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Abstract

Purpose — This study aims to form a new concept of power-to-gas-based virtual power plant (GVPP) and
propose a low-carbon economic scheduling optimization model for GVPP considering carbon emission
trading.

Design/methodology/approach — In view of the strong uncertainty of wind power and photovoltaic
power generation in GVPP, the information gap decision theory (IGDT) is used to measure the uncertainty
tolerance threshold under different expected target deviations of the decision-makers. To verify the feasibility
and effectiveness of the proposed model, nine-node energy hub was selected as the simulation system.

Findings — GVPP can coordinate and optimize the output of electricity-to-gas and gas turbines according to
the difference in gas and electricity prices in the electricity market and the natural gas market at different
times. The IGDT method can be used to describe the impact of wind and solar uncertainty in GVPP. Carbon
emission rights trading can increase the operating space of power to gas (P2G) and reduce the operating cost
of GVPP.

Research limitations/implications — This study considers the electrical conversion and spatio-
temporal calming characteristics of P2G, integrates it with VPP into GVPP and uses the IGDT method to
describe the impact of wind and solar uncertainty and then proposes a GVPP near-zero carbon random
scheduling optimization model based on IGDT.

Originality/value — This study designed a novel structure of the GVPP integrating P2G, gas storage
device into the VPP and proposed a basic near-zero carbon scheduling optimization model for GVPP under
the optimization goal of minimizing operating costs. At last, this study constructed a stochastic scheduling
optimization model for GVPP.
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Nomenclature Abbreviations

GVPP = power-to-gas-based VPP;

PV = photovoltaic;

IGDT = information gap decision theory;
GSD = gas storage device;

P2G = power-to-gas;

GST = gas storage tank;

WPP = Wind power plant;

PSD = power storage device;

DRP = demand response provider;

CGT = conventional gas turbine;

BPG = biomass power generation;

UPG = utility power grid,;

GAMS = the general algebraic modeling system; and
CGT = mixed integer linear programming.

Set
t = index for time; and
7 = index for step.

Scalar

Qlffztgd = rated gas production power of P2G;

o = maximum degree of uncertainty;

) = carbon emissions per unit of electricity;

ficer = conversion efficiency of natural gas;

nppc,: = conversion efficiency of biomass fuel;

Y = government or the regulatory authority sets the carbon emission reduction allocation rate;

a = calculation coefficients of carbon emissions from CGT power generation;

b = calculation coefficients of carbon emissions from biomass power generation(BPG) power
generation;

= calculation coefficients of carbon emissions from utility power grid (UPG) power generation;

= length of the carbon emission growth interval;

= increase of the carbon trading price of each step;

= price range of the carbon emission;

acgr = calculation coefficients of CGT power generation fuel cost;

beer = calculation coefficients of CGT power generation fuel cost;

ccer = calculation coefficients of CGT power generation fuel cost; and

ohee = expected target deviation coefficient.

= q g0

Parameter

Ceo, = carbon trading cost of GVPP;

Peo, = carbon trading price on the market;
Pypg,; = price of electricity purchased;

Ccery = power generation cost of CGT at time t;
Cgpc; = power generation cost of BPG at time t;

G4, = startandstop cost of CGT at time t;
Ngf(’fT = hot start cost of CGT;
Nl = cold start cost of CGT;



Nélg s = shutdown cost of CGT; Information

Qpo; = natural gas production by P2G at time t; gap status
Sest.7, = gasstorage in GST at the initial moment; theory
ngs(:i‘ .= the amount of natural gas entering GST at time t;
nglEl = the amount of natural gas that GST inputs to CGT at time t;
CH = ime t:
Q. the amount of natural gas that GST enters the natural gas network at time t; 107
Gore = maximum gas storage capacity of GST at time t;
GéﬂT , = minimum gas storage capacity of GST at time t;

QEZS%T“ = minimum power of the gas storage of GST at time t;

QEZS(%T?!X = maximum power of the gas storage of GST at time t;

g‘Z‘g .= minimum power of natural gas output by P2G at time t;
bso¢ = maximum power of natural gas output by P2G at time t;
Q‘é‘éﬂT’ , = minimum power of natural gas output by GST at time ;
tef, = maximum power of natural gas output by GST at time t;
gr% = maximum power generation of CGT;
gg‘é"T = minimum power generation of CGT;

Agloy = up climbing power of CGT;
Agcor = down climbing power of CGT;
Mg, = shortest starting time of CGT;

Mgfé , = shortest downtime of CGT;
&%, = maximum charge and discharge power of the PSD at time ¢, respectively;
gg;}) , = minimum charge and discharge power of the PSD at time Z, respectively;
Eé’(%g , = carbon emissions that can be converted by P2G;
Pp, = maximum power storage capacity of the PSD at time t;
m é%. .= minimum power storage capacity of the PSD at time t;
Spsps+1 = storage capacity of the PSD at time t+1;
D™ =minimum power generation output provided by DRP at step j;
Di = power generation output that DRP can provide at step ; at time £

ALPE,, = maximum power generation output allowed by DRP at time t;
gihp, = maximum and minimum output power of GVPP at time £

gg}}'pp , = maximum and minimum output power of GVPP at time £
g?bff;ax = maximum discharge power of the PSD at time ¢,
ggr;;ax = maximum charge power of the PSD at time £
Pr, ' = peak shaving cost of wind power and PV in response to power deviation at time ;
g = output state of traditional power generation resources other than wind and solar at time £
u; = start-stop state of traditional power generation resources other than wind and solar at
time £
Ty, = continuous running time of CGT at time t;
T‘C’fé,[ .= down time of CGT at time t;

chn(l;nT = shortest hot start time of CGT;
TgJGldT = cold start time of CGT;
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Téfé %ni" = down time of CGT;
T¢tr-1 = continuous running time of CGT at t — 1;

