
On the connection between clean
energy stocks and African stock
markets: does uncertainty due
to infectious diseases matter?

Ismail Fasanya
School of Economics and Finance, University of the Witwatersrand,

Johannesburg, South Africa, and

Oluwatomisin Oyewole
Department of Economics, Federal University of Agriculture, Abeokuta, Nigeria

Abstract

Purpose – As financial markets for environmentally friendly investment grow in both scope and size,
analyzing the relationship between green financial markets and African stocks becomes an important issue.
Therefore, this paper examines the role of infectious disease-based uncertainty on the dynamic spillovers
between African stock markets and clean energy stocks.
Design/methodology/approach – The authors employ the dynamic spillover in time and frequency
domains and the nonparametric causality-in-quantiles approach over the period of November 30, 2010, to
August 18, 2021.
Findings – These findings are discernible in this study’s analysis. First, the authors find evidence of strong
connectedness between the African stock markets and the clean energymarket, and long-lived but weak in the
short and medium investment horizons. Second, the BDS test shows that nonlinearity is crucial when
examining the role of infectious disease-based equity market volatility in affecting the interactions between
clean energy stocks and African stock markets. Third, the causal analysis provides evidence in support of a
nonlinear causal relationship between uncertainties due to infectious diseases and the connection between both
markets, mostly at lower and median quantiles.
Originality/value – Considering the global and recent use of clean energy equities and the stock markets for
hedging and speculative purposes, one may argue that rising uncertainties may significantly influence risk
transmissions across these markets. This study, therefore, is the first to examine the role of pandemic
uncertainty on the connection between clean stocks and the African stock markets.
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Paper type Research paper

1. Introduction
The integration of financial markets has continued to generate critical discussion in the
international finance literature due to the underlying implications on investment decisions.
This issue has become interesting since including climate-friendly green equities into the
global asset classes. One of the significant concerns of nations over the last decade is climate
change; these nations have continued to produce remedying actions to ensure progression
toward a climate-friendly economy. The investment in the clean energy sector across the
globe was U.S. $279.8bn in 2017, and this has led to a 10% increase in the capacity of
renewable power generation (equivalent to 157 gigawatts) more than the previous year and
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significantly higher than the proportion of power generated by conventional fossil fuels (New
Energy Finance (NEF), 2018). In recent years, the contribution of clean energy shares in the
stock market development has been substantial. In 2017, there was a 28% increase in clean
energy share prices as quoted on the Wilder Hill New Energy Global Innovation Index, more
significant than the corresponding year for S&P 500 share prices. In addition, the demand for
clean energy has significantly increased by 36% in six years between 2015 and 2021, and by
2040, the sector is projected to have secured two-thirds of the world’s investments in energy
(Uddin et al., 2019). This information, therefore, suggests plethoric investment opportunities
in clean energy firms. Hence, understanding the dynamics of clean energy stock return is of
great relevance. As much of the clean energy equity market’s interactions with currency and
commodity markets and the advanced stock markets have been examined (see inter alia,
Sadorsky, 2012; Kumar et al., 2012; Managi and Okimoto, 2013; Bohl et al., 2013; Inchauspe
et al., 2015; Bondia et al., 2016; Trabelsi, 2018; Bouri et al., 2019; Pham, 2021; Pandey and
Kumari, 2021), a similar investigation for the connection with the African stock markets has
received less attention, granted that these markets are open to both local and foreign
investors, despite their inefficiency, illiquidity, and weak connection relative to advanced
stock markets (Mensah and Alagidede, 2017).

Based on the above insights and considering the global and recent use of clean energy
equities and the stockmarkets for hedging and speculative purposes, onemay also argue that
rising uncertainties may significantly influence risk transmissions across these markets.
Uncertainty shocks affect economic agents’ decisions regarding employment, consumption,
savings, and investment, which sets back macroeconomic activity and further depresses
private investments. Specifically, uncertainties induced by infectious diseases (such as SARS,
Ebola, and not forgetting COVID-19 outbreak) could have greater catastrophic effects, such
as freezing global economic activities, a fall in aggregate demand, a surge in unemployment
rates, a plunge in financial markets, leading to transnational financial chaos and distortion in
asset allocations and risk management models (Bouri et al., 2020). Consequently, this has
renewed interest as many recent studies concentrate on infectious diseases’ social, economic,
andmarket effects (Baker et al., 2020; Bouri et al., 2020; Fasanya et al., 2021a; Alon and Bretas,
2021; Akhtaruzzaman et al., 2021b; Cicchiello et al., 2022; Liu et al., 2022; Harjoto and
Rossi, 2023).

Motivated by the above, we analyze the volatility co-movements between renewable
energy stocks and the African stock markets using both time and frequency domain
connectedness approaches.We employ both the time-varying spillover technique, which is
robust to several setbacks posed by other measures of connectedness, such as the degree
of responsiveness to outlier caused by a Kalman filter generating process, results in
susceptibility to a random selection of the rolling window size as well as losing the number
of expected observations arising from the rolling window approach (see, Bouri et al., 2020)
and the Barunik and Krehlik [B.K. thereafter] (2018) frequency connectedness framework
to analyze the spillovers between clean energy stocks and African stock markets across
different investment frequencies. This technique analyses the connection between
variables which follows a generalized forecast error variance decomposition framework
that can be disintegrated into different periods (e.g. the short, medium, and long term) by
applying spectral representations to the forecast error variance decomposition.
This process permits the determination of cross spillovers among the variables of
interest over separate and distinct frequency horizons, distinguishing the frequency
bands or periods that offer the highest contribution to the connectedness framework
among the variables.

