To read this content please select one of the options below:

Spectral dimensionality reduction for quantitative analysis of cotton content of blend fabrics

Xudong Sun (East China Jiaotong University, Nanchang, China)
Ke Zhu (East China Jiaotong University, Nanchang, China)

International Journal of Clothing Science and Technology

ISSN: 0955-6222

Article publication date: 13 February 2019

Issue publication date: 23 May 2019

112

Abstract

Purpose

The purpose of this paper is to initiate investigations to develop near infrared (NIR) spectroscopy coupled with spectral dimensionality reduction and multivariate calibration methods to rapidly measure cotton content in blend fabrics.

Design/methodology/approach

In total, 124 and 41 samples were used to calibrate models and assess the performance of the models, respectively. The raw spectra are transformed into wavelet coefficients. Multivariate calibration methods of partial least square (PLS), extreme learning machine (ELM) and least square support vector machine (LS-SVM) were employed to develop the models using 100 wavelet coefficients. Through comparing the performance of PLS, ELM and LS-SVM models with new samples, the optimal model of cotton content was obtained with the LS-SVM model.

Findings

The correlation coefficient of prediction (rp) and root mean square errors of prediction were 0.99 and 4.37 percent, respectively. The results suggest that NIR spectroscopy, combining with the LS-SVM method, has significant potential to quantitatively analyze cotton content in blend fabrics.

Originality/value

It may have commercial and regulatory potential to avoid time-consuming work, costly and laborious chemical analysis for cotton content in blend fabrics.

Keywords

Citation

Sun, X. and Zhu, K. (2019), "Spectral dimensionality reduction for quantitative analysis of cotton content of blend fabrics", International Journal of Clothing Science and Technology, Vol. 31 No. 3, pp. 326-338. https://doi.org/10.1108/IJCST-07-2018-0091

Publisher

:

Emerald Publishing Limited

Copyright © 2019, Emerald Publishing Limited

Related articles