TngfT T continuous downtime of CGT at t — 1;
77%11 , = charge power of the PSD at time t;
’7?31?0‘ ;= discharge power of the PSD at time t;
h = 1 .
e, charge power of the PSD at time t;
77%;3;;, , = discharge power of the PSD at time t; and
E = free carbon emission quota obtained by GVPP.
Variables

gcery+ = power generation of CGT at time £,

Zgppc,: = power generation of BPG at time t;

gurcy = purchased electricity of GVPP at time t;

E = actual carbon emissions of GVPP;

glc%(r ., = bower generation of CGT using methane provided by P2G at time £

gggg , = bower generation of CGT using methane provided by GST at time
gggm = charging power of energy storage at time t;

gurcy = outsourced power output of GVPP at time t;

ALpgp, = output provided by the demand response integrator (DRP) at time t;
L; = load demand at time t;

ALpyi; = power load of P2G at time t;

AL], = actual power generation output provided by DRP at step j at time t;
Fest = operating cost of GVPP;

gurcy = electricity purchased by GVPP at time t;

uccry = operating state of CGT at time t;

gpyy = power generation output of PV at time t;

gwrep, = power generation output of WPP at time t;

PigD , = discharging power of energy storage at time t;
gTWP? , = actual output power generation of wind power;
g’l",V .= actual output power generation of PV;

Fhigc = expected target value of the decision-maker;
Fg’é’; = optimal GVPP target value;
Lyet; = netload demand at time £ and

Sewort = the worst scenario of GVPP operation.

1. Introduction

In recent years, resource and environmental constraints have been continuously strengthened,
and the centralized energy development model has gradually become difficult to meet the
requirements of transmission loss, utilization efficiency and environmental pollution. Distributed
energy with gold users and high-efficiency has developed rapidly. In the “13th Five-Year Plan for
Energy,” it is specified that the installed capacity of distributed natural gas power generation and
photovoltaic (PV) power generation will reach 15 million kilowatts and 60 million kilowatts by
the end of 2020 and actively develop decentralized wind power [1]. However, the small-capacity,
large-volume and low-density characteristics of distributed energy sources have caused their
large-scale access to bring great challenges to the safe and stable operation of the power grid.



Virtual power plant (VPP) uses advanced intelligent computer technology and communication
systems to aggregate a variety of distributed power sources, energy storage and flexible loads,
etc., to achieve the goal of overall participation in the optimal operation of the power system (Ju
et al, 2019a). In particular, the power-to-gas (P2G) technology is becoming more and more mature,
which can use electric energy to convert CO, into methane to achieve flexible electrical conversion
(Gotz et al, 2016). If it is combined with VPP to P2G-based VPP (GVPP), it will generate
electricity-gas-electricity recycling utility and carbon emission reduction effect. It has important
theoretical value and practical significance for promoting the optimized utilization of distributed
energy and the clean, low-carbon, efficient and safe utilization of energy.

Many researches have been carried out on the optimization of distributed energy utilization
with P2G at home and abroad. The main operating process of P2G includes two processes:
water electrolysis and methanation. Water electrolysis process splits water into hydrogen and
oxygen by using electricity. Methanation is the chemical reaction of hydrogen and CO, to
produce CHy, and the consumption and production of water in the two processes are equal
(Guandalini et al., 2015). Paolo ef al. (2018) established an electrical interconnection system with
P2G and proposed the concept of energy flow that integrates electricity and natural gas.
Manuel et al. (2018) established a P2G-containing power system scheduling optimization model
with strong versatility and scalability and analyzed the application space of P2G from the level
of large-scale power systems. Furthermore, David et al (2018) discussed the cooperative
operation of P2G and distributed energy, established a P2G-containing multi-source microgrid
operation optimization model and analyzed the effect of P2G on the utilization of distributed
energy. Chaudry et al (2008) build a P2G-containing multi-level energy system scheduling
model and discuss the optimization effect of P2G technology in improving system operation
economy and reducing natural gas node pressure. The abovementioned research provides a
prerequisite foundation for the construction of the optimal operation model of GVPP. However,
the existing literature seldom considers the fusion effect of P2G and carbon emissions trading
and only considers the problems of P2G’s own operating costs and system economics. In fact,
China’s unified carbon trading market has been launched, and the eight pilot projects carried
out in the early stage have completed a considerable transaction scale (Wang et al, 2019). If
carbon emission rights trading and P2G can be combined with each other, and the optimization
of GVPP operation is considered, it will help to improve the economic and environmental
benefits of GVPP operation, and it will also help promote the market to absorb distributed clean
energy enthusiasm (Liu ef al,, 2021). Based on the analysis, this study focuses on the research of
GVPP scheduling optimization in the context of carbon emissions trading.