Furthermore, unlike most studies in the literature which relate infectious diseases, clean
energy equities, and other asset classes in separate settings, this study examines how infectious
diseases affect the connections among distinct asset types, in our case, clean energy stocks and
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African stockmarkets. Knowledge of the size and direction of net spillovers would be helpful for
economic agents, environmentally conscious investors, and policymakers for enhancing
portfolio decisions and the formulations of policy to restore and safeguard financial stability in
the wake of catastrophic events, such as the Ebola and COVID-19 outbreaks (Bouri et al., 2020).
In this process, we assess how infectious diseases induced uncertainty affects the interactions
between the clean energy stocks and African markets. To achieve this, we consider the non-
linear causality-in-quantiles approach of Balcilar et al. (2016). This technique can figure out
spontaneous causality in both returns and volatility at each point of a particular conditional
distribution and provides a system for determining the existence of causality of variable
distribution across different quantiles (Rehman and Apergis, 2018). The flexibility of the
nonparametric causality approach also involves the ability to test the non-linear causality of
different quantiles of the nth order of variable returns over the distribution period. Another
interesting feature of this approach is its robustness to functional misspecification errors. It can
observe overall dependence between financial time series, especially when there are obvious
signs of structural breaks (Balcilar et al., 2016). In addition, to justify the non-linearity in the
series, the BDS test of Brock et al. (1996) is conducted on residuals of the directional
connectedness equation in the VAR(1) model involving infectious diseases alternately. The
results validate the nonparametric causality technique (as emphasized in Balcilar et al., 2016;
Fasanya et al., 2021a, b; Periola-Fatunsi et al., 2021).

The reason for investigating the relationship between clean energy stocks and African
stock markets is multifaceted. The rising global interest in clean energy has led to a surge in
investment in this sector. Examining the effects of this investment trend on African stock
markets is imperative. Additionally, African nations are among the most vulnerable to the
impact of climate change, making it essential to explore ways to leverage the clean energy
sector’s growth for sustainable development. Regarding the influence of infectious diseases
on this relationship, uncertainty arising from infectious diseases can have several
consequences. Outbreaks of infectious diseases can cause market volatility that impacts
clean energy andAfrican stockmarkets. For instance, the COVID-19 pandemic led to a global
economic slowdown, which led to a sharp decline in oil prices and adversely affected the clean
energy sector. Similarly, the pandemic also affected African stock markets, with several
experiencing significant declines in value.

Furthermore, infectious diseases can affect the development and deployment of clean
energy technologies, particularly in Africa, where several countries lack the necessary
infrastructure and resources to combat outbreaks. For example, the Ebola outbreak in West
Africa in 2014–2015 led to a decline in investment in the region, adversely affecting the clean
energy sector’s growth. Hence, understanding the relationship between clean energy stocks
andAfrican stockmarkets and the influence of infectious diseases is crucial for policymakers,
investors and other stakeholders to make well-informed decisions regarding investment,
development and sustainable growth.

Our paper contributes to the extant works in the following ways. First, we use time and
frequency spillover connectedness frameworks to examine the spillovers between clean
energy stocks and African stock markets. Second, we capture how infectious diseases affect
the connections between clean energy and African stocks. This shows the dearth of research
compared to studies involving infectious diseases and other asset classes in different settings
(see, Balcilar et al., 2016; Akhtaruzzaman et al., 2021a,b; Pham, 2021; Harjoto and Rossi, 2023).
However, this contribution is supported by applying the non-linear causality-in-quantile
technique, which serves as our next contribution. Considering a non-linear causality
framework, our study can analyze mean and variance causalities with higher-order
dependencies. This becomes highly relevant when there is no sign of causality-in-mean,
while, at the same time, higher-order interdependencies may turn out to be significant
(Balcilar et al., 2016). Lastly, this study analyzes daily intraday datasets divided into two
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regimes, COVID-19 and the full samples, which would help design optimal portfolios and
hedging strategies during global uncertainties.

The rest of the paper is structured as follows. Section 2 reviews relevant literature, while
Section 3 describes the methodology employed in the empirical analysis. Section 4 presents
the data and empirical results, and Section 5 concludes the study.

2. Literature review
Given the increasing interest in clean energy among academics to understand its
characteristics, particularly regarding its risk, return, hedging possibilities and
connectedness to other markets, there has been an increasing abundance of knowledge on
the subject. For example, having observed a dearth in the literature on the risk and returns
characteristics of clean Energy stocks in relation to other equity segments, Kuang (2021)
assessed the risk-return nexus of clean energy stocks using different optimization techniques.
The paper assessed how clean energy stocks compare to “dirty energy” stocks. The results
derived from this paper showed that although clean energy outperformed “dirty energy”
stocks, they underperformed the traditional equity market on a risk-adjusted basis. The
analysis by Kuang (2021) also disaggregated the clean energy by sub-sector and observed
that the sub-sectors differed where risk and return potential were concerned. However, unlike
Kuang (2021), Shahzad et al. (2020) looked at another aspect on which little had been said in
the literature by revisiting the EfficientMarket Hypothesis (EMH) in relation to Clean Energy
Markets. The hypothesis proposes different degrees of stock market efficiency as concerned
with investors’ ability to achieve arbitrage profits in light of themarket’s speed of adjustment
to public information. Specifically, they focused on the possibility of multifractality in the
Clean Energy Markets, where stock values fall into potentially predictable patterns over
some periods. Evidence of the existence of multifractality would contradict the proposition
that the weak form of EMH holds for Clean Energy Markets. To achieve this objective,
Shahzad et al. (2020) used the asymmetric Multifractal Detrended Fluctuation Analysis
technique (Asymmetric MF-DFA) on three indices indicating the performance of the USA,
European, and Global Energy markets. Using the technique above, they found three markets
had notable asymmetric multifractality, meaning that the weak form EMH does not hold for
the Clean Energy Market. Moreover, using the Market deficiency measure (MDM), the US
clean Energy Stock market was the most efficient among the three markets assessed.

