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Abstract
Purpose – Ensuring quality is one of the most significant challenges in microtask crowdsourcing tasks.
Aggregation of the collected data from the crowd is one of the important steps to infer the correct answer, but
the existing study seems to be limited to the single-step task. This study aims to look at multiple-step
classification tasks and understand aggregation in such cases; hence, it is useful for assessing the
classification quality.
Design/methodology/approach – The authors present a model to capture the information of the
workflow, questions and answers for both single- and multiple-question classification tasks. They propose an
adapted approach on top of the classic approach so that the model can handle tasks with several multiple-
choice questions in general instead of a specific domain or any specific hierarchical classifications. They
evaluate their approach with three representative tasks from existing citizen science projects in which they
have the gold standard created by experts.
Findings – The results show that the approach can provide significant improvements to the overall
classification accuracy. The authors’ analysis also demonstrates that all algorithms can achieve higher
accuracy for the volunteer- versus paid-generated data sets for the same task. Furthermore, the authors
observed interesting patterns in the relationship between the performance of different algorithms and
workflow-specific factors including the number of steps and the number of available options in each step.
Originality/value – Due to the nature of crowdsourcing, aggregating the collected data is an important
process to understand the quality of crowdsourcing results. Different inference algorithms have been studied
for simple microtasks consisting of single questions with two or more answers. However, as classification
tasks typically contain many questions, the proposed method can be applied to a wide range of tasks
including both single- andmultiple-question classification tasks.

Keywords Aggregation, Classification, Task-oriented crowdsourcing, Quality assessment,
Human computation

Paper type Research paper

1. Introduction
Microtask crowdsourcing has attracted interest from researchers, businesses and
government as a means to leverage human computation into their activities in a fast,
accurate and affordable way. In the last ten years, we have seen it applied to anything from
spotting sarcasm on social media to discovering new galaxies and helping digitise large
cultural heritage collections. The underlying model is relatively straightforward: a problem
is decomposed into smaller chunks that can be tackled independently by several people.
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Their individual outputs are then compared and consolidated into a final solution (Shahaf
and Horvitz, 2010). However, none of these steps is actually easy: some problems are less
amenable to microtasking and need to be turned into bespoke microtask workflows
(Bernstein et al., 2010; Kulkarni et al., 2011; Kittur et al., 2011); the performance of the crowd
varies across tasks (Mao et al., 2013; Redi and Povoa, 2014); and determining which answers
are the most useful ones can be both complex and computationally expensive (Kittur et al.,
2008; Snow et al., 2008; Vickrey et al., 2008; Demartini et al., 2012; Wiggins et al., 2011). It is
on this last aspect, determining the correct answers, that we focus on in this paper. The
aggregation method proposed in this paper is able to infer the correct answer for a range of
tasks involving either single-step or multiple-step classifications when gold answers are not
available. It also serves as a proxy to help task requesters to assess the quality of the
crowdsourced results when they already have some gold answers, such as piloting specific
multiple-step task design before putting it online for a larger scale.

Quality assessment in microtask crowdsourcing refers to the evaluation of quality of the
workers’ work. First, quality can be assessed based on different criteria, as it has many
dimensions (Kahn et al., 2002; Batini et al., 2009). Under the crowdsourcing context, it
depends on the type of the data, which is decided by the task type (Malone et al., 2010;
Gadiraju et al.,2014, 2015). The most common quality metric we have seen is to calculate the
accuracy (Bernstein et al., 2010; Gelas et al., 2011; Hung et al., 2013; Zhang et al., 2017a,
2017b) with available gold standards. However, in lots of the cases the gold standard is not
available. This is where different inference algorithms come into picture, which helps to
infer or predict the correct (gold) answer. Second, quality assessment can be done either on
the fly (Ipeirotis et al., 2014) during the task running that can be used to optimise task
assignment hence reduce cost, or in the post aggregation (Whitehill et al., 2009; Ipeirotis
et al., 2010; Bachrach et al., 2012; Difallah et al., 2015a) to assess the overall quality of the
classification. This work focus on aggregating the result after the crowdsourcing task has
been completed, so that accuracy can be calculated based on the gold standards we have.

There are many different types of tasks where microtask crowdsourcing are applied
(Eickhoff and de Vries, 2011; Difallah et al., 2015b; Yang et al., 2016; Zheng et al., 2017a). We
focus on inferring the correct answer for a classification task which is one of the most
popular type of crowdsourcing tasks. We are by no means the first to do so; previous
research has proposed a range of methods to infer and predict the quality of crowd answers
(Bachrach et al., 2012; Dawid and Skene, 1979; Difallah et al., 2015a; Hare et al., 2013;
Ipeirotis et al., 2010; Karger et al., 2011; Loni et al., 2014; Paulheim and Bizer, 2014; Hung
et al., 2013; Rosenthal and Dey, 2010; Simpson et al., 2013; Whitehill et al., 2009). Whilst all
methods have their benefits, they work on relatively simple task models that consist of
single questions with one or more answers (Sheshadri and Lease, 2013; Hung et al., 2013;
Zhang et al., 2017a; Zheng et al., 2017b). The scenario we are targeting is different. We take a
close look at existing classification tasks from Zooniverse, and notice a large percentage of
these tasks are multiple-step tasks, as shown in Figure 1. In fact, in a random sampling of 20
tasks, only 20 per cent has a single question. Consider the example in Figure 2, which is
taken from a labelled citizen science project in which pictures taken in the Serengeti national
park in Tanzania are analysed online by thousands of volunteers[1]. The crowd is asked to
answer a series of related, independent questions about what they see in the image,
including the types and number of animals.

