www.emeraldinsight.com/2398-7294.htm

The current issue and full text archive of this journal is available on Emerald Insight at:

Mobile devices compatibility

testing strategy via crowdsourcing

Qamar Naith and Fabio Ciravegna
University of Sheffield, Sheffield, UK

Abstract

Purpose — This paper aims to support small mobile application development teams or companies
performing testing on a large variety of operating systems versions and mobile devices to ensure their
seamless working.

Design/methodology/approach — This paper proposes a “hybrid crowdsourcing” method that
leverages the power of public crowd testers. This leads to generating a novel crowdtesting workflow
Developer/Tester- Crowdtesting (DT-CT) that focuses on developers and crowd testers as key elements in the
testing process without the need for intermediate as managers or leaders. This workflow has been used in a
novel crowdtesting platform (AskCrowd2Test). This platform enables testing the compatibility of mobile
devices and applications at two different levels, high-level (device characteristics) or low-level (code).
Additionally, a “crowd-powered knowledge base” has been developed that stores testing results, relevant
issues and their solutions.

Findings — The comparison of the presented DT-CT workflow with the common and most recent
crowdtesting workflows showed that DT-CT may positively impact the testing process by reducing time-
consuming and budget spend because of the direct interaction of developers and crowd testers.
Originality/value — To authors’ knowledge, this paper is the first to propose crowdtesting workflow
based on developers and public crowd testers without crowd managers or leaders, which light the beacon for
the future research in this field. Additionally, this work is the first that authorizes crowd testers with a limited
level of experience to participate in the testing process, which helps in studying the behaviors and interaction
of end-users with apps and obtains more concrete results.

Keywords Harnessing the crowd in human-computer interaction,
Tools and platforms to support crowd science and engineering,

Models and methods for crowd science and engineering,
Crowdsourced testing, Crowdtesting for mobile apps, Industrial crowdsourcing

Paper type Research paper

1. Introduction

Testing mobile applications (apps) on various mobile device models and operating system
(OS) versions is an expensive and complex process because of compatibility issues (mobile
fragmentation) (Huang, 2014b). Developers are not always sure if their apps are behaving
and running as expected on all mobile devices. This issue requires mobile app developers to

© Qamar Naith and Fabio Ciravegna. Published in International Journal of Crowd Science. Published
by Emerald Publishing Limited. This article is published under the Creative Commons Attribution
(CC BY 4.0) licence. Anyone may reproduce, distribute, translate and create derivative works of this
article (for both commercial and non-commercial purposes), subject to full attribution to the original
publication and authors. The full terms of this licence may be seen at http://creativecommons.org/
licences/by/4.0/legalcode

The first author would like to thank the University of Jeddah and the Ministry of High Education
in Saudi Arabia for the PhD research funding. The first author would also like to thank Professor
Fabio Ciravegna at Sheffield University for his support on her PhD journey.

Testing
strategy

225

Received 15 September 2018
Revised 15 October 2018
Accepted 15 October 2018

International Journal of Crowd
Science

Vol. 2 No. 3, 2018

pp. 225-246

Emerald Publishing Limited
23987294

DOI 10.1108/7JCS-09-2018-0024

http://dx.doi.org/10.1108/IJCS-09-2018-0024

IJCS
2,3

226

perform mobile device compatibility testing on a variety of mobile device platforms, models
and OS versions in the shortest time possible to ensure the app quality. Lately, we started to
ask ourselves “what else could be achieved to improve mobile app developers’ and testers’
lives on the internet and reduce the mobile app compatibility testing issue?” Too many
important reasons exist regarding mobile app development and testing, which cause
compatibility testing issue:
¢ Some architectures of mobile devices platforms, like Android, are not standardized
across mobile device manufacturers to date. The differences in the architectures and
the characteristics of the mobile devices components are largely undocumented and
not yet available for the public[1] (Wnuk and Garrepalli, 2018).

» Mobile apps (especially sensing, banking, tracking apps) behave slightly differently
in various of mobile devices (Samuel and Pfahl, 2016).

* Most of the app developers are small teams or individual developers; it is often too
expensive for them to have a variety of mobile models and OS versions for testing.

¢ The automated testing approach is insufficient to test all real-life scenarios or to
capture all aspects of real mobile devices (Knott, 2015).

Recently, several testing approaches such as Automated testing (Prathibhan et al,
2014), Cloud testing services (Huang, 2014b; Bhojan et al., 2015; Huang, 2012a; Starov,
2013) and industrial crowdtesting platforms or companies (Huang, 2014b; Alyahya
and Alrugebh, 2017; Mao et al., 2017; Starov, 2013; Huang, 2012a), MyCrowd QA[2]
and Pay4Bug[3] have been built to address the compatibility issue. However, the issue
still remains.

All the reasons of the compatibility testing issue mentioned above have attracted the
attention of authors of this paper and motivated them to address that issue, the following
two questions have been investigated:

QI. How can the crowdsourcing approach and human computation play an important role
in software testing and in a way that is different from that which currently exists?

Q2. Which crowdsourced testing workflow will now be used to construct a complete
and effective testing environment?

To answer the questions above, the following requirements have been considered:
¢ anovel compatibility testing approach on global-scale (Akour ef al., 2016);

¢ the individual developers and small teams cannot have all the different types of
devices, so there is a need for outsourcing to obtain enough mobile devices models
with different OS versions;

¢ manual compatibility testing method on a real mobile phone to address the
automated testing issue; and

¢ an online public space that documenting good Android development knowledge and
experiences to understand the overall architecture of Android.

This paper is aimed at proposing a novel compatibility testing approach for mobile devices
and apps that is demonstrated as a web-based crowdtesting platform, named
AskCrowd2Test. This platform is constructed using two novel methods: A new
crowdsourcing method known as Hybrid Crowdsourcing (Section 6.2) that depend on the
participation of unknown public crowd testers to use their real mobile devices with running

various OS versions to achieve the compatibility testing process. In addition, a new
crowdtesting workflow known as Developer/Tester- Crowdtesting (DT-CT) (Section 7) that
mainly relies on the direct interaction between the developer and crowd testers and disposes
with the services of crowd managers and crowd leaders as well as distributing their work to
both developers and crowd testers in the testing process. To understand the external
complexity of mobile technology, AskCrowd2Test platform has mainly targeted the mobile
devices and apps’ compatibility testing in two distinct levels: high-level (as physical
properties of API level related to OS versions or mobile device) or low-level (code properties)
to ensure that these properties are compatible with a mobile apps specification and
requirements. Besides, the compatibility testing service, AskCrowd2Test platform also
builds a crowd-powered knowledge base (CPKB) (Section 7.1) regarding storing
incompatibility issues and relevant solutions that were acquired while performing the test
with different hardware and human resources.

Consequently, building such system that mainly focuses to test the hardware
components of the mobile device to demonstrate the issues discover because of differences of
the mobile device architecture and documenting such these results including differences and
issues will have a significant impact on both academic and industrial domain, in which will
help developers to obtain more insight about the suitable environments required for
developing a specific app with specific functionalities.