Spurred by the gap in knowledge concerning how the COVID-19 pandemic affected the
link between the clean energy and “dirty energy” markets, Umar et al. (2021) examined the
second-moment connectedness between the two markets using the Diebold & Yilmaz and
Barunik & Krehlik approaches to spillover analysis. While they could only uncover a weak
volatility link between clean energy and fossil fuel markets, they also found that the
spillovers among energy markets did not exist with any intensity in the short run. They
found that the contagion phenomenon intensified in crisis periods such as COVID-19. This is
similar to the findings of Akhtaruzzaman et al. (2021b) which examines how financial
contagion occurs through financial and nonfinancial firms between China and G7 countries
during the COVID–19 period. Unlike Umar et al. (2021), who used data on the S&P Global
Clean Energy index, Qi et al. (2022) focused on the Chinese economy and explored the
dynamic association between clean energy stock markets and energy commodities using the
Barunik and Krehlik (2018) time-varying dynamic connectedness methodology. From static
connectedness, they found that clean energy markets were the principal net contributors and
receivers in the short run. In the long run, energy commodity markets were the net
contributors. Furthermore, from the dynamic connectedness, they found that the overall
result is that short-term spillovers dominated the long-run spillovers. However, during the
COVID-19 period of their data, they observed a reversal where long-term spillovers
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dominated short-term spillovers. Of practical relevance, Qi et al. (2022) proposed, on account
of this finding, that because the energy commodity markets were less affected by clean
energy markets in the long run, they potentially presented a possible hedging opportunity.
Using the Morgan Stanley Capital International daily stock indices data and the Carhart and
the GARCH(1,1) models for an event study, Harjoto and Rossi (2023) observe that themarkets
recovered quicker from the COVID-19 pandemic announcement than during the 2008 global
financial crisis.

While Qi et al. (2022) looked at the Chinese economy in isolation, Janda et al. (2022)
examined the nature of the return and volatility spillovers between oil prices and technology
companies in the USA and China as Clean Energy Markets in these countries. The three
multivariate GARCH model specifications used in the paper (that is VAR(1)-CCC-GARCH(1),
VAR(1)-DCC-GARCH(1), and VAR(1)-ADCC-GARCH(1)) showed that prior returns from U.S
renewable energy companies influenced the current returns of their Chinese counterparts.
From estimating the VAR(1)-DCC-GARCH(1) and VAR(1)-ADCC-GARCH(1), Janda et al.
(2022) found that, among those time series included in their analysis, Invesco China
Technology ETF (CQQQ), an exchange-traded fund which tracks just over hundred publicly
listed Chinese Tech firms, was the most appropriate asset to hedge exposures to Chinese
Clean Energy markets.

Following papers such as Bianchi et al. (2020) and Yahya et al. (2020) that non-ferrous
metals may possess hedging possibilities for clean energy equity exposure, Chen et al. (2022)
examined the spillover effects among non-ferrous metals asset prices and several sub-sector
Clean energy stocks using the Diebold and Yilmaz (2012) as well as the Barunik and Krehlik
(2018) spillover indices. Much like the analyses found in Umar et al. (2021) and Qi et al. (2022),
this approach involved network analysis in assessing possible contagion and routes of
spillovers. The analysis uncovered several interesting results, but two are particularly
relevant to the present study. First, the direction of spillovers varies, and the intensity rises as
crises surface. Second, because non-ferrous metals transmit and receive the least in the time
and frequency domains at once, they may be used in portfolio hedging strategies to reduce
Clean Energy Stock markets. This finding adds empirical evidence to the theory that, as non-
ferrous metals are essential raw inputs for the clean energy industry, exposure thereof is
expected to reduce overall risk exposure to clean energy stocks.

Unlike the preceding literature, other studies focused on infectious diseases in clean
energy securitymarkets, Tian et al. (2022) looked at the green bondmarket by focusing on the
possible asymmetric effects that several factors, including infectious disease-induced
uncertainty, may have on green bond prices in the USA, Chinese and European markets.
Using the non-linear ARDL, they found that only the Chinese green bond market was
significantly affected by infectious disease-induced uncertainty. This finding was consistent
with previous studies by Yi et al. (2021), who found that the COVID-19 pandemic greatly
affected the Chinese green bond market. Interestingly, there was evidence that the US green
bond market was not affected to any significant degree (Tian et al., 2022). They concluded
that the US, Chinese, and European green bond markets showed heterogeneous responses to
uncertainty. These findings were consistent with the study by Gupta et al. (2020), who found
that disease-linked uncertainty did not affect the US treasury securities market much.

Moreover, Gupta et al. (2020) concluded that these securities acted as a haven in the advent
of infectious diseases such as the COVID-19 pandemic. Akhtaruzzaman et al. (2021b)
investigate how financial contagion occurs between China and the G7 countries via financial
and nonfinancial firms during COVID-19. According to the empirical findings, listed firms in
these countries, both financial and non-financial, experience a significant increase in
conditional correlations between their stock returns. However, during the COVID-19
outbreak, the magnitude of the increase in these correlations is significantly higher for
financial firms, indicating the importance of their role in financial contagion transmission.
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Tian et al. (2022) proposed that the US, Chinese and European markets showed different
responses to uncertainty because the USA and European markets were more mature and
enjoyed higher participation from experienced institutional investors. This contrasts with the
Chinese green bond market, which did not enjoy the same privilege.

Despite the significant work done to understand better the characteristics of clean energy
as well as its association with other markets, to the best of our knowledge, few or no studies
have yet examined how the dynamics of the clean energy market’s association with African
stockmarkets may be affected by emergent infectious diseases such as COVID-19. Therefore,
the present study contributes to the literature by addressing this gap in the literature.
Specifically, the study accomplishes this objective by applying the Time-varying volatility
connectedness framework of Antonakakis et al. (2020) and the Frequency-domain volatility
connectedness framework of Barunik and Krehlik (2018). Moreover, given the likelihood of
non-linearity, we supplement our analysis by applying the causality in the quantile
technique.

