it is the end
section of the member where the stress is biggest. The buckling critical condition may not
be satisfied when the plastic zone forms in the end section of the member. The plastic zone
develops along with the increment of the load. When the plastic hinge forms in the end of
the member and makes the slenderness ratio turn larger, the buckling critical condition
gets easier to be met. Even a small increment of the external load may make the member
buckling. The plastic zone or plastic hinge then forms in the central section of the buckled
member as a combined action of both the axial compression force and the additional
bending moment. Buckling Type II: the member bears compression axial force plenty big
and the buckling critical condition is met without the plastic hinge forming in the end
section. The plastic zone or plastic hinge then forms in the central section of the buckled
member as a combined action of both the compression axial force and the additional
bending moment.

Structural member model
Analysis model for pre-buckling member. Three nodes element with plastic hinge is employed
to simulate the pre-buckling member. The incremental displacement at the end section of the
member is comprised of the elastic part and the plastic part:

Du ¼ DueþDuP ; (18)

where Δu, Δue and ΔuP are overall incremental displacement, elastic incremental displacement
and plastic incremental displacement of the end section.

The transversal elastic displacement of the member can be expressed by quartic
polynomial interpolation functions, the rotational displacement is the derivative of the
transversal displacement with respect to the length; the axial displacement can be expressed
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by quadratic polynomial interpolation function; and the torsional displacement can be
expressed by linear interpolation function. Naming the two ends of the member with “i” and
“j”, the equilibrium equation for the end “i” is given as follows:

Pmi ¼
X2
j¼1

X6
n¼1

Ke
mi nj unj�uPnj

� �
; (19)

where Pmi is the mth element of the force vector of the end “i”; Ke
mi nj is the elastic tangent

stiffness matrix; unj and uPnj are the nth element of the overall displacement vector and the
plastic displacement vector of the end “j”. The plastic displacement is accumulations of the
incremental plastic displacement, and the incremental plastic displacement vector of the end
“j” is given by:

DuPj ¼ Dlj
@Fj

@Sj
; (20)

where Δλj is the scaling factor; Sj ¼Pj−αj; Pj and αj are vectors of the section force and the
back stress; Φj is the yield surface function of the end “j”, which is given by:

Fj ¼
Nxj�aNxj

Nxu

� �2

þ Txj�aTxj

Txu

� �2

þ Myj�aMyj

Myu

� �2

þ Mzj�aMzj

Mzu

� �2

�1; (21)

where Nxu, Txu, Myu and Mzu represent the critical cross-sectional bearing capacities of the
member, which are the axial force and three moments, respectively; Nxj is the axial force of
the cross section at the end j; Myj and Mzj are the bending moments about the local y and z
directions of the cross section at the end j,respectively;Mxj is the torsion of section at the end
j; αNxj, αTxj, αMyj and αMzj are the back stress components, respectively.

The cross section of the end j yields and the plastic hinge forms when Φj⩾0.
Analysis model for post-buckling member. Marshall model (Marshall et al., 1977) is

employed to simulate the post-buckling member. Marshall model is illustrated in Figure 8:
A–F is the elastic tension phase; F–F′ is the hardening phase after yielding; A–B is the elastic
compression phase; B–D is the buckling phase; and D–F is the tension phase. If the unloading
occurs at the buckling phase of the envelop curve, i.e. point B′, C′ or D′, then the unloading
path is depicted from the point where the unloading starts to the point F. When plasticity
develops across the section under tension, the envelop curve shifts horizontally and the
off-set distance equals the plastic deformation. In Figure 8, γ¼ 0.02; κ¼ 0.28; β¼ 0.02;

B

B′
CC′

D′
D

E
¦ÆNy

E’

F

Ncr
¦Ö×¦

N

ux

¦ ÊNcr

NyF′

¦ ¦ ¦

¦¦ÃÖ×¦

ÂÖ×¦ ¦ ¦

Ny/¦ ¦Ö×A
Ncr/¦ ¦Ö×

ÇÖ×

Figure 8.
Marshall model
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ζ¼min(1.0, 5.8(tm/d)0.7/0.95); η¼ 0.03+0.004l/ϕ, where l represents the length of the member.
The ultimate axial force of the member is given by the following equation:

Ny ¼ 0:95ssc: (22)

Three nodes element with plastic hinge is initially employed to simulate the behavior of the
member. At the end of each incremental step, the results are checked against Equation (16) to
predict whether member buckling occurs. If the member is predicted to be stable, three nodes
plastic hinge element will be employed continuously for the analysis; otherwise Marshall
model will be employed instead. Three nodes element with plastic hinge is employed for the
plastic hinge at the ends, while Marshall model is used for the plastic hinge at central.

Damage mechanism of the structure. The geometrical configuration and the force
transfer path of giant orthogonal grid barrel vault are different with those of the normal
barrel vault. Therefore, the damage mechanism of giant orthogonal grid barrel vault is also
different with that of the normal barrel vault.