The structure of this paper is given as follows. In Section 2, the authors provide a
description of the existing approaches regarding the compatibility testing of mobile
applications. In Section 3, drawbacks/limitations of the existing approaches are given. In
Section 4, the current crowdtesting working mechanism is presented, and Section 5
highlights observations on current working mechanisms. In Section 6, the authors present
the proposed hybrid crowdsourced compatibility testing approach. In Section 7, the authors
explain the overall working mechanism of the DT-CT. In Section 8, conclusions of this paper
are presented. In Section 9, the authors provide the list of all their contributions.

2. Related works: existing compatibility testing approaches

Several solutions have been proposed in the literature to address the compatibility testing
issues of mobile apps; these solutions have been divided into three categories (Section 2.1,
2.2and 2.3).

2.1 Industrial crowdsourced testing platforms

Industrial crowdtesting platforms or companies such as Mob4hire[4], Pay4Bugs[5], uTest[6],
Passbraing[7], Global App Testing[8] and Applause[9] are considered as initial solutions to
address computability issues. Most of these testing platforms and/or companies are not
directly targeting compatibility testing in their testing solutions. These testing platforms
and companies have a more focus on other types of testing such as functional, security,
usability, load, localization and automation (Alyahya and Alrugebh, 2017). The
crowdtesting method used in these aforementioned testing platforms and companies mainly
concentrates on testing the mobile app as a whole to make sure that the app is free of errors.
They have designed based on “On-demand matching and competition” (Mao et al., 2017),
which means that crowd testers are selected based on matched requirements (their
availability, demographic information, rate, and testing type preferences).

2.2 Automated and cloud-based testing services
Prathibhan et al. (2014) designed an automated testing framework over the cloud for testing
mobile apps on different Android devices. This framework can provide performance,

Testing
strategy

227

IJCS
2,3

228

functional and compatibility testing. Kaasila et al. (2012) presented Testdroid as an online
platform for automated UI testing. It enables developers to execute automated scripted tests
on physical Android or i10S mobile devices with different OS versions and screen
resolutions. These devices are physically connected to online servers which manage the test
queue for the individual physical device. This platform has limited testing service, i.e. it does
not support testing applications that depend on gesture, voice, or movement input.

Cloud-based testing services are another type of solution that is used to address the
compatibility issue since different mobile devices and OS versions are available in the cloud.
Developers can access these devices and use them via various cloud services. Huang (2012a)
proposed remote mobile test system (R7MS) which is a cloud of mobile devices for testing
mobile apps. In the RTMS the users could remotely access a pool of mobile devices that exist
in a local lab and perform app testing of uploading, startup and testing by clicking and
swiping actions.

Besides, the authors of Huang (2014b) extended the RTMS and they proposed AppACTS
that provides an automated scripting service to perform compatibility testing of apps on
different users’ real Android devices and collecting the results of testing through a web
server. The compatibility testing of the proposed method covers the installation process,
startup, random key, screen actions and the removal process of the mobile app on real
remote devices. The most important feature of the AppACTS is its geographical distribution
and scalability, unlike RTMS, it will not use a cloud of mobile devices, and it uses real
remote devices. The MyCrowd QA[10] platform provides an automated compatibility
testing service for mobile apps. The service proposed is considered as SaaS (Software as a
Service) and different from the service provided in AppACTS (Huang, 2014b). This service
helps developers to upload their apps through the web interface, choose the target device
models and OS version versions, perform Ul testing remotely and then review the testing
report after testing is completed.

Starov (2013) proposed the CTOMS framework for cloud-based testing of mobile
systems that performs the testing on the remote real mobile device through the cloud (each
pool of real mobile devices connects to a mobile server, and then all mobile servers
connected to one master server). This cloud testing is carried out by the participation of their
own crowd community. This framework provided the concept and the prototype of cloud
testing of mobile systems together with multi-directional testing that tests the app on
various Android devices only with various OS versions and new device models for their
compatibility testing.

2.3 Knowledge base development for compatibility testing

StackOverflow is a service based on open crowdsourcing (volunteer work) for addressing
technical programing issues (Phair, 2012; Bacchelli ef al, 2012). This platform has
documentation that focuses on storing questions and issues related to computer programing
only (coding issue). It is also used by mobile app developers to assist them with the issues
they are facing within the implementation process (programming) of mobile apps, but it is
clear they are rarely used for testing (Section 3). The authors in Ham and Park (2014)
addressed Android fragmentation problems in mobile application compatibility automated
testing. In addition, it could analyze the fragmentation both in code level as well and API
level based on the provided knowledge base from previous tests. The proposed platform
AskCrowd2Test will involve a knowledge base (documentation), especially for documenting
issues related to mobile device compatibility testing.

3. The limitations of compatibility testing approaches
In the authors view, several limitations exist in the current testing solutions, which need to
be addressed to enhance the mobile device compatibility testing process. These limitations

are:

Test distribution: most of the testing platforms or companies, and cloud testing
services described previously have a limited distribution of tests, as they target
group-specific selection of crowd testers based on general profile characteristics.
Thus, they do not provide opportunities to public crowd testers around the world
who have limited experience in contributing to testing process and discover more
issues. Consequently, these solutions will not be able to study sufficient users’
behaviors or interactions with the app.

Variety of mobile devices: the majority of mentioned testing approaches may not cover
a large variety of mobile devices or OS versions. This is because of the lack of
availability of a very large number of different mobile device models or OS versions in
one place like a companys headquarters or its particular crowd community. To the
authors’ best knowledge, there is not a complete set of different mobile device models
with different OS versions in a tests laboratory or a registered cloud testing system to
be accessible by mobile app developers as discussed at RTMS (Huang, 2012a),
AppACTS (Huang, 2014b), MyCrowd QA as well as CTOMS (Starov, 2013).

Coordinated scheduling: this is an important issue which exists in all mentioned
approaches since crowd testers need to share a single pool of mobile devices in
various cases; for example, when crowd testers are required to conduct the test
across various geographical locations at the same time. Another example is when a
particular mobile device needs to be tested with more than one OS versions for
different tasks simultaneously. This could lead to issues in the coordination process
amongst testers and also to delays in the testing process as it may not cover all the
mobile models and OS versions.

Knowledge accessibility: most of the mentioned testing approaches do not have a
public place where testing results (including issues and their solutions) can be
stored, and which public mobile app developers can access quickly without any
constraints. Currently, these results are stored in a private space of each company,
which only development teams within the company are able to access. This will not
enhance the experience and knowledge of both developers and testers as well as
domain knowledge of the mobile app development.

Compatibility testing type: the majority of these testing approaches focus on testing
mobile apps themselves to ensure there is not any failure but not for checking and
understanding the compatibility of various mobile devices’ characteristics with the
app requirements. Certainly, this way of testing will not assist mobile app
developers to broaden their knowledge and experience level.