Our work is motivated by a range of online crowd science classification projects. Each of
them uses a slightly different type of task to classify an object, for example, an image,
according to a number of criteria. For a relatively complex task, it is split into several steps,
typically in the form of multiple-choice answers. Sometimes there are dependencies between
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steps as the answer chosen for one questions prompts other questions to be displayed. For
instance, in the Cities at Night project, which uses microtask crowdsourcing to analyse
night-time photographs taken by astronauts onboard the ISS[2], seven different Options are
provided for the first question to identify what the given image contains, a city, stars,
aurora, astronaut, black image, no photo or none of these, and only when “city” is identified,
two more independent questions will be asked to classify cloudiness (three Options: cloudy,
someclouds, clear) and sharpness (two Options: sharp, blurry). In the GalaxyZoo[3] project,
several different questions were asked in sequence depending on the answers to previous
questions, and questions and answers are arranged in a decision tree. It has a more complex
workflow in which more questions are involved, and questions vary based on what has been

Figure 2.
Example
classification paths
collected from 20
workers for a given
photo

Figure 1.
Classification tasks
from Zooniverse

IJCS
3,3

224



chosen in previous classification step. For instance, the first question is “Is the galaxy
simply smooth and rounded, with no sign of a disk?” and three options are provided:
“Smooth”, “Features or disk”, and “Star or artifact”. When choosing “Smooth”, a new
question will be asked “How rounded is it?” and available options are “Completely round”,
“In between” and “Cigar shaped”. If “Features or disk” is chosen as the answer to the first
question, a different set of subsequent questions will be asked. Other times, workflows are
rather sequences of independent, though related questions, such as what we see in
Snapshot[1] (Figure 2). Determining the correct answer for such complex classification task
can be tricky and has not been fully studied yet. Existing research also does not investigate
how inference methods could affect the classification accuracy when using different crowd
types for complex classification tasks. As a result, there is the need to understand whether
different algorithms and aggregation strategies are required for different crowd contexts.

To tackle the issue of determining the correct answer from crowd produced annotations
for the classification task with multiple questions, we model the problem of complex
classification tasks that span over multiple, related questions as a graph. To the best of our
knowledge, we are the first to propose using the structure of a microtask crowdsourcing
workflow as an additional feature to support inference algorithms in making decisions
about correct labels, using output data produced by the crowd. We look at three inference
algorithms (majority voting [MV] [Paulheim and Bizer, 2014; Hung et al., 2013], message
passing [MP] [Karger et al., 2011] and expectation maximisation [EM] [Dawid and Skene,
1979; Whitehill et al., 2009]), which have been commonly used in answer inference in
microtask crowdsourcing previously. We adapt these algorithms to work on the graph
modelled from crowdsourcing tasks with multiple steps. We perform a large-scale
evaluation of the performance of these algorithms on six data sets across two crowd
contexts from three image classification tasks: Darkskies[2], GalaxyZoo[3] and Snapshot
Serrengeti[1]. The rationale behind choosing data sets from both volunteer and paid crowd
context is that algorithms may perform differently in these contexts. The experiments show
that our aggregation strategy achieves significantly better performance than the current
approach of naively applying individual algorithms on each node level. The result also
indicates that MV, despite its simplicity, compares well with more sophisticated approaches
that consider additional factors such as user performance and hence need more computation
time. Sophisticated algorithms such as expectation maximisation, however, can complement
MV for relatively complex tasks. We also prove that each algorithm obtains better inference
accuracy in the volunteer context compared to paid crowdsourcing context.

This rest of this paper is structured as follows: Section 2 provides the foundations of
existing algorithms which we have adapted to handle answer inference in classification
tasks with multiple questions, and illustrate how this aggregation fits in the quality
assessment process. In Section 3, we explain our graph model and notations used in the
graph, formalise the classification problem, and elaborate our aggregation approach. In
Section 4, we perform large-scale evaluation and demonstrate the performance of different
algorithms. Section 5 discusses our findings. Section 6 reviews existing work which has
inspired our research, and Section 7 summarises our result and future work.

2. Foundations
A classification task generally has one single question and a few options to choose from, such as
the one shown in Figure 3. It looks like a simple tree structure where the classification starts with
a root node which refers to the object to be classified and has a few branches which represent the
available options. In this section, we present three existing algorithms, MV, MP and EM, that
have been used in inferring the true label for a single-step multiple-choice classification task.
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These are the foundations to understand our proposed adapted approach. Notations used in
elaborating these algorithms are defined in Table I. For the sake of explaining the individual
algorithms and ourmethod, we use following notations throughout this paper.

2.1 Majority voting
Due to its simplicity, MV has been used in many microtask projects (Hung et al., 2015; Liu
et al., 2012) and is the standard aggregation method in some existing crowdsourcing
platforms[4]. Given the list of options for a labelling task and an object, the MV algorithm
chooses those options with the highest number of votes from the crowd. Formally, it takes as
input an object o and the crowd labels Lo and outputs the resulting candidate label ~lo that
received the most votes from the users.

Algorithm 1MV
1: procedure FINDUNIQUELABEL(Lo)
2: Lunique  fluog, where Lunique � A and luo 2 A and u#Uo;
3: ~lo =““;
4: nummax ¼ 0;
5: for i 2 jLuniquej do
6: if count lunique ið Þ

� � � nummax then
7: nummax  count lunique ið Þ

� �
;

8: ~lo  lunique ið Þ;
9: return ~lo;

Figure 3.
Representation of a
task with a single
question

Table I.
Notations

Notation Definition

o The current object being classified
O The set of all objects in a data set
A All available options
u User u
U The set of all users who contributed to the current data set
Uo All users who have classified object o
L All labels received from the crowd, and L � A
Lo The set of all labels from the crowd for object o
Lu The set of all labels from user u
luo The label for object o from user u
~lo The inferred label for object o
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2.2 Expectation maximisation
EM is another algorithm that has been widely used and involves two steps to infer the true
label for a given object. In the first step, the true label for the current object is estimated
using simple MV, where the input of all users is considered equally. Then, in the next step,
the error rate of each user is estimated based on this result and used in turn to calculate the
new estimation for the first step. The steps are alternating iteratively until the algorithm
converges and a maximum is found. It takes as input an object o and all labels L. It starts by
estimating the true label for each object and each user’s error rate by comparing their
answers (using an indicator function I() to check whether the user classifies object to a
certain category/class) for all objects they have looked at. The error rate is used
subsequently to update the confusion matrix for each user. The output is candidate labels
for owith the probability (indicated by p) of the corresponding candidate label to be correct.