In addition, in the GVPP with random distributed power sources such as wind, how to
analyze the influence of wind and solar uncertainty is also a key issue for the optimization of
GVPP. Existing research results are mainly divided into probabilistic decision-making methods
(Aien et al, 2016) and fuzzy decision-making methods (Aguilar ef al, 2021). Majidi ef al (2019)
calculate the spinning reserve capacity under the condition of certain risk probability according
to the probabilistic wind power, conventional unit shutdown and load uncertainty. Compared
with the probability decision method, the fuzzy decision method does not need the probability
distribution function of random variables but uses the membership function to fuzzify the
uncertain variables. Wang et al (2020) propose a robust standby dispatch mode and a robust
economic dispatch mode for multiple scenarios of wind power. Among the above two types of
methods, how the first type of method accurately obtains the probability distribution function of
the uncertainty variable has become a key constraint affecting the accuracy of the decision
result. The second type of method does not need to establish the probability distribution of the
uncertainty variable but needs to make subjective simple assumptions, which makes it difficult
to set the subjective and objective fuzzy rules and membership functions reasonably. However,
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the information gap decision theory (IGDT) theory can maximize the unfavorable disturbance of
uncertain variables under the premise of meeting the pre-set target requirements. The obtained
solution can be guaranteed not to be worse than the preset target within the perturbation range
(Pilar et al.,, 2018) and can overcome the shortcomings of the above two types of methods. In this
study, it is used to describe the wind-solar uncertainty in GVPP and construct the GVPP
stochastic scheduling optimization model.

Based on the above analysis, domestic and foreign scholars have carried out a series of
GVPP optimization operation research and put forward research results that meet the decision-
making requirements in terms of system configuration, uncertainty analysis, optimized
operation model and benefit distribution strategy. However, it should be noted that there are
some gaps in previous research. On the one hand, for VPP, conventional gas turbine (CGT)
units have become an indispensable and important component of VPP due to their fast start
and stop speeds and low power generation emissions. P2G can convert the CO, generated by
the CGT power generation to CH, by using the abandonment of wind and the amount of
abandonment of electricity, and it can be used by the CGT for power generation again. This can
reduce the carbon emissions of VPP operations, but the existing literature seldom considers the
fusion effect of P2G and carbon emission rights trading and only considers the problems of
P2G’s own operating costs and system economics. On the other hand, due to the large
uncertainty in wind power plant (WPP) and PV power generation, when P2G is integrated into
VPP, the impact of uncertainty will extend from the power system to the natural gas system.
However, the current two main uncertainty analysis methods have their own shortcomings.
The IGDT can maximize the unfavorable disturbance of uncertain variables under the premise
of meeting the requirements of the preset target, and the obtained solution can be guaranteed to
be no worse than the preset target within the range of the disturbance. Therefore, all the above
analysis motivates us to put forward an optimization scheduling model of the GVPP. The main
contributions of this study are summarized as follows:

» design a novel structure of GVPP integrating P2G, gas storage equipment (GSD)
into the VPP. VPP includes WPP, PV, CGT, power storage device (PSD) and
controllable load;

» proposed a basic near-zero carbon scheduling optimization model for GVPP under
the optimization goal of minimizing operating costs, considering constraints such as
power supply and demand balance, P2G-GST joint operation, energy storage
equipment operation and spinning reserve. This model can be used to calculate the
expected optimization goals of decision-makers and provide a prerequisite basis for
the establishment of stochastic scheduling optimization models; and

* construct a stochastic scheduling optimization model for GVPP by using the IGDT
to measure the uncertainty tolerance threshold under different expected target
deviations and to establish the near-zero carbon emission stochastic scheduling
optimization model for GVPP under the standard and the worst scenarios.

The rest of this study is organized as follows. Section 1 designs a novel structure of GVPP
and calculated the carbon transaction cost of GVPP. Then, in Section 2, the near-zero carbon
scheduling optimization model for GVPP is constructed. In Section 3, application of the
IGDT is used to construct a stochastic scheduling optimization model considering the
uncertainty of WPP and PV. Finally, in Section 4 the nine-node energy hub system is
selected as the simulation system for verifying the effectiveness and applicability of the
proposed model. Section 5 highlights the contributions and conclusions of the Section 1
system structure and carbon transaction cost model.



1.1 Power-to-gas-based virtual power plant system composition

GVPP integrates P2G devices and gas storage tank (GST) with conventional VPP distributed
energy sources such as WPP, PV station, CGT, PSD and controllable loads. Among them, the
controllable load participates in system dispatch through an incentive demand response method,
which is mainly provided by a demand response provider (DRP) and is generally industrial loads
with flexible power characteristics, electric vehicle loads and some commercial loads. PSD and
GSD are based on real-time electricity price and gas price, choose discharge/gas or charge/gas, so
as to earn “spread” income. Figure 1 is a schematic diagram of the structure of GVPP.

In GVPP, P2G operations are divided into two processes: electrolysis and methanation.
Electrolysis is the direct injection of hydrogen into natural gas pipelines or hydrogen
storage equipment after the excess electric energy is produced by electrolyzing water to
produce hydrogen, and its energy conversion efficiency can reach 75% to 85%. The
methanation process is based on electrolysis. Under the action of a catalyst, the hydrogen
and carbon dioxide generated by the electrolysis of water react to form methane and water.
The specific chemical reactions are as follows:

electr01y51s

2H,0 2H; + O, @

CO, 4 4H, — CH4 + 2H,0 (2)

Through the abovementioned two-stage chemical reaction, the comprehensive efficiency of
electricity-to-natural gas conversion is between 45% and 60%. After the electricity is
converted into natural gas, it can be injected into a natural gas network or GSD. It can be
seen that the H,O input and output of the P2G chemical reaction are the same, and only CO,
is consumed, which is conducive to reducing the carbon emissions of GVPP power
generation. Figure 2 is a schematic diagram of P2G technology.