Take a giant orthogonal grid barrel vault with a span of 80 m, a length of 100 m and a
rise–span ratio of 1/4 as an example. Its longitudinal giant grid number is 4, the lateral giant
grid number is 4 and lattice member section height to top chord length ratio is 1.14. The
geometrical model shown in Figure 9 is constructed based on the modeling method
proposed in this paper. Steel circular hollow sections are used as the structural member, and
the example structure is designed based on the Chinese Technical Specification for Space
Frame Structures ( JGJ7-2010) (China Architecture & Building 2010). The structure consists
of Steel circular hollow sections of Φ89×3.5, Φ114×3.5, Φ127×4.0 and Φ140×4.5 of steel
Q345. It is imposed surface load of 3.00 kN/m2 and seismic excitation of El Centro wave with
peak acceleration of 620 gal and duration of 12 s.

Numerical results indicate that buckling members appear in large numbers when giant
orthogonal grid barrel vault undergoes strong earthquake. Almost all the buckling members
behave as Buckling Type II. Time history of the buckling member number is illustrated in
Figure 10. Based on Figure 10, it can be seen that there are a few buckling members before
4.78 s in the earthquake history. After 4.78 s the buckling members become more. After
9.10 s the number of buckling member increases rapidly. Subject to dynamic loads, the giant

Figure 9.
The example giant

orthogonal grid barrel
vault
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orthogonal grid barrel vault undergoes loading–unloading process repeatedly, which leads
to the possible buckle-straighten processes of the structural members. Capacity of the post-
buckling member is different with that of the pre-buckling member. The number of
structural buckling members changes continuously during the earthquake. So the
mechanical behaviors of the members and the bearing capacity of the structure are
changing continuously. The buckling members weaken the structural bearing capacity and
cause the redistribution of the structural internal forces. At 10.90 s the buckling member
number adds up to 65. Then the structure damages as it is unable to maintain the balance
with the seismic action.

During the earthquake, the plastic hinge at the member endpoint is rarely generated in the
structure. Only at 10.30 s, 1 endpoint plastic hinge is generated, and during 10.40–10.48 s,
2 endpoint plastic hinges are generated. After 10.48 s, the endpoint plastic hinges disappear
under the seismic action. Until the damage happens, there are only 1 endpoint plastic hinge in the
structure. Plastic hinges in the structure mainly result from the combined action of axial pressure
and additional bending moment. They are commonly generated at the midpoint of the members.

Numerical models of five kinds of giant orthogonal grid barrel vault with uniform span
of 80 m, uniform length of 100 m, and different rise–span ratios of 1/2, 1/3, 1/4, 1/5 and 1/6
are established, respectively for parameter analyses. Surface load of 3.00 kN/m2 and seismic
excitation of El Centro wave with peak acceleration of 900 gal and duration of 12.00 s are
imposed. The number of buckling member and endpoint plastic hinge when the structure
damages is presented in Table I.

Based on Table I, it can be deduced that the compression members of giant orthogonal grid
barrel vault behave as Buckling Type II. When the structure damages, the number of buckling
member is not in obvious relationship with the rise–span ratio. Rarely endpoint plastic hinges
are generated in the structure during the seismic excitation. There are only 2 endpoint plastic
hinges in the structure with rise–span ratio of 1/5 and 1 endpoint plastic hinge in the structure
with rise–span ratio of 1/4 when the structural damage happens. In structures of other
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Figure 10.
Number of buckling
members

Rise–span ratios
Items 1/2 1/3 1/4 1/5 1/6

Number of buckling member 71 91 65 63 65
Number of endpoint plastic hinge 0 0 1 2 0
Damage time/s 9.43 11.00 10.90 11.21 10.62

Table I.
Numbers of buckling
members and
endpoint plastic
hinges when structure
damages
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rise–span ratios, there are no endpoint plastic hinge generated until they damage. Therefore,
dynamic damage of giant orthogonal grid barrel vault under strong earthquake is mainly
caused by buckling members which weaken the structural bearing capacity.

Conclusions

(1) In this paper, the geometrical configuration of giant orthogonal grid barrel vault is
proposed by deleting the members on the inessential force transfer path of the two-
layer lattice barrel vault. The structural lattice members are formed by remained solid
web members. Giant orthogonal grid barrel vault is a new type of structure with clear
mechanical behavior and efficient material utilization.

(2) The geometrical configuration of giant orthogonal grid barrel vault is analyzed, and the
expressions of the structural geometrical parameters are also developed. The
geometrical modelingmethod of the structure is proposed. When necessary parameters
are input, such as the structural span, the length, the vault rise, longitudinal and lateral
mega grid number, and lattice member section height to top chord length ratio, the
complete structure geometrical model can be generated by this method.

(3) Numerical models of giant orthogonal grid barrel vaults with different rise–span
ratios are built using the element model that can simulate the pre-buckling and
post-buckling behavior of the structural member. By this refined element model,
the possible member buckle-straighten process, the endpoint plastic hinge
form–disappear process and the consequent bearing capacity changing process of
the structure under strong earthquakes can be simulated.

(4) Seismic analysis results indicate that when giant orthogonal grid barrel vault
damages under strong earthquake there are a large number of buckling members and
few endpoint plastic hinges in the structure. Dynamic damage of giant orthogonal grid
barrel vault under strong earthquake is caused by buckling members that weaken the
structural bearing capacity.
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