Algorithm 2 EM
1: procedure INITIALISE(pl)
2: pl  count lð Þ � jLoj ⊳ probability of l being the true label for

object o (l2 A);
3: while not converged do
4: Estimate error rate for user

5: u u
ll�  l u

ll� þ
X
o2Lo

pl � I luo ¼ l�
� �

6: Estimate confusion matrix:

7: eull�  u u
ll� �

X
q

u u
lq ⊳ q is the accuracy of user u

8: Estimate class priors:

9: prl  
X
o

pol � jOj

10: Calculate class probability for object o:

11: pl  prl
Y
u2Uo

Y
m

ejam
� �

I lu ¼ mð Þ �
X
q

prq
Y
m

euqm
� �

I lu ¼ mð Þ

12: ~lo =““;
13: pmax ¼ 0;
14: for l 2 A do
15: if pl � pmax then
16: pmax  pl;
17: ~lo  l;
18: return ~lo;

2.3 Message passing
MP is an algorithm that takes into account both the labels and the performance of the users. MP
constructs object and user-specific messages to represent the reliability of the particular user, and
iteratively updates the object and the user messages. More specifically, at each object update, it
adds up more weight to labels that come from more trustworthy parts of the crowd, and at each
user update, it adds more trust (a confidence value) to the user if the labels they give for other
objects are in line with the current estimates of object labels. The iterative updates continue until
the algorithm converges or a specified threshold is hit. The threshold for the stopping condition is
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a parameter that has to be empirically determined. It takes as input an object o, a label a 2 A, all
labels received from the crowd L and a threshold kmax. MP computes the object message by
firstly iterating all previous labels from the users who have been assigned the object o and then
looking at whether each label is the same as the given one. In a next step, it uses the object
message xo�>u (2 L) to update the user message yu�>o (2 L), which is computed by iterating
over the labels they have submitted. Until convergence, the object message for object o is
aggregated by weighing the user messages (confidence) for that object and the computed sign is
stored in Eou.MP outputs the candidate label l for o and the sign of whether the label applies or
not. A detailed description of the algorithm can be found in Karger et al.’s (2011) study. Whilst
providing accurate estimations,MP is also known for its high computational costs as the number
of labels and users increase.

Algorithm 3MP
1: procedure INITIALISATION(yu�>u)
2: for (o, u)2 L do
3: Initialise yu�>o (�N �1; 1ð Þ);
4: procedure ITERATION(kmax)
5: for k2 f1; . . . ; kmaxg do
6: for (o, u)2 L do

7: xko�>u  
X
u�2U

Eou� � yk�1u�>o (u
� 6¼u)

8: for (o, u)2 L do

9: yku�>o /
X
o�2O

Eo�u � xko�>u (o
� 6¼o)

10: xo /
X

u2U Eou � ykmax�1
u�>o

11: if sign(xo) == 1 then
12: ~lo ¼ xo
13: return ~lo

2.4 Quality assessment
In the microtask crowdsourcing context, achieving a good quality result is one of the major
goals, and when we talk about quality, it generally means the quality of the data collected
from the crowd. For the classification microtasks, existing work in quality assessment
mostly use the accuracy metric (Khattak and Salleb-Aouissi, 2011; Hung et al., 2013; Zhang
et al., 2017a). Some research also uses precision/recall (Hung et al., 2015; Zhang et al., 2017) or
F1 score (Zheng et al., 2017a), while other work use ROC (Zheng et al., 2017b) or RMSE
(Bachrach et al., 2012). For classification, the quality of the result refers to how good the
overall collected classifications are, which is a data-value centric dimension to reflect how
accurate the classifications are. In this work, if not specially specified, when referring to
quality of the input/answer/data/result, it means Accuracy – “The degree to which data
values correctly represent the real-world facts” (Zaveri et al., 2013); definition in science
(JCGM, 2008) as “closeness of agreement between a measured quantity value and a true
quantity value of a measurand”. We can look at individual crowd worker’s work to evaluate
whether its work is of good quality, or we can look at the overall result from all the workers
to see how accurate they classify the given objects. The later one which involves
aggregating the input from different crowd workers in a multiple-step classification task is
the focus of this paper.
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In the crowdsourcing context, the ground truth is not usually available. To assess the
quality of the result, we need to understand what algorithms or mechanisms can be used to
infer or predict the correct answer based on all the input from the crowd workers.
Correspondingly, each existing different algorithm has been studied by researchers and
evaluated its performance in various contexts (Section 6.2). This work mainly takes a look at
three popular existing algorithms elaborated above and investigates how the adaptation of
these algorithms can be used for aggregating the crowdsourced data and help to assess the
quality of the classification result. The whole process, in a nutshell, includes three major
phases, data collection (microtask design and task execution) from the crowdwhich is available
to this study, aggregation to infer the correct answer/label, and evaluation of the quality (in this
work is the Accuracy metric) by comparing the inferred result to the gold standards we have.
This research focuses on the aggregation and evaluates the accuracy accordingly.

3. Our approach
In this section, we first illustrate the range of classification tasks we address via a set of
examples: classification tasks with a single question and multiple-questions. We then
introduce a set of notations and formalise the classification problem as a path searching
problem in a graph. Following that, we present our aggregation method by illustrating how
existing established algorithms can be adapted to handle more complex cases.

3.1 Multi-level workflow model and problem formalisation
A classification task, as shown in Figure 3, is generally considered as a simple task as it contains
only one question. A relatively complex task normally involvesmore than one question and hence
more options. It will bemore like a treewith brancheswhich has further branches and leaves.

If we draw such a ‘tree’ for the three tasks we are exploring in this paper, we can see each of
them uses a different type of workflow consisting of several independent/interdependent steps.
Each step in the workflow is associated with a Question to classify an object according to a
criterion. To answer the question the crowd needs to choose among a set of Options. Figure 4
involves minimum one step and maximum three steps for the classification task. Figure 5 has

Figure 4.
Representation of

dark skies workflow
from cities at night
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Figure 5.
Representation of
snapshot Sergenti
workflow from
Zooniverse

Figure 6.
Representation of
GalaxyZoo workflow
from Zooniverse
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a fixed two steps to complete a classification task and each step has more than ten
options. For the GalaxyZoo[5] task, it can involve minimum one step and a maximum
of nine steps to complete a classification, as shown in Figure 6. It is notable that these
different tasks do present a tree-like structure each of which has a number of
questions,with various number of available options, however, there are indeed cases
where some nodes have more than one parent node which means it can not be
considered as a tree.