1.2 Power-to-gas-based virtual power plant carbon transaction costs

Carbon trading is a trading mechanism that allows participants to trade carbon emissions as
commodities by establishing a fair, open and just carbon trading market, thereby achieving
the goal of systematic carbon emission reduction (Geert et al., 2018). Generally speaking, the
allocation of carbon emission allowances is mainly based on free allocation. All participating

New Energy P2G
, Market Gas grld
' / information
o & -7 = g™ 5= | >
’ -~ =N f k :
1 -
[ s ptNel B
iy ‘BEE | Power market
.l\ = £ + ‘Local - ou Scheduling y l
"‘:\‘ '/‘r = : control platform \\\ i"for;"aﬁon % Power grid
' \ = % \)
Controllable\ " 1 2¢ /
load /-):J\\

Information
gap status
theory

111

Figure 1.
Composition diagram
of VPP




[JCCSM
15,2

112

Figure 2.
Technology
schematic of P2G
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entities formulate and adjust production plans based on the carbon emission allowances
they have obtained. If the actual carbon emissions are higher than the allocated allowances,
they need to purchase excess shares in the carbon trading market. On the contrary, the
remaining allowances can be sold in the carbon trading market. For GVPP, the initial free
carbon emission allowance is directly related to the power generation of different
components, and carbon trading can be carried out for the excess or deficiency. GVPP carbon
emission sources include two channels, namely traditional power generation resources and
purchased power. Among them, traditional power generation resources include gas-fired power
generation and biomass fuel power generation. At the same time, for the convenience of
analysis, it is assumed that the electricity purchased by GVPP is thermal power. At this time,
the carbon emission allowances obtained by GVPP is calculated as follows:

T
E =% 6(1—A)(mceri€ccts + Mpreircs + 8urcs)At )]
=1
where & refer to Geert et al. (2018), set to 0.648; further, to calculate the carbon emission cost
of GVPP, it is necessary to calculate the actual carbon emission of GVPP. According to the
Ju et al. (2019a), the carbon emission of CGT and BPG power generation is actually a

quadratic function, and the specific calculation is as follows:

T 2
E =3+ b (scoms + 8+ 4655.) + 0 (scor. + i + 658’ |
t=1

T T
— BES,+ " [as + bogures + oy | + D [as + bagurcy + csghig, |
=1 =1

)
where Eg(z)ft is a carbon emission reduction.

To perform differentiated cost accounting for different carbon emission statuses,
drawing on the ideas of Geert et al (2018), constructing a stepped carbon transaction cost
calculation model, based on the free carbon emissions calculated in formula (3), divide a
number of different carbon emission ranges. When the carbon emissions are higher, the
carbon trading settlement price is also higher. The calculation formula of GVPP ladder
carbon transaction cost is as follows:



Po,(E-E) E<E+d Information
oPco,d+ (1+ 0)Peo,(E—E —d),E+d=E=<E+2d gap status
Ceo, = { @+ 0)Peo,d + [(1 +20)Peo,(E — E—Zd)] E+2d<E<E+3d theory
(n =1+ 0)Peo,d + [(1+ (0~ 1)0)Poo, (E ~E — (1~ D)d)|,E+ (0~ Dd=E=E + nd 113

©)

When E.E, Cco, 1s a negative value, indicating that the actual carbon emissions of the
system will be lower than the free carbon emissions. At this time, the initial carbon trading
price can be purchased and stored to obtain carbon trading benefits.

2. Near-zero carbon scheduling optimization model

2.1 Objective function

Considering that GVPP participates in power system dispatch as a whole, that is, it is a
low-carbon economic dispatch optimization problem 24 h before the day. According to
formula (4), if £ = 0 at the end of the scheduling period, it indicates that all the CO,
generated by GVPP is converted into CH,, which enters the gas network or is stored in
the GST. It is considered that GVPP has achieved the goal of zero carbon emissions.
However, zero carbon emissions requires P2G to fully use clean energy to generate
electricity and convert COs in the last period of the dispatch cycle, which is difficult to
achieve. Therefore, this study pursues the goal of near-zero carbon emissions,
considering the maximum value of E—0, the carbon transaction cost is as small as
possible. At the same time, the operating cost of GVPP also includes the cost of power
generation fuel and the cost of outsourcing electricity. Therefore, this study chooses to
minimize the operating cost as the optimization objective. The specific objective
function is as follows:

T

Feost =miny _(Ceo, + Ceors + Coret + Purc.urcy) ©)
t=1

where Ceerrand Cppe, mainly include fuel cost and start-up and stop cost. Taking CGT as
an example, the specific calculation is as follows:

Ceery = [dccT +begr8cery + CCGT(gCGT,t)Z} +C&r, )

hot in ff in old
s s (1— )] x Neor: Teer < Teory =Teer + Teor
CGTy = [HCCT L — 6T -1 cold  Toff in cold
Neor Tegre > Teer + Teor

off )ff ;min
Neor Teers = Teer ®)

u (1 —u X )
corion (1= vre] o G e



IJCCSM 2.2 Constraint conditions
15,2 In the process of GVPP operation, it is necessary to consider the load supply and demand
balance constraints, the operation of each component unit and the spinning reserve
constraints. The specific constraints are as follows.
2.2.1 Load supply and demand balance constraint.

114 gwrpt +&pvi +8&ccT + g@%%t + gé’}s;% +8pprGt + (g%issp,t - ggérm) + ALprpt + Qupc.

=Lt + ALpogy )

where gpy,; and gwpp, mainly depend on the natural wind and solar radiation intensity. For
specific calculations, see reference (Gotz et al., 2016).
2.2.2 Power-to-gas—gas storage tank joint operation constraints.