Impossibility of testing: stack overflow is an example of an online public library for
storing knowledge and experience for programing purposes, not designed for
testing. In addition, there is no online space mainly designed for testing purpose
where developers can ask to test a specific issue (test case, feature or code) on
different mobile device models. Human-based tagging systems might be another
drawback found in StackOverflow, where users select the tag based on their feelings
or potentially communities surrounding those tags. This might lead to tagging the
information in a wrong classification.

Testing
strategy

229

IJCS
2,3

230

Figure 1.

The common
crowdsourced testing
workflow (C-CT)

AskCrowd2Test platform is designed to satisfy this need.

4. Current crowdtesting working mechanisms
The first crowdsourcing technology followed the common crowdtesting processes (C-CT)
shown in Figure 1. At that time, crowdtesting included only four key elements: developer,
crowd manager, crowd leader, and crowd testers. Alyahya and Alrugebh (2017) emphasized
that C-CT workflow has several limitations. They addressed these limitations by proposing
certain automated processes as illustrated in Figure 1:

» In C-CT workflow, there is a lack of a mechanism for monitoring the availability of
crowd managers or crowd leaders to supervise new testing projects. They are both
assigned manually. This process is not efficient as several projects might be allocated
to the same crowd managers or leaders while others are available. They address this

[[
-]
Developers Crowd Manager Crowd Leader Crowd Testers
Submit project \ \ Revievv(projec('

2
l Announce project

—_—
Create testing plan

Receive nomination — s A
notification Convert testing to
: list of tasks
- v
Select/replace crowd
sy T testers |
A4

| Announce testing | Review testing tasks

; requirements
No

(rejected)

', Yes
S| Submit form with

lﬂtesﬂnq team -« estimated time

‘ e e

2 = -
{ Updmn‘;s‘ef L2 [Reviewleslreponsfr—[Submll test reports
i | T

Review final | Prepare final Evaluate results
. report | report

(| —

Do the payment

e

Source: Adapted from Alyahya and Alrugebh (2017)

issue by proposing an automated assigning of crowd managers and leaders to new Testing
coming projects based on the best availability of a manager or leader. strategy

* The testing team for any project is created manually. As suitable crowd testers are
selected by matching the project requirements with their experience and
geographical location from a large list of crowd testers this can be time consuming.
This issue was addressed by enabling an automated allocation method based on
best fit with project requirements. 231

e There is also a lack of a method for monitoring the status of the crowd testers for
the accepted projects. They may agree to contribute in the testing process but then
disappear or fail to submit their test report. An automated method has been
proposed to address this problem and avoid sending invitations to crowd testers
who are not active for a short period of a workday (e.g. 12 h).

Recently, some of the testing organizations and/or platforms started following the most
recent crowdtesting workflow Automated Crowdtesting (Auto-CT) by Alyahya and
Alrugebh (2017). The processes of the Auto-CT are illustrated in Figure 2 and described
below in details.

23 - - -]

Developer Platform Crowd Manager Crowd Leader Crowd Testers

—_— —_—
] ~» Receive request Receive notification |Review testing tasks
Submit project J q ”’{ L] e do

e
Send notification — ANo .
, Y (rejocted)
Create crowd Tad)
ger list ‘“t Send availability [

ive nomination |, | submit form with |
notification | :4Nommalecrowd .| Receive accept ‘ | estimated time

[Request testing

gt notification
—_— v
N0 e Send accept [=
*_hotiicat or‘:] Create testing plan
¥
Store list of tasks }1— 1 Cov:i\gr;'t?::g L ‘

» Selectreplace crowd
lersters

AT, FE
Announce testing | | | [Receive nomination
| tasks notification
Nominate crowd
Ieader
<
Yes
Check ' e
’ Revnewt'nal }_

{ Build lestlng team
1.
+ Ca!culateoosl [
ﬁ Do the pay } 17" Update tester | Review test reports +—
| rating | T
r 1
| Prepare final L SEEDER | Figure 2.
report [

The most recent
= 1 crowdsourced testing

-

: workflow (Auto-CT)

——-[Perform testing ‘~—

Submit test reports

IJCS
2,3

232

4.1 Submitting the project

The developers define the project (whole app) for testing automatically or manually and
identify the business needs and goals. At this stage, the developer sends a testing request
through the platform and specifies the required information: the targeted app, types of
testing required, OS versions, mobile platforms and required testing automation tools.

4.2 Selecting crowd manager

The platform will check the availability of crowd managers to supervise the new project. A
list of all available crowd managers will be created and an automatic notification will be sent
to available crowd managers based on testing requirements like testing type/environment.
Once they receive the notification, they should send their availability and agreement to work
on the new project.

4.3 Nominating crowd manager

Once crowd managers accept the testing task, they must provide an estimation of when they
will be ready to start testing the project. Then, a nominate message (notification) will be sent
through the platform to the developers which includes the names of all managers who have
accepted the test. The most appropriate (available) crowd manager will be selected by the
developer to be the primary crowd manager of the new project.

4.4 Review the submitted project by crowd manager

The selected crowd manager will receive a notification from the developer to supervise the
project. The crowd manager reviews the project requirements and then designs the testing
plan for the project which includes an estimation of testing effort and testing cost.

4.5 Dividing project to a set of tasks

Once the crowd manager reviews the project requirements and designs the testing plan, they
will convert the testing project to a set of tasks to facilitate the testing process. These tasks
are then stored under the project name in the platform.

4.6 Selecting crowd testers from the community and announcing testing tasks

After the crowd manager has divided the project into a set of tasks, the platform will
automatically check the availability of crowd testers and send an invitation to most the
appropriate crowd testers based on several factors such as the quality of the bugs they
submit, the crowd’s available mobile device type and geographic location.

4.7 Review project and its tasks specification by crowd testers
After crowd testers receive the invitation, they will review the tasks’ specifications and send
an acceptance form with the estimated time of achieving the test and submitting the reports.

4.8 Build test team

The crowd manager will review the list of crowd testers interested in participating in the
test cycle and verify their information to make sure that they satisfy the required
qualifications. After that, the crowd manager will build a testing team and recruit the
suitable crowd testers for specific tasks.

4.9 Assign crowd test team leader

After the crowd manager has built a testing team, a team leader will be selected by the
crowd manager from the list of most available crowd leaders to work under the guidance of
a crowd manager. The selected crowd leader will receive a list with all selected crowd testers
to start executing the test.

4.10 Execute testing and submit reports

After crowd testers performed the test automatically or manually, they will submit the
testing reports to crowd leader using the management tool (e.g. JIRA[11]) specified by the
leader and crowd manager.

4.11 Review and validate testing reports by crowd leader

After crowd testers have submitted the testing reports, the crowd leader will review and
evaluate the severity of the bugs and then modify the status to one of the following two
options pending approval or pending rejection.