As a result, the workflow can be modelled as a directed acyclic graph (DAG), where
the root node is the object under consideration and all other nodes are classification
options. Each node can be reached via multiple paths from the root, which prompts the
first question of the workflow[6]. For a given object o, the crowd is asked to carry out a
labelling task, which implies answering a series of (independent or dependent)
classification questions with a set of labels which identify the outstanding features of
the object being classified. We define this task as a path search problem in a workflow
Wf modelled as directed acyclic graph (DAG) with a root entry point and levels (similar
to tree levels, representing the number of questions in the task), each corresponding to a
set of options as depicted in Figure 7. Each node in such a graph represents a particular
labelling option. The labelling finishes when a leaf in the graph is reached, that is a
label that does not lead to any further questions. In our definition, the level corresponds
to classification question(s) and the level of a node is serialised and counted at the lowest
level. We use level exchangeably with depth of a node which is indicated by the number
of edges from the node to the root node. A directed edge represents a label chosen for the
corresponding question related with that node level. Table II has a summary of the
definitions we use.

On top of the notations we defined in Section 2, we also define the notations which are
specific to our workflow graph model in Table III. The problem we are solving in the paper
can be defined as follows:

Figure 7.
Graph representation

of an example
classification

workflowWf vs the
corresponding classic
way of looking at the

classification with
multiple questions
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Definition 3.1The Correct Labelling Problem:
Given a particular object o, a workflow-based graphWf, a set of labels Lo for object o, and

(optionally) a set of previous labels from all users on all objects L, our aim is to infer the
correct label path ~Lo inWf for object o.

3.2 Adapted aggregation
In the classic approaches, it does not look at the dependency between node levels hence naively
putting inferred result from each node level together does not guarantee a valid result. It is
obvious that producing a valid path with possible choices should improve the accuracy of the
users. As such, a basic adaptation of the classic algorithms should show some improvement over
multiple level workflows.We show such a basic adaptation inAlgorithm 4.

Table II.
Definitions

Term Definition

Task A general term referring to an action or a series of action need to be executed
Classification
task

Task classifying objects into given categories, it could be a simple task (one question) or a
relatively complex task (more than one question)

Microtask A task is decomposed into smaller unit making it easier for the crowd. One microtask is
equivalent to one question in classification task

Workflow Microtasks are arranged/chained in a way to automatically complete the task
Question Classification task asked of the user to elicit/assign a label to an attribute of the object to be

classified
Option The set of possible labels
Chosen option An option user chooses per question
Correct label The correct label for a question
Chosen path A user chooses a set of labels for entire workflow
Correct path The correct set of labels for entire workflow
Workflow
graph

The workflow can be modelled as a directed acyclic graph (DAG), in which the root node
represents the object under consideration and all other nodes are classification options

Node A representation of an option in our model
Node level The sequence that the question is presented to the user within a workflow

Table III.
Notations specific to
our model

Notation Definition

Wf Represents the graph based on the workflow of classifying object o, it has node levels to
indicate the questions to classify the corresponding attributes of the given object, and nodes to
represent the options available for each attribute

A(n) Represents the available options at node level n
an jð Þ Represents the individual option at node level n, where j 2 f1; . . . ; jA nð Þjg
lo
u
nð Þ Represents the label chosen by user u at node level n for object o. Thus, the labelling result

(lo
1
1ð Þ; lo

1
2ð Þ,. . ., lo

1
nð Þ) will represent the ordered list of nodes (the traversal path) visited by user 1

when classifying o, which is called as a label path
Lo

u The label path chosen by user u for object o
Lo nð Þ All labels for object o at node level n
Lo nð Þ uniqueð Þ Unique labels for object o at node level n, Lo nð Þ uniqueð Þ � A nð Þ
~Lo Represents the inferred label path for object o. It is a set of inferred labels for each node level

described as ( ~lo 1ð Þ ; . . . ;
~lo nð Þ )

Lgoldo True label path for object o
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Algorithm 4 Our Adapted Approach
1: procedure PREDICT_BY_NODELEVEL(Lo)
2: num_levels ¼ n;
3: for level 2 range(n) do
4: ifmethod ¼¼ mv then
5: procedure FINDUNIQUELABEL(Lo)
6: Lunique  fluog, where Lunique � A and luo 2 A and u#Uo;
7: for l 2 Lunique do
8: pl  count lð Þ � jLij ⊳ percentage of l being voted as the

label for object o;
9: return LCn  f l; plð Þg⊳ list of candidate labels and their

percentage for o;
10: ifmethod ¼¼ em then
11: procedure INITIALISE(pl)
12: pl  count lð Þ � jLoj ⊳ percentage of l being the true label

for object o (l2 A);
13: while not converged do
14: Estimate error rate for user u:

15: u u
ll�  l u

ll� þ
X
o2Lo

pl � I luo ¼ l�
� �

16: Estimate confusion matrix:

17: eull�  u u
ll� �

X
q

u u
lq ⊳ q is the accuracy of user u

18: Estimate class priors:

19: prl  
X
o

pol � jOj

20: Calculate class probability for object o:

21: pl  prl
Y
u2Uo

Y
m

ejam
� �

I lu ¼ mð Þ �
X
q

prq
Y
m

euqm
� �

I lu ¼ mð Þ

22: return LCn  f l; plð Þg ⊳ list of label candidates and
corresponding probability for o;

23: ifmethod ¼¼ mp then
24: procedure INITIALISATION(yu�>u)
25: for (o, u)2 L do
26: Initialise yu�>o (�N �1; 1ð Þ);
27: procedure ITERATION(kmax)
28: for k2 f1; . . . ; kmaxg do
29: for (o, u)2 L do
30: xko�>u /

X
u�2U

Eou� � yk�1u�>o u� 6¼ð u);

31: for (o, u)2 L do

32: yku�>o /
X
o�2O

Eo�u � xko�>u o� 6¼ð o);