0= Qpacs = Qi (10)
2G,min 2G 2G,max
csTr = ¥6sT = YesT 11
' C P26
ng%,t = QPgIé,t + gCGT,t/ ¢CGTHg = leza()}(‘,t 12)
i C GST
leénTt = QGI;hT,t + gCGT,z‘/ ecerHe = leg%; 13
a CH
26 CGT
Sests = Sest.1, Z( st — Wt — QGSé[‘,t) (14)
=1
SglénTt = SesTt = Srélg’)l(‘t (15)

2.2.3 Conventional gas turbine and BPG operating constraints. Both CGT and BPG are
traditional power generation resources, and their power generation needs to satisfy
maximum output power constraints, up and down climbing power constraints and start-
stop time constraints. Take CGT as an example, the details are as follows:

UCCT 1880 < 8eoT s = UCCT 1800 (16)
Agcor =8cort — 8ceTi-1= Mgy 17
(TC6r i1 — Megr) (ceri—1 — Ucer) = 0 (18)

(’[Y)CfoT,t—l - MZ%T) (tcor.s — Uceri-1) 2 0 19



2.2.4 Energy storage equipment operation constraints. The operation of energy storage
equipment needs to consider the maximum charge and discharge power constraints and its
own battery capacity constraints. The specific constraints are as follows:

S =8rspi =8P, (20)

Shab.s = Spsns = S, 21)
S -8 gd’l?‘ 1— chr _ ydis 1— dis (22)
pSDt+1 = Opspy T |8Pspy T pSD.t 8pspt M psp.t

2.2.5 Demand response provider operating constraints. This study considers that the
flexible and controllable load involved in GVPP operation is mainly completed by the way
that DRP provides IBDR. Generally speaking, DRP distributes demand response according
to the relationship between power supply and demand. It is a multistage output method:

DM =A =D} j=1 23)
OsALf;s(U,;—U;I),;’:z,g,...,] 24)
I
ALprp; = AL = ALpE, (25)
=1

2.2.6 Spinning reserve constraint.

max : dis,max dis min
&govery — &ovepy T mm{ (g PSDt gPSDAt) ) (SPSDJ - SPSDJ) }

> 7 - Ly +7wep - §wepy + 7PV - 8PV (26)

in chr,max chr ax
Scvery — 8Gvpps T max{ (gPSD,t - gPSD,t): (Spéps — SPSD,t)}

> 1wrp - 8wrpy + 1PV - 8PV @7

3. Stochastic scheduling optimization model

3.1 Information gap decision theory

There are uncertain variables such as wind power and PV power generation in GVPP,
because its scheduling optimization decision is based on the forecast information of
uncertain variables. When the actual value of the uncertainty variable deviates from the
predicted value, it is considered that the uncertainty variable has an information gap. Yakov
Ben-Haim et al. proposed and improved the IGDT in the 1980s continuously, which is used
to describe the gap state between the known and unknown uncertain information
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(Pilar et al., 2018). When the information gap is generated, if the actual value deviates in a
bad direction, it will have a negative impact on the decision-making system. Conversely,
when the actual value deviates in a good direction, it will bring opportunity benefits to the
decision-making system. The IGDT forms an open decision-making optimization strategy
by separately constructing the risk aversion (robust) model and the risk speculation
(opportunity) model corresponding to the above two directions and analyzes the degree of
uncertainty and consequences, so as to formulate a more realistic decision-making plan
(Pilar et al., 2018). The basic model of IGDT includes system model, uncertainty model and
minimum demand model, which are described as follows:

For any initial system model, it can be written in the form of objective function,
inequality constraint and equality constraint, as follows:

mink(q,v)
st. H(q,v)=0 (28)
G(q,v) =0

where R is the objective function; ¢ is the determined parameter; v is the uncertain
parameter; H(g, v) is the inequality constraint; and G(g, v) is the equality constraint.

Considering the uncertainty parameter v, and its corresponding predicted value is v, the
interval can be used to describe the floating state of the uncertainty variable U(a,?) as
follows:

MSO[} a>0 (29

o(t) -

where « is the uncertainty of the parameter v; that is, for v in the set U(a, ?), the maximum
perturbation relative to the predicted value v is a.

The minimum demand model is mainly used to describe the impact of the uncertainty
variable predicted value deviation on the system decision. Considering that the parameter 7.
is the lower limit of the target value acceptable to the decision-maker, for any parameter v,
the objective function R(q, v) can satisfy the following constraints:

U(a,v) = {U(t) :

R(g.v)=r. (30)

According to formulas (28) to (30), the original initial system decision-making model can be
transformed into an uncertain decision-making model as follows:

maxa
s.t. R(q,v)vewa@ =7, a1
H(q,v)=0
G(q,v) =0

Through the abovementioned optimal model, it can be ensured that under the premise of the
target value acceptable to the decision-maker, the maximum fluctuation of the uncertainty
parameter can be withstood. The decision value ¢ is obtained by formula (31), which can
ensure that when v is disturbed in the set U(a, ), the target value 7, acceptable to the
decision-maker can be obtained.



The IGDT stochastic scheduling optimization model shown in formula (31) ensures
that the obtained decision-making scheme has strong applicability, which is also called
robustness, by considering the extreme situations of uncertain variables. However, the
prerequisite for the optimal scheme determined by formula (36) is that the objective
function changes monotonously with the wind and solar uncertainty parameters, which
can be calculated by using formula (35). However, in GVPP low-carbon stochastic
dispatch, when carbon transaction costs are considered, wind power and PV generation
have a carbon emission reduction effect, which causes the uncertain costs of wind and
solar and carbon transaction costs to offset each other. It may cause the objective
function to show non-monotonic changes with the uncertainty variable; this leads to the
inability to directly apply formula (35) to obtain the extreme value, the decision cost
corresponding to the scene with the largest or smallest wind power is not necessarily
the largest. In this case, it is necessary to establish a method for obtaining the worst
scenario.