4.12 Update crowd testers rating by crowd manager

After crowd leader evaluate testing reports of each crowd tester and validate the bugs, they
will refer the bugs to one of these classifications: Exceptionally valuable, very valuable or
somewhat valuable, rejected bugs. Based on the classification of bug, the crowd manager
will rate crowd testers and store the rating of all crowd testers in the platform.

4.13 Calculate cost
The platform will calculate the cost of all crowd testers that submitted the reports based on
their rating (sensitivity of bugs) and price specified by developers for the whole project.

4.14 Prepare final report by crowd manager

Depending on the rating and calculated cost of all crowd testers the crowd manager
prepares a final report that includes the name of all crowd testers, results of each tester
(e.g. #.of discovered bugs, the sensitivity of bug) crowd testers’ rating, and the appropriate
cost for each tester.

4.15 Review final report and providing incentives by developers

After the developer receives the final report, they will check and then send feedback to the
crowd manager to change the status of each report into approved or rejected. Once the
crowd manager updates the status of each report, the approved report will be combined and
organized again in a new report with the cost of all approved report. The developer will then
check the report, action the payment and finish the testing lifecycle.

5. Observations on the auto-CT workflow

The study of the recent workflow of crowdsourced testing Auto-CT proposed by Alyahya
and Alrugebh (2017) showed several significant observations that the authors of this paper
believe could negatively impact the crowdtesting process. These observations are:

e The general concept of crowdsourcing is dividing big projects into small tasks that
can be easily achieved by crowds. This process takes several steps in Auto-WF. To
announce the testing tasks to crowd testers, it is first necessary to convert the
submitted project to multiple tasks to be easily performed by the crowd tester. This
process needs to be achieved by crowd managers, which requires more effort since

Testing
strategy

233

IJCS
2,3

234

they need to divide the project to small tasks (e.g. divide the app in to small tasks,
then to smaller tasks) as well as being time consuming, especially for large projects.
This issue has been eliminated in the proposed workflow DT-CT by forcing
developers to define and announce their project in the form of a set of small tasks,
instead of submitting the whole project and then waiting for an available crowd
manager to divide the project to small tasks.

Partitioning any of the projects into multiple small tasks by crowd managers may
lead to forgetting to complete some of these small tasks (e.g. test cases) that might
be important for developers to be tested. It may also lead to perform test cases that
are not important for the developers and do not affect the apps quality. To improve
that, there is a need for a method to avoid testing unnecessary tasks (test cases) that
may sometimes be announced by crowd managers. The DT-CT workflow
considered this requirement by forcing developers to decide the tasks/test cases by
themselves before announcing them. This method will avoid unnecessary testing
tasks for developers.

In Auto-WF, in performing test process, high-level testing (black box testing) can
only be conducted by crowd testers where developers occasionally need to test a
specific code. The DT-CT workflow addresses this issue by enabling developers to
enter and define their code in the task defining process and request crowd testers to
test.

The Auto-CT may be insufficient to distribute the test to a very large number of
crowd testers. The testers who have high level of experience are only selected from
their community, while in some case it is very good to perform the test by crowd
testers who have little-to-no experience. AskCrowd2Test platform and the DT-CT
workflow are compatible with all levels of experience and allow unknown public
crowd testers with different levels of experience to participate and use their own
device for testing. This diversity of experience can help to find more issues quickly.
This is because experienced testers follow specific testing steps and they always use
them for testing any mobile app. As a human behavior, the crowd testers with
different levels of experience may put in more effort to perform the test and provide
better testing results. This will also help developers to find more issues and
accurately reproduce the behavior of an app that runs on an exact mobile. This may
also give the developer excellent insight about how end-users, who do not
understand the internal specification of the app, will interact with it.

Assigning a crowd manager or crowd leader to each submitted project requires
several steps. This process can be inefficient and may cause more delay while the
developers need to wait for crowd manager to be selected as well as crowd leader. In
addition, this process might require developers to spend more budget because of
their role in the test cycle, which, in turn may be expensive for the small developer’s
teams. The DT-CT workflow improves the crowdtesting process by eliminating the
delay time taken for assigning both crowd manager and leader; in addition, it
decreases the amount of the budgets to be paid. This is achieved by presenting a
direct-testing process between developers and crowd testers. The idea of that
process is dispensing the role of both crowd manager and crowd leader. Thus,
distributing their roles on both developers and crowd testers.

There is a lack of an internal mechanism to automatically track and organize the
submitted reports. The reports are usually collected and organized manually by the
crowd leader and reviewed by crowd testers, or through the use of external

management software to organize them such as JIRA, which may be time-
consuming. The DT-CT workflow has considered the report tracking steps as one of
the most important processes in the crowdtesting workflow between crowd testers
and developers. It has supported tracking processes slightly similar to JIRAM
software.

e There is a lack of a mechanism for monitoring and tracking the status of testing
tasks. For example, the project might be international and need to be achieved by
large-scale end-users over the world. Another example is the tasks might require
testing on specific devices that run specific OS versions. Consequently, the
developers need to ensure that the test really covers the requirements. In Auto-CT
workflow, the developers will not be sure whether everything is going well during
the testing cycle. Crowd managers need to open each report, check it, and then
prepare the final report to send to developers. This is can be time-consuming. To
investigate this issue an automated process designed in DT-CT that allow
developers to easily check their tasks status (e.g. distribution over countries or list
of tested mobile devices) during the testing cycle and to make a quick decision when
they would like to close the test.

¢ The mechanisms for monitoring the progress of crowd testers and for avoiding
those who are non-productive are insufficient and not equitable. The Auto-CT
excludes the crowd testers who are not active for several days or hours after
accepting the task without knowing the main reasons. This situation may anger the
crowd testers and reduce their enthusiasm to participate in any new projects in the
future. To minimize the problem of having non-productive crowd testers, additional
financial rewards (bonuses) will be added to the total amount to be paid for active
crowd testers in the rewarding process. This could delight crowd testers and
motivate them to be more active and to submit their reports on time.

¢ In Auto-CT, to provide a feedback to crowd testers, many processes need to be
completed. The developer first needs to contact the crowd manager and then
the crowd manager contacts the crowd leader to reach the crowd tester and provide
feedback about the report. To minimize the delay time and effort taken to provide
the feed-back, a direct interaction process between developers and crowd testers has
been implemented in the proposed DT-CT workflow, which allows the developer to
contact crowd testers immediately during the testing cycle or at the end to provide
the feedback.

¢ The selecting mechanism of crowd testers based on their profile matching (e.g.
available hardware and software resources, demographic information, geographic
location, experiences) with the testing task requirements are not good enough. Each
task is different from the other in complexity level or type of test. The proposed
selection mechanism improves this process by considering other variables such as
reliability, complexity, level of task, type of task, quality of crowd testers and
consistency in their work to apply a fair and good selection.