33: xo /
X
u2U

Eou � ykmax�1
u�>o

34: if sign(xo) == 1 then
35: LCn:append xo;1:0ð Þð Þ
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36: procedure ASSEMBLE_MOSTPOSSIBLEPATH(Lo)
37: num_levels ¼ n;
38: LC ¼ fg;
39: for z1 2 LC1 do
40: for z2 2 LC2 do
41: . . .
42: for zn 2 LCn do
43: LC:append z1; z2; . . . ; znð Þ; pz1 � pz2 . . .� pznð Þ� �

;
44: ~Lo =;
45: pmax = 0;
46: for Z 2 LC do
47: if pZ � pmax then
48: pmax  pZ;

49: ~Lo  Z;

50: return ~Lo;

Our adapted approach assumes that labels at different levels in the workflow are independent, then
assemble the label path from each node level based on the workflow graph. In the adapted
approach, not only we reward partially correct answers from the crowd by applying each of the
algorithms at each node level in the graph and compute scores for each individual labels, but also
we consider the valid pathwhen inferring the correct path.We also specially choose two algorithms
that take into account the performance of the crowd in their computations, EM andMP. The EM
algorithm sums up all node probabilities along each path to determine the ranking score. TheMP
algorithm returns true if that particular label at the node level is relevant or false otherwise. This
means that we assign the score for the candidate paths correspondingly either as 1.0 or 0.0. By
studying it, we want to allowMP and EM to be able to better identify those users who, while not
doing sowell overall, are very skilled at a particular sub-task (question) in theworkflow.

4. Evaluation
To evaluate the three algorithms and our adapted approach, we compare the classic approach
where algorithms are applied on each node level and simply put together (we call it “naive-
approach” here) with our “adapted-approach” which uses classic approach while strives to
infer a valid correct path by considering the workflow graph. Thus, we have six different
approaches: mv_adapted, mv_naive, mp_adapted, mp_naive, em_adapted, em_naive. Each
inference algorithm was applied to six data sets with different microtask crowdsourcing
workflows. We start with the evaluation setup of the data in Section 4.1 and the evaluation
metrics in Section 4.2. Then we present the evaluation of inferred result in Section 4.3.

4.1 Data
First, we used three existing data sets. The first one is from the Snapshot Serengeti[1]
project and consists of all crowd classifications within the time span from 10 December 2012
until 17 July 2013. It contains 7,800,896 labels from 890,280 volunteers for a total of 66,892
objects. For our evaluation, we used a gold standard with curated labels for 4,149 objects,
which was created by professional scientists working on the Snapshot Serengeti project. To
evaluate our approach we took all labels received from the crowd for the 4,149 objects which
contains 112,027 labels submitted by 8, 304 volunteers. The second data set is from the Dark
Skies app within the Cities at Night[2] project. It consists of 1,275,354 classifications by
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19,818 volunteers submitted in a time span from April 27th, 2014 until December 5th, 2016.
The gold standard consisted of 200 objects whose labels were manually validated by the
science team in Cities at Night. These 200 objects received 1,341 labels from 692 users from
CrowdCrafting[7]. The third one is from the GalaxyZoo[3] project where we randomly
choose 500 objects consisting classifications from 16 February 2009 to 21 May 2009. The
workflows for the three data sets are depicted in Figures 4, 5 and 6, respectively. To explore
the effects of volunteers/paid context on the results, the tasks are also setup on paid
crowdsourcing platform tomimic the tasks done by volunteers.

4.2 Metric
Tomeasure the performance of our aggregation approach, we employ theAccuracymetric which
has been commonly used in classification evaluation in previous work (Khattak and Salleb-
Aouissi, 2011; Kamar et al., 2012; Sheshadri and Lease, 2013; Hung et al., 2013; Zhang et al., 2017a;
Zheng et al., 2017b). Accuracy is a measure allowing us to understand the percentage of correct
answers (inferred by algorithms). The accuracy is defined as the percentage of objects that have
been correctly inferred. Higher accuracy indicates better performance.

Accuracy ¼

XjOj

o

Bernoulli Lgoldo ¼¼ ~Lo

� �

jOj

The above equation is by default for calculating the accuracy for the inferred label path.
Bernoulli Lgoldo ¼¼ ~Lo

� �
indicates the outcome (either 0 or 1) of comparing gold category

with the category predicted by different predictor. As we use the adapted node-level based
implementation, it makes sense to also evaluate how accurate the inferred label is on each
node level. In such context, Lgoldo n½ � represents the ground truth for object o at node level n
and ~Lo n½ � represents the inferred true label at node level n. Hence, the accuracy at node level
n for the top answer can be calculated by:

Accuracy_leveln ¼

XjOj

o

Bernoulli Lgoldo n½ � ¼¼ ~Lo n½ �
� �

jOj

To understand whether our adapted approach is significantly better, we will also run
significant testing for all algorithms chosen. We will use standard 5 per cent significance level.
For each data set, we will randomly select 100 objects and select 50 times. The accuracy for
each selection is calculated forMV,MP and EM for both naive and adapted approach. We will
use the function scipy.stats.ttest_ind from Python[8] to perform the two-sided test for naive and
adapted samples in all six cases (three workflows, each has two contexts: volunteer and paid).

4.3 Results
Table IV shows the accuracy of each algorithm on each data set for the inferred answer.
Considering the overall classification accuracy (by path), our adapted methods have better
performance than the naive approach in both volunteer and paid crowd context; at the same time,
each algorithm generally has higher accuracy for volunteer context compared to the paid crowd.
Note that the best accuracy achieved increases as the depth of the workflow increases for the paid
crowd context, where Serengeti with two questions achieves 45.9 per cent, darkskies with three
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questions achieves 53.0 per cent and galaxyzoo with maximum of nine questions achieves 57.9
per cent. Similar pattern is not observed for the volunteer context. If looking at the accuracy
breakdown by node level (Figures 8, 9 and 10), it is notable that for multiple-questions task with
more steps, adaptedmethod ofMP and EM generally shows better accuracy at most of the node
levels. For the data sets from a task with fewer steps in its workflow (less number of levels in the
graph), such as the Serengeti task in Figure 8,MV performs better.