3. Methodology
The methodology is structured into two stages. The first stage describes the spillover
approaches in the time and frequency domain. After examining the spillovers across time and
frequency bands, the next phase is the linear and non-linear causality analysis of pandemic
uncertainty on the directional spillovers between clean energy stocks and African stock
markets.

3.1 Spillover frameworks
3.1.1 Time-varying connectedness framework. Following the framework of Antonakakis et al.
(2020), we calculate the generalized impulse response functions (GIRF) and generalized
forecast error variance decompositions (GFEVD) in analyzing the dynamic spillovers and the
degree of connectedness.

eρij;tðHÞ ¼
PH−1

t¼1 α
2
ij;tPm

j¼1

PH−1
t¼1 α

2
ij;t

(1)

with
Pn

j¼1eρij;tðHÞ ¼ 1 and
Pn

i;j¼1eρij;tðHÞ ¼ m

The representation in (1) shows the cumulative effect of the overall shocks as captured in
the denominator, while the numerator characterizes the singular shock cumulative effect in
variable i. After, the total spillover index is derived through the GFEVD.

CtðHÞ ¼
Pm

i;j¼1;i≠jeρij;tðHÞPm

i;j¼1eρij;tðHÞ * 100 ¼
Pm

i;j¼1;i≠jeρij;tðHÞ
m

* 100 (2)

Equation (2) describes the process of the spillover analysis where the direction of the
connection between the variables is unraveled. In analyzing this direction, we compute the
total directional spillover to and from others such that the difference between them
generates the net spillover index. The process of transmitting shocks from variable i to
other variables j defines the total directional spillovers to others as presented in equation
(3), while equation (4) shows how shocks i are received from other variables j - directional
spillovers from others.

Ci→j;tðHÞ ¼
Pm

i;j¼1;i≠jeρji;tðHÞPm

i;j¼1eρji;tðHÞ * 100 (3)
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Ci←j;tðHÞ ¼
Pm

i;j¼1;i≠jeρij;tðHÞPm

i;j¼1eρij;tðHÞ * 100 (4)

The difference between equations (3) and (4) defines the net total directional spillovers as
shown in equation (5). The sign of Ci;t is used to explain the relevance of variable i on the
computed network; if positive, variable i has more effect on the network than itself, and if
negative, then the network has more influence on variable i.

Ci;t ¼ Ci→j;tðHÞ � Ci←j;tðHÞ (5)

To better understand the directional spillovers, we compute the net pairwise directional
spillovers (as shown in equation 6) to explain the bidirectional connectedness between the
variables. If NPDCijðHÞ < 0 ðNPDCijðHÞ > 0Þ, It means that variable i is dominated by
(dominates) variable j.

NPDCijðHÞ ¼ eρjitðHÞ � eρijtðHÞ� �
* 100 (6)

3.1.2 Frequency-domain connectedness framework. In order to examine the connectedness
across different frequency bands, we follow the approach of B.K. (2018) to assume a
frequency response function Ψðe−iwÞ ¼Phe

−iwhΨh derived from Ψ; which represents the

coefficients of the Fourier transform, with i ¼ ffiffiffiffiffiffi
−1

p
. Over the frequencies, ω ¼ ∈ð−π; πÞ, the

generalized causation spectrum is specified as:

ðf ðωÞÞj;k ≡
σ−1kk

����Ψ�e−iw�Σ�
j;k

���2
ðΨðe−iwÞΣΨ0ðeþiwÞÞj;j

(7)

where is Ψðe−iwÞ represents the Fourier transform of the impulse response Ψ. It is essential to
document that the fraction of the spectrum of the j− th variable at frequency ω as caused by
shocks in the k− thvariable is represented by ðf ðωÞÞj;k, and it is defined as thewithin-frequency
causation measure. In line with B.K. (2018), the GFEVD on certain frequency band d is given as:

ðθdÞj;k ¼
1

2π

Z d

ΓjðωÞðf ðωÞÞj;kdω (8)

where ΓjðωÞ is taken as the function for weighting. Considering the spectral representation of
the GFEVD, the frequency-based connectedness on the frequency band d is defined thus:

CF
d ¼ 100

0BBB@
P

j≠k

�eθd�
j;kP�eθ∞�

j;k

�
Tr

�eθd	P�eθ∞�
j;k

1CCCA (9)

The total connection index is then computed as follows:

CW
d ¼ 100

0BBB@1�
Tr

�eθd	P�eθd�
j;k

1CCCA (10)
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Just like the time-based connectedness of Diebold and Yılmaz (2014), we can also compute the
directional connectedness either “to others” (equation 11), “from others” (equation 12), and the
net spillovers (equation 13) across the frequencies chosen.


CF
d

�
j→

¼ 1003

 X
j≠k;k

�eθd�
j;k

! P eθd
 �
j;kP eθ∞
 �
j;k

(11)



CF
d

�
j←

¼ 1003
X
j≠k;k

eθd
 �
k;j

 ! P eθd
 �
k;jP eθ∞
 �
k;j

(12)



CF
d

�
j;net

¼


CF
d

�
j→

�


CF
d

�
j←

(13)

Intuitively, the sign of ðCF
d Þj;net explains if it is a receiver or a transmitter of shocks. If positive,

it gives shocks to the network, and negative if otherwise.