6. Proposed hybrid crowdsourced compatibility testing platform
AskCrowd2Test

Manual compatibility testing is the suggested method for testing the mobile apps during the
development process (Kamran et al., 2016). The proposed approach has been designed as a
web-based platform known as AskCrowd2Test that is specially designed to support a fully

Testing
strategy

235

IJCS
2,3

236

mobile device compatibility testing for Android and iOS through crowdsourcing methods.
This platform involves two main parts: manual compatibility testing services based on
proposed the hybrid crowdsourcing method (Section 6.2) and the DT-CT workflow
(Section 7) and a CPKB (Section 7.1).

6.1 The concept of a proposed compatibility testing approach

The concept of a proposed compatibility testing approach implemented in AskCrowd2Test
platform focuses on testing whether the hardware components of mobile devices and
features of OS versions are compatible with the functionalities of different types of mobile
apps (e.g. banking, health, social, activity tracking or any other apps). It considers testing
the compatibility for all different dimensions of the mobile device and its features with the
app such as:

e hardware dimensions such as the camera (type and resolution), sensors, CPU speed,
screen (rotation, size, resolution), GPS, Bluetooth, RAM, etc.);

» software dimensions such as different APIs level (minimum supported Application
programing Interfaces), multimedia supported, etc.; and

¢ human behaviors and interaction with the app also considered as a third important
dimension to reduce compatibility testing issues such as localization, accessibility
requirements, languages, target user of the app, type of environment (e.g. finance,
education, medical, business etc.).

Therefore, the proposed approach possibly could answer the following questions:

Q3. Is there any missing hardware components within mobile device models or features
within API levels related to OS versions that the app needs it to work correctly?

®4. How much the hardware component is compatible with a specific functionality of a
specific app for different mobile device models and OS versions?

In this approach, the compatibility testing could be achieved in two ways:

6.1.1 Low-level testing. A developer can publicly test compatibility by examining a piece
of code to identify whether the code testing results comply with the expected results from a
variety of mobile devices model and OS versions. By adopting this proposed approach, this
type of test could be carried out by a large number of testers with both adequate and very
high level of experience.

6.1.2 High-level testing. A developer can privately test compatibility by testing the
hardware features of the device itself under different OS versions. This type of test may help
testers with a limited level of experience to perform multiple tests and improve their
experience. These two ways of testing with all mobile device dimensions allow for achieving
a full compatibility testing service through the use of the new crowdsourcing method.

6.2 Proposed hybrid crowdsourcing method for testing

In the literature, two basic crowdsourcing methods are used in the software development
and testing process: the “traditional crowdsourcing” method (used by most of the testing
companies (Mao ef al., 2017; Stol et al., 2017)) and the “open crowdsourcing” (Phair, 2012).
The traditional crowdsourcing and open crowdsourcing method are similar in that both do
not support replication of the tasks which means that they specify a different job for each
crowd to complete the testing process quickly within a limited time. These two methods are
different in the contribution form. The traditional crowdsourcing normally used is based on

online competition and on-demand matching (Mao et al, 2017; LaToza and Van der Hoek,
2016) where the crowd is selected from the registrants’ crowd list based on their high
experience to perform specific tasks. On the other hand, open crowdsourcing method is used
based on open collaboration (Mao et al, 2017) where the public crowd participate (as
volunteers) based on their interests in tasks (Table I).

To avoid these constraints, the authors in this study proposed an alternative
crowdsourced testing method, called “hybrid crowdsourcing” method. This method uses the
power of the public crowd testers to enhance and facilitate the full mobile device and mobile
app compatibility testing process. By employing the hybrid crowdsourcing method in the
proposed compatibility testing approach that is described in Section 6.1, we will enable a
large number of anonymous and public crowd testers to participate based on their interests
without time constraints. Such open participation of public crowd testers will assist
developers in:

¢ testing more mobile devices with different OS versions and gathering more accurate
results; and

* covering most of the possible compatibility issues in early stages of the mobile app
testing process.

This method will support the flexible incentives mechanism which is based on the
negotiations between the parties and the agreement for the incentives they are willing to
provide or earn. Such an incentive mechanism will help small teams or individual
developers with limited resources to test their apps. Table I shows a comparison between
the traditional crowdsourcing, open crowdsourcing, and hybrid crowdsourcing methods
based on different dimensions, while Table II describes the advantages and disadvantages
of the three crowdsourcing methods.

7. Proposed working mechanism DT-CT

To overcome the observations of the Auto-CT crowdtesting workflow listed in Section 5, a
set of improvements have implemented in the DT-CT. These process improvements are
listed below:

7.1 Defining and announcing testing tasks to crowd testers

The general concept of crowdtesting is dividing large projects into small tasks that can be
easily achieved by crowd testers. In Auto-CT, this process requires several steps by the
crowd manager. The DT-CT workflow eliminated these several steps. Developers define
their project as a set of small tasks and clarify the requirements for each individual task at
the beginning of the test cycle rather than by submitting the whole project and waiting for
an available crowd manager to divide the project. These small tasks will be stored on the
tasks page with previously defined tasks in the platform, to be visible to all crowd testers.
This can be an iterative process, every time developers need to test a new set of tasks, they
will be able to add them under the same project. This improvement will no longer require the
crowd manager to review the whole project and complete this division process.

7.2 Distribute the test on large-scale and selecting crowd testers

Once the developers finished the process of defining the new testing project with its tasks
requirements, they will need to distribute tasks to the public. As shown in Figure 3, there are
two main methods for distributing the task and selecting crowd testers in the proposed
mechanism:

Testing
strategy

237

0UILIIAXD PUR 9ZPIA[MOUY]

UOTOBJSIIES (SUILLIBS] PUB 93Pa[mouy|
PuE uonIuS091 SWEN -J[98) sk J1suLnu|
Asuour Auo jou (Teroos pue [BWIUIW 9)BISPOW 3UI0.MOoSpMOID
pIem-a1 Jo sadA) JUSIRHI(] [ed1sAyd) se o1suLnx;| [BI9A9S AL} I[IXIH] wdQ QAISUIXF UONBIOR[[0d udd() PLIGAH
UOT}OBJSTIES (eAnULOUT FUMOSPMOID
Pue uonIuS091 SWEN [BI0S) JISULXH QUON AU} PajIuI] uad() QAISU)XH UONBIOQR[[0d uad() uad()
uonedwod surf-uQ)
(£suow
JO JUNOW. [[BWS AJ}SOU) (eATyUROUT FUMOSPMOID
pIemay/uorjesusduo)) [eda1sAyd) orsurLnxy QUON 9} PajIuI] pajywr| QAISUR)XH SUIYIJBW PUBIAP-U() [euonipei],
apdurexs 9ATIUSOU] adAyaanueouy uonednder SR, [ISUS[JSBR], 9ZIS PMOI) PUBWLD 9SILIAXG Loy uonedionreq POYRIN
Yy
o
=
z &
5§ 8
By
el D o »
n 0 28ELE
O o % 22023
= a\ =B B E