3.2 Stochastic scheduling model
This section uses IGDT to deal with the certainty of wind power and PV generation and
proposes a GVPP stochastic scheduling optimization model that considers the state of
information gaps. The specific process is as follows.

3.2.1 Landscape uncertainty model.

* g* — &gwpp,t
U(a,gwrps) = {ngpj : ‘% = a} a>0 (32)
. &y —grv,
U(a,grvs) = {ng,t3 T Sa} a>0 33

3.2.2 Power-to-gas-based virtual power plant uncertainty decision model. According to the
GVPP near-zero carbon scheduling optimization model in Section 2, the optimal GVPP
target value Foo, under deterministic scenarios can be established, when considering the
impact that uncertain variables may have on the optimal decision-making plan, according to
formulas (32) and (33), the maximum perturbation of wind power and PV generation relative
to the predicted value is agypp, ; and agpy; 4, respectively. To overcome this part of the
fluctuation, GVPP needs to call conventional units or purchase electric energy from UPG,
which will bring new peak shaving costs. At this time, the decision-makers expect the target
value to be adjusted to:

T
Frge = (14 ovisk) {Fﬁé’; + ) Pro(agwep + agPV,t)} (34)
=

When the decision-maker’s target value Fyq is higher than F; gg’;, o s takes a value greater
than 0. According to formula (34), the scheduling decision value of GVPP under the
uncertainty scenario should not be higher than Fig, and the specific constraints are as
follows:
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[JCCSM min | max F(gwep.t,8pv +,8prp 181, W) | = Frisk (35)
15 2 Ewppy € U(a,gwepy)
, g;v:r € U(a,grvy)

Under the condition that the peak shaving transaction decision cost is not higher than the
expected target Fiq, the maximum degree of uncertainty « is solved to establish the GVPP
118 random scheduling decision model as follows:

a(Frisc) = maxe
. pt
Min (MaX g2 agyen ' (EWPPHEPY 1, 8DRP1&1 ) | = Fely
&pyy € U(e,8pvy)
st. A9 —27

* (36)
8wppy — 8wrPt _

gwrp t

*
8pyy — 8PV .

8prv

The IGDT stochastic scheduling optimization model shown in formula (36) ensures that the
obtained decision-making scheme has strong applicability, which is also called robustness,
by considering the extreme situations of uncertain variables. However, the prerequisite for
the optimal scheme determined by formula (36) is that the objective function changes
monotonously with the wind and solar uncertainty parameters, which can be calculated by
using formula (35). However, in GVPP low-carbon random scheduling, when considering
carbon transaction costs, wind power and PV power generation have carbon emission
reduction effects. The uncertainty cost of the scenery and the carbon transaction cost are
offset by each other, which may cause the objective function to show a non-monotonic
change with the uncertainty variable. This leads to the inability to directly apply formula
(35) to obtain the extreme value, the decision cost corresponding to the scene with the largest
or smallest wind power is not necessarily the largest. In this case, it is necessary to establish
a method for obtaining the worst scenario.

3.3 Worst-case scenario analysis

Wind power and PV power generation in GVPP have strong uncertainties. When the actual
output power is lower than the predicted value and the net load of the system increases
rapidly, the wind and solar uncertainty will have the greatest impact on the stable operation
of the system, which is the worst scenario. Therefore, it is first necessary to find the moment
when the system net load fluctuates the most. The specific calculation is as follows:

Luety = Ly + ALpog; — [gCGT.z + GRS + 88 + gprey + (g}%?p.t - gf?her,t) + ALpgp; + gUPG,l]
@7

ft = {|Lnet,t - Lnet-,tfl‘ - {ggmv}lgp‘t —8evepy T min{ (g?;:gfltwth]max 7gl[i)i§p‘;>7 <Spsp,; — S?;g?)t> H }/Lt
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According to formula (38), the net load fluctuation characteristics can be obtained, and the
scenario with the largest load fluctuation is further selected as the worst scenario for GVPP
operation. The specific calculation is as follows:

Ssuwort (g WPP,t>gPV,t> = {g wep8py,  MaX o Zf’f } (39)
—

Further, construct the GVPP scheduling optimization decision objective function
corresponding to the worst scenario as follows:

a(Fig) =max [a: min F(gwert,8pv i, 8prp 18, W) = Frisk (40)
gwp[{/ € Sworst

M
&pyys € Suworst

According to formula (40), the GVPP system peak shaving transaction decision-making
objective in the worst scenario is established, and the GVPP scheduling optimization
decision-making plan obtained in this scenario is the most conservative transaction plan.

4. Case analysis

4.1 Basic data

This study chooses nine-node energy concentrator system as the simulation system, H1 to
H9 are nine energy concentrators. Among them, H1 is configured with 2 x IMW WPP, H5
is configured with 2 x 0.5 MW PV and 1 x IMW BPG, and H6 is configured with 1 x IMW
CGT and 1 x 1 MW-h PSD. H7 is equipped with 1 x 0.2 MW P2G and 200 m® GSD. Set the
maximum charge and discharge power of ESD to be 1 x 0.2MW, the electrical energy
conversion efficiency of P2G is 60%, the calorific value of natural gas is 39 MJ/m®, and the
gas storage loss rate is 5%. It is assumed that BPG power generation fuels are mainly user
biogas digesters and large pig farms. The daily biogas output of a typical load is about
4746 m® and the relationship between biogas and output power is about 0.55-0.62 m*/kW-h
(Gotz et al, 2016). The power generation cost parameters and emission coefficients of CGT
and BPG are selected in Ju et al. (2019b), and the carbon emission rights transaction price is
set to 45 yuan/ton. Figure 3 is a diagram of the node energy concentrator system structure.