3.2 Non-linear causality-in-quantile technique
After the analysis of the spillover index, we present the non-linear causality methodology of
Balcilar et al. (2016), which extends the frameworks of Nishiyama et al. (2011) and Jeong et al.
(2012) through the process of a second-moment non-linear causality test. Following Jeong
et al. (2012) paper, we take the variable yt as the predictor - (EMV_ID), which does not cause
the predictant, in this case, zt (stock market spillovers) in the σ − quantilewith respect to the
lag-vector of fzt−1; . . . ; zt−q; yt−1; yt−mg if

Xσðztjzt−1; . . . ; zt−m; yt−1; . . . ; yt−mÞ ¼ Xσðztjzt−1; . . . ; zt−mÞ (14)

While yt causes zt in the σth quantile with respect to fzt−1; . . . ; zt−m; yt−1; yt−mg if
Xσðztjzt−1; . . . ; zt−m; yt−1; yt−mÞ≠Xσðztjzt−1; . . . ; zt−mÞ (15)

In extending the framework of Jeong et al. (2012), Balcilar et al. (2016) developed a higher
moment causality test through the non-linear granger causality framework of Nishiyama
et al. (2011). To demonstrate the higher-order moment causality, they take

zt ¼ f ðKt−1Þ þ βðQt−1Þγt; (16)

where γt is thewhite noise process, and f ð∙Þandβð∙Þequals the unknown functions that satisfy
pertinent conditions for stationarity. Although, this specification allows not granger-type
causality testing from Qt−1 to zt, however, it could detect the “predictive power” from Qt−1 to z

2
t

when βð∙Þ is a general non-linear function. Thus, equation (16) is re-formulated to account for the
null and alternative hypothesis for causality in variance in equations (17) and (18), respectively.

H0 ¼ P
n
F
z2
t jVt�1

fXσðztjVt−1Þg ¼ σ
o
¼ 1; (17)

H1 ¼ P
n
F
z2
t jVt�1

fXσðztjVt−1Þg ¼ σ
o
<1; (18)

We obtain the feasible test statistic for testing the null hypothesis in equation (17). With the
inclusion of Jeong et al. (2012) approach, Balcilar et al. (2016) overcome the issue that causality
inmean implies causality in variance. Specifically, they interpret the causality in higher-order
moments through the use of the following model:
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yt ¼ f ðKt−1;Qt−1Þ þ βt; (19)

Thus, the higher order quantile causality is;

H0 ¼ P
n
F
zn
t jVt�1

fXσðztjVt−1Þg ¼ σ
o
¼ 1; for n ¼ 1; 2; . . . ; n; (20)

H1 ¼ P
n
F
yn
t jWt�1

fXσðztjVt−1Þg ¼ σ
o
<1; for n ¼ 1; 2; . . . ; n: (21)

In general, we test that xt granger causes yt in σthquantile up to the N-th moment through the
use of equation (20) to construct the test statistic of the equation of the first moment (null
hypothesis) for each n, and this is subsequently extended to the higher value of N. In the end,
we test for the existence of causality-in-mean and variance successively.

4. Discussion of results
4.1 Data and preliminary analyses
This study analyzes the connectedness between the ten (10) African Stock markets (namely:
Egypt, Kenya, Mauritius, Morocco, Namibia, Nigeria, South Africa, Tunisia, Zambia, and
Zimbabwe) and the Clean Energy Stock market in the face of market risks arising from
uncertainty due to infectious diseases. Therefore, we adopt daily data from November 30,
2010, to August 18, 2021, based on data availability and the need for the series to have the
same start and end dates. The analyses are conducted using the full sample and the sample
covering the COVID-19 pandemic period. Data on African and Clean Energy Stock markets
are obtained from the Thomson Reuters DataStream.

The Infectious Disease Equity Market Volatility (EMV-ID), a proxy for uncertainties due
to infectious diseases, was developed byBaker et al. (2020) and is available for download from
http://www.policyuncertainty.com. It is expedient to note that the returns of the series (rt) are
computed as the first difference of the natural logarithm of the level series (Pt); this is
expressed as; rt ¼ ðΔlogðptÞÞ3 100, where (rt) represents the calculated returns of African
stock market indices and clean energy stocks under study. (Pt) represents their respective
price levels.

As a common practice in the empirical literature, we present preliminary results indicating
the statistical properties of the underlying series. The descriptive statistics, using the returns
series of the underlying variables, are summarized in Table 1. First, we record marginal
positive and negative average values across the board, likely attributable to the adverse
effect of the COVID-19 pandemic. Furthermore, the standard deviation, whichmeasures some
level of volatility in time series, shows mild evidence of volatilities across the series
considered, except for Zimbabwe and EMV_ID, which demonstrate high volatility attributes.
At the same time, Tunisia and Morocco exhibit the lowest volatilities (0.912 and 0.919
respectively). Unsurprisingly, the Jarque-Bera test rejects the null hypothesis of normal
distribution for all the series following the reports of the skewness and kurtosis statistics.
While the skewness values are negative for all the returns series, their kurtosis estimates
exceed the standard threshold. This suggests the presence of extreme fluctuations in these
markets. This is common in financial time series (Fasanya et al., 2021a).

Results from the brief descriptive analysis have the following implications. First, the non-
normality of the series gives a relative indication of heavy right or left tail and excess
kurtosis, which suggests the likely presence of non-linearity and/or structural shifts along the
time paths of the series, implying that using linear or constant parameter models would bring
about spurious results. This justifies the choice of a non-linear quantiles-based causality test.
Second, heavy tails and high levels of volatility necessitate examining the relationship in both
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the conditional-mean and conditional variance (see Fasanya et al., 2021c). Unit root test
results also reveal that all series are stationary at the 1% significance level. From the analysis
of the graphical illustrations in Figure 1, there is strong evidence indicating market reactions
regarding stock returns to uncertainty due to infectious diseases, especially since the late
period of the year 2019, which was the inception of the COVID-19 outbreak.