Method Advantages Disadvantages

Traditional All the selected crowd testers have a high Inherent constraints of human

crowdsourcing level of experiences resources and hardware resources
Lower cost compared to non-crowdsourced Persuading someone who is not
testing companies interested to perform a specific task

might be difficult, this will probably
lead them to perform the task quickly
to get the reward only, this may cause
inaccurate results

The use of extrinsic incentives only will
be weakened the crowd efforts to
perform tasks correctly over time Liang
et al (2018)

Open The public crowd is participating based on Non-physical incentives can be
crowdsourcing their interests which they could do more attributed to the lack of more crowd
effort to get very good results participation or laziness in executing
Ability to study more human behavior and the tasks in some cases over time
interaction with mobile devices
Hybrid The ability for studying more of human The expertise of crowd participating is
crowdsourcing behavior and interaction with mobile devices ~ unknown unless the previous
The anticipation of unknown reward may experiments have been taken, the

attract more people to take a part in the tasks ~ outcome would be unpredictable
to get different types of reward

The use of both extrinsic and intrinsic

incentive mechanism together to motivate the

crowd will significantly improve the effort of

the crowd in performing tasks as proved

recently in 2018 by Liang et al. (2018)

Testing
strategy

239

Table II.

The advantages and
disadvantages of the
three crowdsourcing
methods

o Send tasks to external public crowd testers: developers will need to publish (copy/
paste) the random URL link that is automatically generated after finishing defining
the process in an online space such as Facebook, Twitter, LinkedIn, blogs or any
testers’ groups on the internet.

o Send tasks to internal public crowd testers: developers here need either to share the
task with all registered crowd testers in the platform or to access a crowd testers’
dashboard to select specific crowd testers to perform the test based on different
selection criteria: consistency of crowd testers work, reliability and high-quality
performance in a specific type of testing task or complexity level of the task.

In both internal and external cases, once the developer distributes the tasks a notification/
invitation will send to crowd testers. Notice that developers can use both if they would like.

7.3 Review tasks specifications by crowdtesters

Once registered (internal) crowd testers receive the announcement of the test (UR, invitation
or notification), as displayed in Section 3, they need to review the specification and
requirements of the project to avoid out of scope issues. On the other hand, when non-
registered (external) crowd testers get the URL link, they will first need to register to the
platform and then review test specifications and requirements. After reviewing the
requirements of the announced project, crowd testers will have the option to either accept or
reject the project. If they are not interested in carrying out a specific project, the platform

IJCS
2,3

240

Figure 3.

The proposed
crowdsourced testing
workflow DT-CT

Platform

e
g
tasks ina

Crowd Teslers

Y
Send a list of
recommended tasks

L}

gives them an opportunity to review the specifications and requirements for all other
projects that can be tested. Thus, they could accept more than one project simultaneously
and perform them in order; this step can be done in next section D.

7.4 Selecting task by crowd testers

When crowd testers access the platform, a list of recommended tasks will be displayed for
them based on matching some important properties such model of the device, type of task,
running OS version, complexity level of the task. If the crowd tester is interested in
performing a specific test from a list of tasks published in the platform. At this stage, they
will not be able to accept the task immediately (Section 3). The platform required first to
check if this specific task has been chosen before as a private task (inviting specific crowd
testers to perform) or it has been distributed publicly to all crowd testers. If it is public then
they will be able to review the requirements, accept and conduct the project (Figure 3).

7.5 Execute testing tasks and submit reports

Crowd testers will start testing the tasks associated with the project through the use of
required types of device models and OS versions. As we mentioned previously one project
may include more than one task. When the crowd testers accept the whole project, all the
tasks belonging to this project will be added directly to their file. This means that crowd
testers can execute each task separately. After finishing the test, they must submit a single
report to developers for each task executed through the submission form within the
platform.

7.6 Tracking testing reports

After crowd testers are executing different tasks for different projects at different times,
developers need to review all reports including issues that have been reported. To avoid the
limitations of collecting and organizing testing report manually or automatically using
external tools by crowd manager or crowd leader as in Auto- CT that used by most of the
current platforms. The DT-CT implements a report tracker system slightly similar to
JIRAM™ ZOHO[12]. This system collecting, tracking and organizing all testing reports
submitted by crowd testers is automatically based on two main factors: last submitted time
and sensitivity of issues. Each time new report is submitted the tracking system will notify
developers it is available for review. This tracking system will achieve the following:

o Task status tracking: track the status of each task within each specific project;

o Detailed report. track master details regarding the issues Id, type, description,
priority, etc.;

o Testers identity: track the crowd testers’ details who report the results;

o Modification method or issue tracking life cycle: ability to modify an existing issue
status, open, in progress, under review, Invalid/rejected, accepted or fixed,;

o Scheduled reports: track recent updates on the results based on daily, weekly, or
hourly; and

» Notification method: notify developers about any new issues reported.

7.7 Review and validate testing reports by developers
After tracking and storing reports in the platform, the developers must review and validate
the results provided in every single report. If the results in the report are not accurate, the

Testing
strategy

241

IJCS
2,3

242

developer will directly reject the report and send evaluation feedback to crowd testers to
retest or update the report. In that case, crowd testers will receive the developer’s feedback
and then review it, to update the report and send it again to the developer. On the other
hand, if the results are correct and a developer has approved the results, then a notification
will be sent to crowd testers to inform them of the status of their report, that it is deferred, in
progress or fixed.

7.8 Finish testing cycle by crowd testers

Once the crowd tester receives the validation feedback that the issue has been fixed, they
will retest the project to check that, and send a notification to the developers that the issue
has totally fixed. After the developer receives the notification, they will request the crowd
tester to close the test. Once the crowd tester closes the test, the platform will send a
confirmation to the developer that the test has been closed.

7.9 Evaluate crowd testers by developers

The developers evaluate crowd testers based on the quality of the report (correctness of
results, how is distinct from other results reported, and whether there is any solution or
suggestion provided), on time delivery, complexity level of task, and type of testing task
instead of evaluating crowd testers based on working hours, the number of discovered bugs,
and sensitivity of bug as in the previous workflows C-CT and Auto-CT. In addition, in
proposed work, accepting and performing as many as possible of testing projects will also
positively influence the developer’s evaluation for crowd testers. On the other side, rejected
reports will negatively effect on the crowd testers’ evaluation. In the proposed crowdtesting
approach, because of dealing with public crowd testers, quality and accuracy of test results
and reliability level of crowd testers have been considered significant characteristics. These
characteristics are important factors for reducing developers’ concerns (working with
unknown testers) and increasing their confidence in crowd testers’ performance and the
results produced.

7.10 Calculate cost
The platform will monitor and calculate the cost of each report submitted by the crowd
tester based on the report quality level, on time delivery, and the crowd tester’s reliability.
Once the calculation process is finished, a payment notification will be sent to the developer
with the final price for each tester. At this stage, the platform will check the status of all
tasks added by a specific developer, which have been closed by crowd testers, and then
sends a notification with a list of all crowd testers who have not yet been paid.