Furthermore, considering that WPP, PV, CGT and BPG are all dispatched by GVPP,
refer to Ting et al. (2018) to set the on-grid power price for power generation and the price of
natural gas sales for a typical load day. When GVPP cannot meet its own load demand, it
can purchase electricity from UPG, and the purchase price is set at 0.8 yuan/kW-h. Using the
scenario production and reduction strategy proposed in Ju ef al. (2019a), setting the WPP
and PV power generation output parameters, simulating the WPP and PV power generation
scenarios of the typical load day, select the scenario with the highest probability as the
input data. At the same time, considering the flexibility of end users to participate in
GVPP power generation scheduling through DRP agents, the maximum positive and
negative output provided by DRPs does not exceed 10% of the original load. Figure 4
shows the forecast values of wind power, PV power generation and load demand on a
typical load day.

Finally, to analyze the effectiveness of IGDT in dealing with the uncertainty of WPP and
PV, the initial value of the expected target deviation coefficient of decision-makers is set to
0.5, and the sensitivity analysis of the predicted deviation coefficient is performed to verify
the effectiveness of the IGDT. After inputting the basic data, the model is solved by the
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Figure 3.
Nine-node energy
hub system

Figure 4.

Forecast values of
wind power, PV
power generation and
load demand on
typical load days

— Power load H 1 H2 H3
Power line
Natural Gas | I
Pipeline T TT1 -
—H4 T T H>s Y| H6
@ |
@ WPP
) i — a2
_'IL I|I - J1_

2.0

s WPP mmmm PV

Load

1.6

o —
0 )

Predicted output of WPP
and PV/MW
o
=

0.0

8§ 10 12 14 16

Time/h

18 20 22

3.6

3.0

2.4

1.2

0.6
24

Load demand/MW



general algebraic modeling system (GAMS) software using CPLEX 11.0 linear solver from
ILOG_solver (Ju et al., 2019b). The CPU time required for solving the problem for different
case studies with a thinkpad X1 carbon series laptop computer powered by core 15 processor
and 8 GB of RAM. When the optimization is mixed integer linear programming, the GAMs
software could get a satisfactory solution quickly.

4.2 Validity verification

IGDT is used to describe the optimal operation of GVPP scheduling considering the
uncertainty of wind and solar, and the degree of uncertainty under different expected target
deviation coefficients is measured. Overall, the degree of uncertainty has a linear
relationship with the predicted target deviation coefficient, as the expected target deviation
coefficient increases, that is, the increase in the cost that the decision-maker can bear, the
allowable degree of uncertainty in the scenery also increases. For example, when the
prediction target deviation coefficient is 0.5, the degree of uncertainty og = 0.142. It shows
that when the wind and solar output power fluctuates within the range of [0.858, 1.142] times
the predicted value, the decision-making scheme obtained by the method in this study can
ensure that the cost of the dispatching decision-making scheme is less than the expected cost
of the decision-maker. Figure 5 shows the relationship between the tolerance of GVPP and
the expected target deviation coefficient.

Further, consider the GVPP scheduling optimization scheme in deterministic scenarios
and uncertain scenarios, respectively, when oq = 0, the decision-maker believes that the
predicted value of wind and solar output power is consistent with the actual value; when the
decision-maker considers the uncertainty of wind and solar, this study sets the initial
prediction target deviation coefficient to 0.5; the degree of uncertainty is obtained as og =
0.142. Correspondingly, the optimal scheduling schemes of GVPP in deterministic and
uncertain scenarios are calculated, respectively. Figure 6 shows the optimal scheduling
scheme of GVPP under different prediction target deviation coefficients.

According to Figure 6, if we do not consider the uncertainty of the scenery, to pursue the
goal of minimizing the cost of power generation, GVPP will give priority to using WPP and
PV for power generation. CGT is mainly used to meet the basic load, and GST, DRP and
PSD mainly provide peak shaving services; when considering the uncertainty of wind and
solar, to increase the flexibility of the system, CGT began to participate in wind and solar
peak shaving. At this time, to reduce the overall cost of power generation, BPG power
generation output increased, and P2G converts more CO5 into CHy, reducing the carbon
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Figure 6.
Dispatching
optimization results
of GVPP under
different object
deviation coefficients

Table 1.
Dispatching
optimization results
of GVPP under
different scenarios

emission cost of GVPP, and the range of DRP and PSD calls are significantly increased to
improve GVPP’s ability to cope with the uncertainty of scenery. Table 1 shows the GVPP
scheduling optimization plan under different scenarios.

According to Table 1, when considering the uncertainty of wind and solar output power,
the power output of CGT and BPG increased by 4.68 MW-h and 14.64 MW-h, while the
output of wind power decreased by 7.88 MW-h. At the same time, because P2G and PSD
have the ability to use energy waste during valley hours and supply power during peak
hours, DRP has the ability to provide negative output during peak hours. Therefore, to
pursue the goal of the lowest power generation cost, PV power generation increases by
1.39MW-h during peak hours during the day. In addition, when the expected target
deviation coefficient is 0.5, the corresponding degree of uncertainty is 0.142. At this time, the
carbon emissions have been reduced to 0 tons, that is, zero carbon emissions have been
achieved.

In summary, this study proposes to apply the IGDT to the uncertainty of the wind and
solar and establishes the GVPP low-carbon random call optimization model. The results of
the above calculation examples verify that the optimization results are in line with the actual
scheduling experience and reflect the effectiveness of the method in this study. In general,
the GVPP low-carbon stochastic scheduling optimization model proposed in this study can
reasonably set the expected target deviation coefficient for decision-makers based on their
own risk attitudes and then obtain the optimal decision-making plan that meets their own
requirements and provide effective decision-making tools.