4.2 Spillover results
Intending to examine the volatility interactions between both markets, we present two (2)
strands of results; the Time-Varying Vector Autoregression (TVP-VAR) for the time
domain and Barunik and Krehlik (2018) for the frequency domain (frequencies considered
are 1–4 days, 4–8 days, 8–15 days and more than 15 days) connectedness measures. First,
we examine the dynamic volatility spillover among the markets using the TVP-VAR for
the time domain. Table 2 presents the averaged connectedness measures following the
TVP-VAR approach. Results suggest moderately increased connectedness between the
markets as the TCI value of 36.3% indicates that 36.3% of the forecast error variance in
one asset can be attributed to the innovations in all others. Second, we obtain the net
directional spillover by subtracting the total contributions received by an asset FROM
others from the total contributions it gives TO others. Positive (negative) values indicate
that the asset is a net shock giver (receiver). Our results reveal a moderate spillover effect
across the markets, with all significantly giving and receiving.

On average, Zimbabwe is the only net giver of shocks with 169%. In contrast, Nigeria
(�23.3%), Kenya (�22%), Zambia (�21.8), and Tunisia (�19.4%) are the highest net shock
receivers, implying that they receive more than they transmit. The net spillover results in
Table 3 are also consistent with the graphical illustration in Figure 1 and the net spillover
graphs in Figure 2. These results strongly align with expectations, corroborating the
descriptive results in Table 1, showing that Zimbabwe exhibits positive returns. However, in
terms of diversification options, results show that Egypt and Namibia (8.7 and 8.8%,
respectively) are best effective portfolio diversification options for investors in the African
Stock markets as they show the weakest vulnerability to idiosyncratic shocks from other
African stock markets while Zimbabwe is the highest contributor. Therefore, investors in
African stocks may use Egypt and Namibia to obtain their targeted returns through minimal
risk exposure.

Regarding the contribution to others, we can see that gross directional volatility spillovers
to others from each of the elevenmarkets span from 174.5%Zimbabwe to 9.5%Zambia. Also,
evidence suggests a bi-directional relationship between Namibia and South Africa. Figure 3
also indicates increased connectedness within the African stock market and clean energy
market since the COVID-19 inception in late 2019. The explanation for Zimbabwe’s
dominance can be traced to the period after the dollarization of Zimbabwe’s economy
following a period of hyperinflation. The economy became dollar driven, and since most
commodities exports are valued in dollars, there is substantial cause for volatility co-
movements.

Table 3 also presents the results of Barunik and Krehlik’s (2018) net spillover indices for
each market. The net spillovers in the positive domain represent the position when a
country’s stock market is a spillover contributor. In contrast, the negative domain represents
a country’s stock market as a spillover receiver. The empirical results demonstrate that clean
energy stocks, Mauritius, Morocco, South Africa, and Zimbabwe are essentially net
contributors of volatility across the four (4) frequencies considered, except for Nigeria, which
becomes a net contributor in both the medium and long run and Kenya in long investment
horizon alone. The net receivers of volatility spillovers across the four (4) frequency bands are
Egypt, Kenya, Namibia, Nigeria, Tunisia, and Zambia. However, Nigeria and Kenya translate
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to net contributors in Freq. 3 and Freq. 4, respectively. In comparison, Mauritius and South
Africa become net receivers in Freq. 4, perhaps due to the effect of the global pandemic.

Kenya is themost significant contributor of volatility,with itsmajor contribution coming in the
long run. At the same time, Mauritius is the largest receiver of volatility spillovers across different
investment horizons. The empirical results further explain that in the total connectedness, the

Figure 2.
Net total directional
connectedness

Figure 3.
Dynamic total
connectedness
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maximumcontribution (27.76%) is observed at the highest frequency (i.e. above 15 days), followed
by the second highest frequency (0.66%) that corresponds to 8–15 days and the lowest
contribution is made by the short-term frequency (0.3%) that corresponds to 1–4 days.

The frequency domain results (see Figure 4) show that a great degree of fluctuation is
observed during themedium-term and long-term periods from 8–15 days ranging from about
1% to 90%, while lower fluctuations are seen in 4–8 days period which is about 0.5–65%.
Both time and frequency measures quantitatively deliver similar results. The explanation for
this structural break is that before late 2019, international commodity prices have risen
substantially due to strong global economic growth and increased demand in emerging
markets, particularly from China. Commodity exports have been the major advantage of
African economies and are the lifeblood of global industrial production and construction.
However, after 2019, commodity exports considerably declined due to reduced demand
resulting from shocks to global economic activities created by the COVID-19 pandemic.

Conversely, we discover that the contribution of clean energy stocks has risen
substantially in the long term due to reducing costs, growing acceptance, and deploying
clean energy alternatives as viable energy options in recent times.

4.3 Network plots
Our empirical analysis presents graphs with as many as 11 nodes and as many as 112 edges
once we introduce other financial assets. For the sole purpose of visual choice, only the
thickest edges are shown in the network graphs, while all network statistics are calculated
from the full network. For the network plots, we adopt the Gephi open-source software for
visualizing and analyzing the network graphs; we also follow the ForceAtlas2 algorithm as

Note(s): The figure reports graphs of overall volatility spillovers between African stock 
markets and the clean energy market from 2010 to 2021 at different time frequencies
Source(s): Compiled by the authors
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implemented in Gephi. Node size, node color, edge thickness, edge arrow size, edge color, and
node locations convey more information about the graph (see, Figure 5).

The node sizes indicate each market’s contribution to shocks in order of magnitude, while
the node color indicates Total Directional Connectedness “To Others.”A less influential asset
overall will be colored close to dark green, while a highly influential asset will be colored close
to dark red, as in the color spectrum in Figure 5. Throughout the dynamic analysis, the
thresholds correspond to the 25%, 50%, and 75% percentiles of the “to connectedness”
measures of all assets. Hence, node colors are comparable across graphs.