Meanwhile, from the Table IV we can see MV shows an acceptable accuracy for most of the
volunteered data sets (mostly over 75 per cent, except for GalaxyZoo data set), but has poor
accuracy (less than 60 per cent) in the paid crowd context though it performs better than other
individual algorithms we tested, which suggests it need to be complemented by other methods
which might be good at specific objects where MV cannot perform well. Looking at the accuracy
by level results, it does not seem to suggest that as the depth of the task (number of levels)
increases, accuracy has a tendency to consistently increase or decrease. The accuracy of each
level is more relevant to its intrinsic character (e.g. number of options in that level, and ambiguity

Table IV.
Accuracy (by path) of
each algorithm

Data set Graph depth/size Crowd type Algorithm Accuracy

serengeti 54-11 volunteer mv_naive 0.590
mv_dapted 0.776
em_naive 0.572
em_adapted 0.655
mp_naive 0.755
mp_adapted 0.755

paid mv_naive 0.299
mv_adapted 0.459
em_naive 0.244
em_adapted 0.337
mp_naive 0.083
mp_adapted 0.207

darkskies 8-3-2 volunteer mv_naive 0.690
mv_adapted 0.785
em_naive 0.040
em_adapted 0.450
mp_naive 0.340
mp_adapted 0.495

paid mv_naive 0.405
mv_adapted 0.530
em_naive 0.020
em_adapted 0.385
mp_naive 0.335
mp_adapted 0.305

galaxyzoo 3-3-2-3-2-2-3-6-4-2-7 volunteer mv_naive 0.554
mv_adapted 0.631
em_naive 0.470
em_adapted 0.564
mp_naive 0.002
mp_adapted 0.562

paid mv_naive 0.371
mv_adapted 0.579
em_naive 0.000
em_adapted 0.331
mp_naive 0.002
mp_adapted 0.367
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Figure 8.
Accuracy by node
level (Serengeti)
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Figure 9.
Accuracy by node
level (Darkskies)
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Figure 10.
Accuracy by node
level (Galaxyzoo)
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or subjectivity of the corresponding object). For instance, the darkskies task asks the user to
evaluate the sharpness and cloudiness of the image, which can be subjective to some degree. This
is also why the result by node level seems to show an interesting picture that on different node
level for different workflow, sometimes em has the best result (such as level 4 and 5 of
GalaxyZoo), sometimes mp has the best result (such as level 1 of Serengeti in volunteer case),
other timesmv has the best result (level 1, 2, 3 of Darkskies in both volunteer and paid context).

Notice that MP for the darkskies paid crowd context, it is the only case we observe that the
naive approach has higher overall accuracy (by path) than adapated, which is due to the fact
that both the level 2 and 3 (determining cloudiness and sharpness of the image) of darkskies
workflow are in essence independent questions of the first node level (whether it is a city, or
stars or anything else) though the task workflow made it a subsequent question only when“
city” is chosen as the label for first node level. Similarly, the accuracy by level result from
mp_adapated is lower than mp_naive on a few other occasions at different node level, but in
those occasions, there is always one node levelmp_naive has considerably poor accuracy, such
as in Galaxyzoo node level 2, which subsequently leads to the very low overall accuracy
considering the whole path. The reason that the mp_adapted approach could have lower
accuracy at certain level is thatmp approach actually only returns 1.0 or 0.0 to indicate whether
that is the predicted label, but our adapted approach tried to assemble/infer a most probable
valid label path (as shown in Algorithm 4) based on the candidate of predicted labels from
individual node level. Therefore, for themp case, the randomness of ranking the combinations
might not do well for the corresponding node level, however, the overall accuracy has shown to
be better than the naive approachwhich completely neglects the validity of a label path.

Notice that though our adapted approaches achieve higher accuracy for the first node level
in most case, mv_adapted has slightly lower accuracy comparing to mv_naive for GalaxyZoo
workflow under volunteer context, which is because the waywe assemble the result is based on
the overall possibility (percentage of voting at each node level multiplied) of a path instead of
assuming the top voted label at node level 1 is correct (and then traversing subsequent node
based on that assumption). Our main purpose is to obtain the most possible valid label path,
which has been shown effective in Table IV. We have run the significant testing for all
algorithms chosen. The result is statistically significant for all our adapted approach as the p-
value is smaller than the pre-defined significant level (5 per cent) in all cases.

5. Discussion
In this section, we expand on the key findings of the evaluation results introduced earlier.

5.1 Crowd context matters
We have deliberately chosen three representative tasks each presenting two data sets produced by
volunteers and paid crowd. Based on our results, there is a distinctive difference in performance for
the same algorithm applied in these two different contexts. For all algorithms, the accuracy it can
achieve under the volunteer context is evidently higher than the paid crowd, without any
exception. For the same workflow, the overall accuracy (by path) it can achieve in volunteer
context is normally around 30 per cent higher than the paid crowd context for workflowswith two
to three questions. However, this does not seem to be the case when workflow involves more
questions, such as in the galaxyzoo case where the best accuracy all the algorithms can achieve is
only around 5 per cent higher in volunteer context compared to paid crowd context.

5.2 Workflow counts
From the representative tasks we have shown so far, there are two main factors that need to be
taken into account when designing a classification crowdsourcing workflow especially when
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classification steps are interdependent: the number of questions (determining the depth of the
graph) and howmany answer options per each question (width of the corresponding node level,
affecting cognitive efforts required for passing that node level with correct chosen options). In
our evaluation, we found evidence that both depth and width impact on overall performance of
the inference algorithms. One visible pattern is for the paid crowd data sets. In this setting,
overall accuracy (by path) increases as the depth of the graph increases (for both mv_adapted
and mp_adapted), which suggests that it might be a good idea to have more classification
questions each with fewer options rather than having fewer questions and givingmany options
to choose from, particularly for the case where the crowd’s skill level is uncertain. The other
notable aspect is for volunteer context, themp algorithm has a comparative performance with
mv in Serengeti workflow, but not in the other twoworkflowswithmore levels.