This process will minimize the time-consuming problem of the crowd leader or crowd
manager to monitor and identify a list of crowd testers that need to be rewarded, and
sending the list to developers to perform the reward process.

7.11 Provide incentives by developers

After the developer receives the payment notification from the platform for each crowd
tester who has finished and closed their test cycle, they will achieve the payment process
immediately. Later, the platform will update the incentive status from a non-paid task to a
paid. This will facilitate the testing process, minimizing the waiting time of crowd testers to
receive the reward which may motivate the testers more and more to perform other tests.
Unlike other workflows that require crowd testers to wait for other crowd testers to finish

their test and for the crowd manager to prepare, the final report and submit it to developers
to get paid.

7.12 Checking task status and terminate project or task by developers

During the testing process, the developers may need to check the status of each task. For
instance, if there are specific device models with a specific OS version that has not yet been
tested. In that case, the developer will be able to go to the first stage “defining and
announcing task” and change the required information to the devices not yet covered.
Whereas, if all the devices have been covered then the developer will end the task so that no
crowd testers can test it later.

7.13 Justify reasons of issues by developers

Once the developer finishes the validation process of all submitted reports related to testing
a particular task, the developer should have justified reasons for all discovered issues on
these tested mobile devices and OS version to be stored in the knowledge base. This process
is not available in current crowdsourcing workflow. Implementing this process could assist
developers in the future to understand incompatibility reasons of a specific mobile app with
mobile devices and OS versions while developing a new mobile app.

7.14 A crowd-powered knowledge base

The proposed approach includes a knowledge base that documents collected compatibility
testing results (including issues and their solution) through the crowd testers within the
platform. This knowledge base will bring supporting evidence to enable developers to
understand the reasons why specific issues appeared. Also, it will allow developers to obtain
useful guidelines; for example, some of the mobile devices will not support a specific
functionality within a specific type of app for any reason such as if a certain hardware
component or characteristics necessary for the proper running of an app is missed in any
device model, or is not supported by any API framework related to specific OS versions.
Documenting these results will help developers substantially in the future when they need to
develop a new app that may have some similar functionality of the apps that have been
developed before and tested on many devices. Of course, this will reduce the issues and time
taken for compatibility testing on different devices, especially during the early stages of the
development cycle. In addition, it provides the ability for the developers and testers to vote,
rate and comment to evaluate the quality of other published results related to specific
compatibility issue of the mobile device.

8. Conclusions

In this paper, the research gap is narrowed regarding studying the reasons behind issues of
compatibility testing. This paper has a review of current compatibility testing approaches
and their imitations. To address these limitations, AskCrowd2Test has been presented as a
new crowdsourced compatibility testing platform for testing the hardware characteristics of
mobile devices, piece of code, or features of OS versions, against the specifications of mobile
applications. This paper has described the development procedures, which has been
achieved to build AskCrowd2Test platform. First, the proposed Hybrid Crowdsourcing
method has been discussed with a comprehensive comparison carried out to distinguish
between the proposed method and other crowdsourcing methods such as Traditional
crowdsourcing and open crowdsourcing. Second, a review of current crowdtesting
workflows has been provided in Section 4. In addition, a clear discussion of the proposed

Testing
strategy

243

IJCS
2,3

244

crowdtesting workflow DT-CT has been presented. Further, a brief comparison between the
proposed and previous crowdtesting workflows has been elucidated with the illustration of
observations that the authors of this study believe can be the source of weaknesses
(Section 5).

The results of this paper show that the use of AskCrowd2Test with the proposed hybrid
crowdsourcing method and the new DT-CT workflow has numerous advantages. There is
sufficient improvement in testing and developing of mobile apps via participation of
unknown public crowd testers. It enables the research community to cover a large variety of
devices and various OS versions. It authorizes unknown public crowd testers with different
levels of experience to contribute and carry out compatibility testing, which can help in
discovering more concrete results. AskCrowd2Test platform may facilitate the app
development process by studying end users’ interaction and the compatibility of mobile
devices and OS properties with applications. The proposed approach also avoids mistakes
amongst crowd testers when they report about testing mobile devices through a mobile
application and an automated data detection technique. Further, there are also improvements
in the testing process of mobile apps via the direct interaction between crowd testers and
developers, this facilitates the tasks announcement process and reduces the required time for
segmenting the project to small tasks, avoiding testing unnecessary tasks. In addition, it
enables developers to directly monitor their task status at any time. Delay in the reduction
during communication among crowd testers and developers has been achieved. This work
also reduces the delay in assigning the crowd manager or crowd leader to collect while they
wait for collecting and organizing testing reports. The authors expect that AskCrowd2Test
platform may facilitate the app development process by studying end-users interaction and
the compatibility of mobile devices and operating system properties with applications.

The potential downside of the proposed crowdtesting methodology is that while it
reduces the cost on the one side it increases the workload of the developers on the other side.
While this may increase the developers’ workload, for small development teams it is still far
more important, because of the limited income, is to reduce the time needed to complete the
tests and reduce the cost paid to crowd testers. The developers increased workload is partly
because of the sharing of the work, normally done by the tests managers and team leaders,
with the testers and it may not be very significant. An experimental test will be carried out
in the future to evaluate the impact on the total cost. The authors of this paper believe, in
principle, that this methodology will have positive impacts. For future work, the authors
also plan to evaluate the proposed crowdtesting method and DT-CT workflow to
demonstrate its advantages and effectiveness in addressing the issues of compatibility
testing in a significant way.

9. Contribution
The main contributions in this paper are:

* A crowdsourced testing platform AskCrowd2Test that supports the distribution of
full mobile device compatibility testing, which is suitable for both professional and
beginner developers and testers.

¢ It lays out a new crowdsourced testing workflow DT-CT that can be used to execute
other mobile apps testing types for all supported platforms.

¢ Proposed a hybrid crowdsourcing method that can be used in any field not only
mobile app testing or software testing.

e A novel direct interaction mechanism between the developer to provide better
coverage of testing in specific software or hardware that is in need of testing by the
crowdtesting platform.

¢ A public CPKB that is documenting a good development knowledge foundation
required for an understanding of the overall architecture of mobile devices,
especially for Android devices.

Notes
. Available at: https://source.android.com/devices/sensors/index.html
. Available at: https://mycrowd.com
. Available at: www.pay4bugs.com

. URL: www.mob4hire.com

. URL: www.utest.com/
. URL: www.passbrains.com/

1
2
3
4
5. URL: www.pay4bugs.com
6
7
8. Available at: https://go.globalapptesting.com/
9

. URL: www.applause.com/
10. Available at: https://mycrowd.com
11. Available at: www.atlassian.com/software/jira/

12. Available at: www.zoho.com/crm/

References

Akour, M., Al-Zyoud, A.A., Falah, B, Bouriat, S. and Alemerien, K. (2016), “Mobile software testing:
thoughts, strategies, challenges, and experimental study”, International Journal of Advanced
Computer Science and Applications, Vol. 7 No. 6, pp. 12-19.