The location of the nodes indicates the strength of average pairwise directional
connectedness and is determined by the ForceAtlas2 algorithm, as implemented in Gephi.
The algorithm finds a steady state in which nodes that have higher pairwise directional
connectedness values are expected to be closer to each other. The edge thickness indicates the
average pairwise directional connectedness, and the edge color is lighter for the weakest links
and the same for all the others. Since average pairwise directional connectedness is represented
by edge thickness, edge color is employed to attain clearer visuals. The edge arrow size from
node i to node j increases with the pairwise directional connectedness from node i to node j.

First, we present the network graph for the time domain (TVP-VAR) spillover results in
Figure 6. The network graph conveys similar information to that presented in Table 3, with
Zimbabwe demonstrating strong influence and significant transmissions to other markets as
indicated by the arrows and edge thickness while also demonstrating limited vulnerability.
The relative fusion between the markets under consideration is also visible from the graph.

Figure 5.
Color spectrum

Figure 6.
Volatility
connectedness between
African stock markets
and clean energy
stocks
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Similarly, we also consider the network graph for the frequency domain. Figure 7 presents
the network plot across the four frequencies considered in this study following the same
procedure explained previously. Evidence presented in the graphs suggests relatively strong
volatility connectedness across markets in Freq 1 (The spillover table for band 3.14 to 0.79
roughly corresponds to 1 day to 4 days), with Kenya demonstrating significant contributions
to all other markets. However, volatility transmission weakens as we proceed to other
frequencies (see Freq 1–4 in appendix).

4.4 Causality results
Linking these spillover transmissions to uncertainties due to infectious diseases, it is evident
that due to increased financialization, the global financial markets have been empirically
shown to be negatively impacted by SARS, EBOLA, & COVID-19 pandemics (see Fasanya
et al., 2021b). Notably, the COVID-19 pandemic has led to a global economic slowdown and
has grossly affected the African stock markets. Thus, the connectedness across the clean
energy and African stock markets may be driven by uncertainties due to infectious diseases.
This implies that uncertainty due to the pandemic may induce volatility shocks to the other
markets. The possibility of uncertainties due to infectious diseases affecting the volatility
spillover between the African stock market and the clean energy market is, therefore, the
main thrust of this paper.

Having observed volatility transmissions across the African stock markets and clean
energy markets, we examine the role of uncertainties due to infectious diseases on the
connectedness between these markets. From a linear perspective, we achieve this by
investigating the causal effect of uncertainties due to infectious diseases (EMV_ID) on the
total spillover and net spillover for each asset. The results (see Table 4) reveal that EMV_ID’s
effect is insignificant at the 10% significance level in most cases. This may likely be
attributed to the presence of non-linearity in the series.

Furthermore, to confirm our suspicion, we conducted the BDS test developed by Brock
et al. (1996) to establish the presence of non-linearity in the series. The results (see Table 5)
show strong evidence of a non-linear relationship betweenEMV_ID and each asset’s total and
net spillovers, as the null hypothesis of serial dependence is rejected at the highest
significance levels. Therefore, reliance on the linear Granger-causality test may lead to
spurious conclusions as it could have suffered from misspecification errors.

Given the strong evidence of non-linearity, we turn to the results of the quantiles-based
causality tests. Figures 8 and 9 summarizes the result of the causality-in-quantiles test
conducted for both conditional mean and variance [1]. We present results for both the full
sample and the COVID-19 period. Across the board, we find strong evidence supporting
rejecting the null hypothesis of no Granger causality for both the full sample and COVID-19
periods. This is in sharp contrast to the results of the linear granger causality test, even
though the effect of uncertainties due to infectious diseases on the connectedness between the
markets seems more pronounced for the COVID-19 pandemic period when considering the
causality-in-conditional mean. Also, the causal evidence is significant mainly in the middle
quantiles. However, the causality becomes weak at the extreme quantiles, suggesting that the
effect of uncertainties due to infectious diseases on the connectedness between the markets is
sensitive to the degree of the performance of bothmarkets.When the markets are performing
at their peak, uncertainties due to infectious diseases seem weak in affecting their
interactions.

Certain implications could be drawn from our analysis. First, there is evidence of
connectedness between the African stock markets and the clean energy market for both time
and frequency domains. Second, regarding diversification options, results show that Egypt
andNamibia are the best effective portfolio diversification options for investors in theAfrican
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Figure 7.
Volatility
Connectedness
between African Stock
Markets and Clean
Energy Stocks across
Frequencies
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stock markets as they show the weakest vulnerability to idiosyncratic shocks when
considering the time domain results. Zimbabwe’s dominance can be attributed to the
economy’s dollarization following a period of hyperinflation. The economy became dollar
driven, and since most commodities exports are valued in dollars, there is substantial cause
for volatility co-movements.

However, from a frequency domain perspective, Kenya is the most significant
contributor of volatility, with its major contribution coming in Freq.4. At the same time,
Mauritius is the biggest receiver of volatility spillovers considering all frequencies in our
sample. Third, the connectedness among these markets is primarily driven by
uncertainties due to infectious diseases. However, the causal effect in most cases seems
stronger around the lower and middle quantiles. Fourth, considering non-linearity is
crucial when examining the role of uncertainties due to infectious diseases affecting the
interactions between both markets.