5.3 Heuristics-based aggregation as an addition
On observing the result in Section 4.3, it seems to be a promising way if we consider combining
output from these algorithms using a heuristic strategy to perform better inference. We want to
use results from mv_adapted, em_adapted and mp_adapted in combination to exploit their
strengths and weaknesses for complex classification tasks. To do so, we could have an
aggregator which is based on following intuitions: the number of unique classifications of an
object (defined by u) shows the degree that the crowdworkers agree/disagree on the classification
where the higher number indicates higher degree of disagreement and normally imply the object
is either a bit difficult or ambiguous to be classified; the ratio (defined by r) between the unique
number of classifications/answers collected from the crowd and the total number of
classifications/judgments also demonstrates how diverse the answers are for the corresponding
object and hence similarly; As three-sigma rule (Pukelsheim, 1994) in the empirical sciences
suggests that almost all values should lie within three standard deviations of the mean in a
normal distribution, and theoreticallymean plus one, two or three standard deviation(s) covers 68,
95 and 99.7 per cent of the data. In the case where MVmight potentially fail (where workers tend
to disagree), the number of unique classification or the ratio of the number of unique to the total
number of classification for an object falls within the higher range of the distribution. Thus, a
heuristic aggregation strategy we could consider: Look at the intrinsic characteristics of collected
classifications for each object, such as the number of unique classifications and the ratio of that
against the total number of classifications. Then, based on the third intuition above, we can use
the skewness (defined by s below) of the distribution for number of unique (U�N um ; usð Þ) and
ratio (defined by R�N rm ; rsð Þ) respectively to heuristically chosen bound where MV can be
potentially complemented by other approaches. However, choosing an optimal threshold is not
straightforward and need to be explored in futurework.

6. Related work
Our approach is informed by existing work on microtask crowdsourcing and quality
assurance in crowdsourcing, which we review in section.

6.1 Microtask crowdsourcing and workflows
In crowdsourcing, a problem needs to be sometimes decomposed into smaller, fine-granular
microtasks and then arranged in a workflow for more effective processing. In general, a
workflow consists of a set of microtasks; the microtasks are sometimes of different types
and can be dependent or independent of each other. For instance, the find-fix-verify
workflow proposed by Bernstein et al. (2010) uses microtask crowdsourcing to proofread
and shorten text in three steps: finding areas of improvement in the text; fixing or improving
them; and verifying the quality of the changes. In each step, the crowd is asked to carry out
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the same type of microtask, sometimes iteratively. In Kittur et al. (2008, 2013) and Acosta
et al.’s (2013) studies, researchers have proposed to group the same or similar microtasks
into batches as a means to facilitate learning effects. Previous studies have also shown that
task performance can be improved as a function of several factors, including the design of
tasks and workflows, motivation and incentives and training (Bernstein et al., 2010;
Demartini et al., 2012; Kittur et al., 2008; Wiggins et al., 2011).

In the citizen science platform such as Zooniverse[9], most of the classification projects are
not simple tasks with one-question, instead is multiple-questions chained together. Zooniversei

uses workflow to “group a collection of tasks into a logic unit”[10] which is, in essence, referring
to the relatively multiple-questions task which need to be finsihed in several steps. In Snapshot
Serengeti[1], classifying an image means answering a set of independent questions, sometimes
several times when more than one animal is present in the image. In Cities at Night[2] and
Galaxy Zoo[3], questions are inter-related and the answers given in one step determine the
questions in the subsequent steps. In the context of such classification task, a workflow is used
to refer to the logical organisation of each classification questions and corresponding options.

Most previous studies around crowdsourcing workflows have focussed on the design of the
workflows and have shown that a particular type of workflow can be crowdsourced effectively
(in terms of the accuracy of outputs, budget, time etc.) (Little et al., 2009; Bernstein et al., 2010;
Tran-Thanh et al., 2015). In some cases, researchers have proposed bespoke quality assurance
methods for their workflows (Lintott et al., 2011; Willett et al., 2013). Our work proposes a
strategy which can be applied to determine the correct label path for a whole range of
classification tasks, spanning over several steps with independent or dependent multiple-choice
questions, which is different than existing research that mainly focus on the result for the final
step (nomatter howmany other previous steps exist in its workflow).

6.2 Inference algorithms
Researchers have proposed inference algorithms, mathematical models that can automatically
infer the correct solution to a given problem from a solution space defined by the crowd. For
example, Ipeirotis et al. presented an algorithm that assesses the performance of crowdworkers
and exploits this information to estimate the quality of answers on Mechanical Turk (Ipeirotis
et al., 2010). Karger et al. proposed to use MP to infer correct answers from worker’s answers
(Karger et al., 2011). Bachrach et al. (2012) used a Bayesian graphical model to grade test
answers in scenarios where the ground truth cannot be made available. Whitehill et al. (2009)
followed an expectation maximisation approach to identify correct classifications, depending
on the expertise of the workers and the level of difficulty of the task. In the citizen science
project Galaxy Zoo Supernovae, crowd answers were analysed using a Bayesian generalisation
of the same expectation maximisation idea (Simpson et al., 2011). More recently, Difallah et al.
(2015b) compiled a set of features that can be used to predict answer quality, based on an
analysis of Mechanical Turk logs. Several studies have shown that it is possible to combine
automatic prediction methods (such as Bayesian or generative probabilistic models) with
additional input from the crowd to further improve the accuracy of the predictions (dos Reis
et al., 2015; Hare et al., 2013; Ipeirotis et al., 2010; Loni et al., 2014; Simpson et al., 2013). Other
studies have analysed and compared different algorithms (Zheng et al., 2017a; et al., 2015;
Sheshadri and Lease, 2013), emphasising the need for more research to understand the
interplay among different sets of design parameters on the overall performance.