Alyahya, S. and Alrugebh, D. (2017), “Process improvements for crowdsourced software testing”,
International Journal of Advanced Computer Science and Applications.

Bacchelli, A., Ponzanelli, L. and Lanza, M. (2012), “Harnessing stack overflow for the ide”, Proceedings
of the Third International Workshop on Recommendation Systems for Software Engineering,
IEEE Press., pp. 26-30.

Bhojan, R.J.,, Vivekanandan, K., Ganesan, S. and Monickaraj, P.M. (2015), “Service based mobile test

automation framework for automotive HMI”, Indian Journal of Science and Technology, Vol. 8
No. 15.

Ham, HK. and Park, Y.B. (2014), “Designing knowledge base mobile application compatibility test
system for android fragmentation”, International Journal of Software Engineering and Its
Applications, Vol. 8 No. 1, pp. 303-314.

Huang, J.F. (2012a), “Remote mobile test system: a mobile phone cloud for application testing”, IFEE
4th International Conference Cloud Computing Technology and Science (CloudCom), pp. 1-4.
Huang, J.F. (2014b), “AppACTS: mobile app automated compatibility testing service”, 2nd IEEE

International Conference in Mobile Cloud Computing, Services, and Engineering (MobileCloud),
pp. 85-90.

Testing
strategy

245

https://source.android.com/devices/sensors/index.html
https://mycrowd.com
http://www.pay4bugs.com
http://www.mob4hire.com
http://www.pay4bugs.com
http://www.utest.com/
http://www.passbrains.com/
https://go.globalapptesting.com/
http://www.applause.com/
https://mycrowd.com
http://www.atlassian.com/software/jira/
http://www.zoho.com/crm/

IJCS
2,3

246

Kaasila,]., Ferreira, D., Kostakos, V. and Ojala, T. (2012), “Testdroid: automated remote Ul testing on
android”, Proceedings of the 11th International Conference on Mobile and Ubiquitous
Multimedia, ACM, p. 28.

Kamran, M., Rashid, J. and Nisar, M.W. (2016), “Android fragmentation classification, causes, problems
and solutions”, International Journal of Computer Science and Information Security, Vol. 14
No.9, p.992.

Knott, D. (2015), Hands-on Mobile App Testing, Pearson education Inc, IN.

LaToza, T.D. and Van der Hoek, A. (2016), “Crowdsourcing in software engineering: models,
motivations, and challenges”, IEEE Software, Vol. 33 No. 1, pp. 74-80.

Liang, H.,, Wang, M\M.,, Wang, JJ. and Xue, Y. (2018), “How intrinsic motivation and extrinsic
incentives affect task effort in crowdsourcing contests: a mediated moderation model”,
Computers in Human Behavior, Vol. 81, pp. 168-176.

Mao, K., Capra, L., Harman, M. and Jia, Y. (2017), “A survey of the use of crowdsourcing in software
engineering”, Journal of Systems and Software, Vol. 126, pp. 57-84.

Phair, D. (2012), “Open crowdsourcing: leveraging community software developers for IT projects”,
Doctoral dissertation, Colorado Technical University.

Prathibhan, C.M., Malini, A., Venkatesh, N. and Sundarakantham, K. (2014), “An automated testing
framework for testing android mobile applications in the cloud”, Advanced Communication
Control and Computing Technologies (ICACCCT), International Conference on IEEE,
pp. 1216-1219.

Samuel, T. and Pfahl, D. (2016), “Problems and solutions in mobile application testing”, International
Conference on Product-Focused Software Process Improvement, Springer, Cham, pp. 249-267.

Starov, O. (2013), Cloud Platform for Research Crowdsourcing in Mobile Testing, East Carolina
University.

Stol, K.J., LaToza, T.D. and Bird, C. (2017), “Crowdsourcing for software engineering”, IEEE Software,
Vol. 34 No. 2, pp. 30-36.

Wnuk, K. and Garrepalli, T. (2018), “Knowledge management in software testing: a systematic
snowball literature review”, e-Informatica Software Engineering Journal, Vol. 12 No. 1, pp. 51-78.

Corresponding authors
Qamar Naith can be contacted at: ghnaithl@sheffield.ac.uk and Fabio Ciravegna can be contacted at:
f.ciravegna@sheffield.ac.uk

For instructions on how to order reprints of this article, please visit our website:
www.emeraldgrouppublishing.com/licensing/reprints.htm
Or contact us for further details: permissions@emeraldinsight.com

mailto:qhnaith1@sheffield.ac.uk
mailto:f.ciravegna@sheffield.ac.uk

	Mobile devices compatibility testing strategy via crowdsourcing
	1. Introduction
	2. Related works: existing compatibility testing approaches
	2.1 Industrial crowdsourced testing platforms
	2.2 Automated and cloud-based testing services
	2.3 Knowledge base development for compatibility testing

	3. The limitations of compatibility testing approaches
	4. Current crowdtesting working mechanisms
	4.1 Submitting the project
	4.2 Selecting crowd manager
	4.3 Nominating crowd manager
	4.4 Review the submitted project by crowd manager
	4.5 Dividing project to a set of tasks
	4.6 Selecting crowd testers from the community and announcing testing tasks
	4.7 Review project and its tasks specification by crowd testers
	4.8 Build test team
	4.9 Assign crowd test team leader
	4.10 Execute testing and submit reports
	4.11 Review and validate testing reports by crowd leader
	4.12 Update crowd testers rating by crowd manager
	4.13 Calculate cost
	4.14 Prepare final report by crowd manager
	4.15 Review final report and providing incentives by developers

	5. Observations on the auto-CT workflow
	6. Proposed hybrid crowdsourced compatibility testing platform AskCrowd2Test
	6.1 The concept of a proposed compatibility testing approach
	Undefined namespace prefix
xmlXPathCompOpEval: parameter error
xmlXPathEval: evaluation failed

	Undefined namespace prefix
xmlXPathCompOpEval: parameter error
xmlXPathEval: evaluation failed

	6.2 Proposed hybrid crowdsourcing method for testing

	7. Proposed working mechanism DT-CT
	7.1 Defining and announcing testing tasks to crowd testers
	7.2 Distribute the test on large-scale and selecting crowd testers
	7.3 Review tasks specifications by crowdtesters
	7.4 Selecting task by crowd testers
	7.5 Execute testing tasks and submit reports
	7.6 Tracking testing reports
	7.7 Review and validate testing reports by developers
	7.8 Finish testing cycle by crowd testers
	7.9 Evaluate crowd testers by developers
	7.10 Calculate cost
	7.11 Provide incentives by developers
	7.12 Checking task status and terminate project or task by developers
	7.13 Justify reasons of issues by developers
	7.14 A crowd-powered knowledge base

	8. Conclusions
	9. Contribution
	References