EMV_ID is the causal variable 2 3 4 5 6

Total Spillover 0.1148*** 0.2043*** 0.2634*** 0.2985*** 0.3159***
Clean Stocks 0.1135*** 0.2017*** 0.2599*** 0.2944*** 0.3117***
Egypt 0.1082*** 0.1927*** 0.2489*** 0.2818*** 0.2982***
Kenya 0.1189*** 0.2117*** 0.2734*** 0.3108*** 0.3299***
Mauritius 0.1101*** 0.1960*** 0.2526*** 0.2859*** 0.3021***
Morocco 0.1081*** 0.1922*** 0.2479*** 0.2809*** 0.2972***
Namibia 0.1125*** 0.1999*** 0.2577*** 0.2917*** 0.3085***
Nigeria 0.1027*** 0.1854*** 0.2405*** 0.2744*** 0.2920***
South Africa 0.1174*** 0.2093*** 0.2704*** 0.3074*** 0.3260***
Tunisia 0.1189*** 0.2118*** 0.2736*** 0.3109*** 0.3300***
Zambia 0.1136*** 0.2021*** 0.2605*** 0.2948*** 0.3117***
Zimbabwe 0.1180*** 0.2097*** 0.2706*** 0.3072*** 0.3256***

Note(s):Values in the cell represent the BDS test statistic. The symbols ***, **, * represent the rejection of the
underlying null hypothesis of linearity at the 1%, 5%, and 10% significance levels, respectively
Source(s): Compiled by the authors

Linear causality test results (from TVP-VAR)
EMV_ID does not granger cause F-stats Prob

Total Spillover 0.9308 0.3944
Clean Stocks 15.275*** 0.0000
Egypt 2.967* 0.0516
Kenya 1.5864 0.2048
Mauritius 0.3805 0.6836
Morocco 1.6404 0.1941
Namibia 1.6783 0.1869
Nigeria 4.089** 0.0168
South Africa 0.2341 0.7913
Tunisia 0.4289 0.6513
Zambia 0.8096 0.4451
Zimbabwe 0.1097 0.8961

Note(s):This table reports the causality test results for the linear Granger-causality test. The symbols ***, **,
* represent a rejection of the underlying null hypothesis that EMV_ID does not Granger-cause each variable
considered at the 1%, 5%, and 10% significance levels, respectively
Source(s): Compiled by the authors

Table 5.
BDS test results

Table 4.
Linear causality test

results (form
TVP-VAR)
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Figure 8.
Results of causality in
conditional-mean
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Figure 9.
Results of causality in
conditional-variance
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5. Conclusion and implication for policy
Among historical health crises, the COVID-19 pandemic has been adjudged to have the most
devastating effect on financial markets. This has led to numerous studies examining its effect
on the financial markets on a country-specific, regional, or global basis. Little or no studies
have examined the volatility connectedness between African stockmarkets and clean energy
stocks. Even rarer are studies that consider the response of the connectedness between these
markets to a health crisis. Findings from recent studies have determined factors that cause
volatility spillovers among financial markets. Accordingly, it is reasonable to propose that
pandemics might not only affect the performance of a financial market but also have severe
implications in terms of cross-market risk relationships altering asset prices and investors’
risk preferences.

In addition to methodological advancements, this study makes the following
contributions. First, this paper examines the dynamic connectedness between African
stock market indices and clean energy stocks using two approaches, the Time-Varying
Vector Autoregression (TVP-VAR) for the time domain and Barunik and Krehlik (2018) for
the frequency domain. Second, we provide insights into the causal impact of uncertainties due
to infectious diseases (EMV_ID) on this relationship.

The findings of this study are summarized as follows. First, we find evidence of strong
connectedness between the African stock markets and the clean energy market for both time
and frequency domain approaches. Second, regarding diversification options, results show
that Egypt and Namibia are the best effective portfolio diversification options for investors in
the African stock markets as they show the weakest vulnerability to idiosyncratic shocks
when considering the time domain results. Kenya contributes the most volatility for the
frequency domain, with its significant contribution coming in the long run. Also, Mauritius is
the biggest receiver of volatility spillovers considering all frequencies in our sample. Third,
the causal analysis provides evidence supporting a non-linear causal relationship between
uncertainties due to infectious diseases and the connectedness between both markets, mostly
at lower and median quantiles. This reflects the disturbing effects of uncertainties due to
infectious diseases, which matters to the formulations of policies seeking to achieve stability.
Like results reported by Adekoya and Oliyide (2021), this study provides evidence of a global
financial cycle channel during the COVID-19 pandemic. The occurrence of the pandemic and
the speculative and sentimental attitude of policymakers and investors essentially drives this
channel. Our conclusion complements the emerging literature on the vulnerability of the
stock markets to uncertainties due to health crises.

Several important policy implications can be drawn from our findings. First, the robust
interconnectivity between African equity and clean energy markets underscores the
importance of encouraging regional cooperation among African nations. This may include
exchanging information, harmonizing policies, and promoting cross-border investments.
Such collaboration can enable African countries to capitalize on the potential of clean energy,
establish a more resilient financial system, and bolster their ability to withstand external
shocks. Second, with Egypt and Namibia identified as the most effective diversification
choices for investors in African equity markets, policymakers should draw investments into
these nations and encourage a more equitable investment distribution throughout the
continent. This would minimize the region’s susceptibility to economic disturbances and
improve financial stability. Third, Kenya was identified as the primary contributor to long-
term volatility. Policymakers in Kenya and other African nations should contemplate
adopting measures to mitigate this volatility and establish a more stable investment
environment by enhancing market transparency, fortifying the regulatory structure, and
advocating for sustainable and responsible investment practices.

Governments must improve their preparedness for future health emergencies by
investing in healthcare, strengthening early warning systems, and promoting efficient

IJOEM



coordination during crises. Policymakers should focus on reinforcing financial systems,
implementing policies for economic resilience, and introducing social protection measures to
support vulnerable communities and boost economic recovery. As part of future research, it
would be interesting to extend the study to the risk associatedwith other financial assets such
as cryptocurrencies, and real estate, particularly examining the effects of Africa-based
Economic policy uncertainty and uncertainties due to infectious diseases will further enrich
the extant literature.

Note

1. The tabulated results available are available on request from the authors
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Appendix
Volatility connectedness between African stock markets and clean energy stocks across
frequencies (as shown in Figure 7)
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