All these existing methods have considerably advanced the state of the art. However,
they cannot be applied to every type of microtask crowdsourcing workflow without
restrictions. Moreover, most of the research carried out so far in this space has looked at
rather simple binary or multiple-choice classification tasks with the aim to identify a single,
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correct answer. This class of microtasks, albeit important and widely used, is not always the
norm. As we have seen in the examples from the previous section, there are cases where a
problem cannot be easily decomposed into independent microtasks, or where different,
related microtasks should be grouped into more complex workflows for efficiency reasons.
Although there are a few recent works looking into the relatively complex multiple-step
classification tasks, each of them has a domain-specific or problem-specific focus
(Parameswaran et al., 2011; Kim et al., 2002; Wu et al., 2012; Bragg et al., 2013; Kamar and
Horvitzm, 2015; Otani et al., 2016). Bragg et al. (2013) and Otani et al. (2016) both researched
the entity classification that normally involve categorising the given entity into parent-child
classes in different steps but have very different perspectives. Bragg et al. (2013) focus on
improving the workflow for generating taxonomy, as well as inference methods to induce
the parent-child relationship, while Otani et al. (2016) focus on the task where a parent-child
relationship exists between two adjacent classification steps, and propose label aggregation
methods that adapt from existing GLAD method (Whitehill et al., 2009) by considering the
hierarchical class-subclass structure. In addition, Wu et al. (2012) investigate the sequential
data labelling scenario and present Sembler to ensemble crowd sequential labellings by
leveraging the statistical correlation and dependency among multiple instances/sentences
which is domain specific and not applicable to other multiple-step classification where no
such statistics can be exploited. Parameswaran et al. (2011) and Kamar and Horvitz (2015)
particularly look at the multiple-step image classification tasks while both took the
approaches that are not easy to be generalised to suit for other multiple-step classification.
Parameswaran et al. (2011) explicitly formulate the classification task as human-assisted
graph search problem, presenting the dimensions characterising the different type of
classification and developing algorithms to optimise the questions to be asked (at the
different node) which is evaluated with simulation. On the other hand, Kamar and Horvitz
(2015) focus on optimising worker allocation in the hierarchical classification task (HCT) and
develop answer models and evidence models for HCT consensus while both models are
constructed with supervised learning, assisting with the Sloan Digital Sky Survey (SDSS)
features identified by machine visions available for GalaxyZooc data set. There is also a few
research particularly dedicating to automatic hierarchical classification where an taxonomy
is given and a parent-child relationship among classes exists, but all are bound to a certain
domain. For instance, Dumais (2000) investigate automatic hierarchical classification using
Support Vector Machine with existing web pages whose category are known as training
data. Su et al. (2006) present an automatic method to classify structured web databases by
leveraging probing queries, the returned count of query result and the SVM classifier. Such
automatic hierarchical classification not only needs existing labelled data as training data
but also focus on the classification where answers to further classification step down the line
(child classes) are always a sufficient condition to confirm the answer to the previous
classification step (parent classes).

Our approach differs from existing work mainly in the fact it is not restricted to a specific
type of multiple-step classification and does not need additional information such as the
machine identified features of the image or frequency/correlation among word usage,
neither does it rely on the parent-child relationships between classification steps. Our
method is general and intuitively easy to be applied in any multi-step classifications. We
discussed the three main individual algorithms in Section 2 and noted that whilst all three
algorithms can be used to infer the correct answer for a multiple-choice question, they differ
in terms of the inputs and outputs. In our approach, we devised a new strategy to use
existing algorithms to achieve higher classification accuracy.
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7. Conclusion
Ensuring quality is one of the grand challenges of microtask crowdsourcing. While previous
research has looked at inferring correct answers for microtasks consisting of single binary
or multiple-choice questions, our research proposes a model that can be applied to both
single-question and multiple-question scenarios, filling the gap for understanding how to
aggregate in the multiple-question scenarios. We propose a graph model and an “adapted”
aggregation method that can improve the accuracy in inferring true label path in complex
workflows with several interdependent questions. Though a few previous works tried to
address similar multiple-step classification, they are either limiting it to the hierarchical
classification scenarios where a parent–child relationship exists between classification steps
or restricting the method by having to involve additional information. We propose using the
graph to model a microtask crowdsourcing workflow and to support inference algorithms in
making decisions about correct labels for classification tasks with multiple-questions, where
the answer to one question does not have to be the sufficient condition to or imply the
answer to the previous question is correct. We believe this is the first work that investigates
aggregation in a multiple-step classification task with interdependent questions to infer the
correct label path and assess the classification accuracy accordingly.

To this end, we explored three inference algorithms, MV, MP and EM, each with proven
benefits in quality assurance in crowdsourcing. We compared the performance of our
adapted approach and the existing naive approach, using six representative data sets. We
evaluate the performance of individual algorithms for overall accuracy where a full labelling
path is considered as an atomic, correct answer and a more refined measure which looks at
accuracy in individual node level of the workflow graph. The results have shown that our
adapted approach has significantly improved the accuracy compared with the naive
approach. The result also demonstrates that while MV does well in overall accuracy, a
deeper analysis of the accuracy in each node level revealed a more interesting picture. Hence,
a heuristic-based aggregation approach might be a potentially better solution by combining
results from multiple algorithms leveraging the strength of each other. This suggests the
need for more dynamic inference approaches that can adapt to the complexity of the
crowdsourcing workflow.

In future work, we plan to devise inference methods that take other, more workflow-
specific factors into account. Our current method assumes independence between labels
from different levels when inferring the answer for each level. It can be potentially improved
to consider the possible correlation between labels in different node levels. For instance, it
can consider giving different weight to labels based on the inferred result from the previous
level. Such method requires a top-down traversal process which might bring side-effects
since it counts heavily on the inferred result from the previous level, and carries on the effect
(weight) to subsequent levels even the choice in the previous levels may be incorrect. As the
correlation between labels in different node level is complicated, the feasibility of
incorporating such correlation information into the aggregation process needs further
investigation. Meanwhile, the number of options and the length of possible paths in a
workflow deserve more in-depth experiments. One promising direction will be to employ
other machine learning approaches for truth inference. For instance, using the workflow
properties along with the crowdsourcing generated data to learn and explore features
automatically [Huynh et al. (2013)], and produce decision tree to help choose the proper
inference algorithm. Alternatively, certain properties from crowd-collected data could be
further exploited to train machine learning algorithm(s) with selective labels to directly infer
true label path.
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Notes

1. https://www.snapshotserengeti.org/

2. http://citiesatnight.org/

3. https://www.galaxyzoo.org/

4. https://success.crowdflower.com/hc/en-us/articles/203527635-CML-Attribute-Aggregation

5. https://data.galaxyzoo.org/gz_trees/gz_trees.html

6. In a lot of cases, the workflows are tree-shaped, but some cases are not a tree such as the three
tasks presented above.

7. https://crowdcrafting.org/

8. https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.ttest_ind.html

9. https://www.zooniverse.org/

10. https://blog.zooniverse.org/2013/06/20/how-the-zooniverse-works-the-domain-model/
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