4.3 Near-zero carbon dispatching plan

Applying the GVPP low-carbon stochastic scheduling optimization model based on the
IGDT proposed in this study, this section takes zero carbon emissions from GVPP
operations as the goal and calculates the corresponding prediction target deviation
coefficient and uncertainty cost. When the predicted target deviation coefficient is equal to
0.326, GVPP achieves near-zero carbon scheduling, and the degree of uncertainty at this
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time is equal to 0.131. Figure 7 shows the GVPP optimal dispatch plan under the zero carbon
emission scenario and the worst scenario.

According to Figure 7, when the decision-maker expects that the target deviation
coefficient is set to 0.326, GVPP operation can reach the critical value of zero carbon
emissions. At this time, GVPP can sell carbon emission allowances through the trading
market. To achieve the goal of zero carbon emissions, BPG was not used due to high
carbon emissions per unit of power generation. Peak shaving services for wind power
and PV power generation are mainly satisfied by P2G, PSD and DRP. It is particularly
noteworthy that the PSD and DRP operation basically strictly match the peak and valley
distribution of the load curve at this time. Further, analyzing the operation of P2G-GST, it
can be seen in Figure 8 that P2G mainly converts electricity to gas to generate CH, during
the low period, most of which are stored in GST, and a small part is directly sold to the
gas network. GST inputs natural gas into CGT during peak hours for gas-to-electricity,
thereby providing peak shaving output for wind power and PV power generation. Until
the end of the dispatch period, the remaining CH, is stored in the GST to achieve zero
carbon emissions during the dispatch period. Furthermore, the worst scenario
established by formulas (37) to (40) is analyzed. Figure 9 shows the GVPP scheduling
optimization result under the worst scenario.
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Figure 7.
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Figure 9.
Dispatching
optimization results
of GVPP under the
worst scenario (a =

0.5and T rigk = 0203)

Table 2.
Operation scheme of
GVPP under
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According to Figure 9, in the worst scenario, WPP and PV power generation output is
lower than other scenarios significantly. At this time, P2G, PSD and DRP can meet the
demand of wind and solar peak shaving, so the CGT power generation output is
linear; the output of the upper limit meets the benchmark load demand. Similarly, in
pursuit of the objective function of minimizing the cost of GVPP power generation,
BPG did not generate power. Different from the zero-carbon emission scenario, in the
worst scenario, the PSD and DRP output adjustments are relatively large to deal with
the uncertainty of the scenery. Since the output of wind power and PV power
generation is the lowest, and BPG is not called, GVPP has a strong ability to deal with
the uncertainty of wind power and PV power generation, so the degree of uncertainty
orisk = 0.203; it can be seen that the proposed method can better deal with the worst
scenario. Furthermore, the sensitivity analysis of carbon trading prices is carried out.
Table 2 shows the cost value and degree of uncertainty of GVPP operations under
different carbon trading prices.

According to Table 1, the sensitivity analysis of carbon trading prices is carried out, and
the scheduling costs and uncertainty levels of GVPP under certain, near-zero carbon and
worst-case scenarios under different carbon trading prices are measured. When the carbon
trading price is lower than 50 yuan/ton, the GVPP scheduling cost will decrease as the
carbon trading price increases, and the degree of uncertainty will decrease in the near-zero
carbon scenario gradually. Since P2G converts more CO, into CH, and provides greater peak

Carbon Cost value/¥ Degree of uncertainty o g
trading price Certainty ~Near-zero carbon The worst scenario  Near-zero carbon  The worst scenario

30 5046.06 5550.67 6310.22 0.121 0.224
35 5009.54 5510.49 6285.07 0.128 0.216
40 4945.35 5439.89 6906.94 0.136 0.210
45 4875.10 6512.19 758597 0.142 0.203
50 4811.99 5293.19 8021.27 0.145 0.194
55 4825.08 5307.59 8653.07 0.134 0.187

different carbon price 60 487592 5363.51 9733.92 0.129 0.181




shaving capabilities, so GVPP has an increased ability to cope with the uncertainty of the
scenery. However, when the carbon trading price is higher than 55 yuan/ton, CGT and BPG
generate electricity to generate CO,, which is used to obtain carbon trading income, which
reduces the ability of GVPP to deal with the uncertainty of scenery. For the worst scenario,
due to the extremely magnified risk of wind and solar uncertainty, as the price of carbon
trading increases, more CGT and BPG power generation will bring higher carbon trading
costs. Therefore, the cost of GVPP scheduling is increasing gradually, and the degree of
uncertainty is increasing gradually, indicating that the tolerance of decision-makers to the
uncertainty of scenery is decreasing gradually. In summary, the actual load dispatch
experience of the sensitivity analysis results in Table 2 reflects the effectiveness of the
method in this study.

5. Conclusion

This study considers the electrical conversion and spatio-temporal calming
characteristics of P2G, integrates it with VPP into GVPP and uses the IGDT to describe
the impact of wind and solar uncertainty and then proposes a GVPP near-zero carbon
random scheduling optimization model based on IGDT. For different types of decision-
makers, the maximum tolerance threshold range of wind and scenery uncertainty can be
established by setting the deviation coefficient that meets their own expectations and
establish the optimal decision-making scheme of GVPP. By selecting a nine-node energy
hub as the simulation system to verify the feasibility and effectiveness of the proposed
approach to low GVPP near-zero carbon stochastic scheduling, the following conclusions
can be drawn:

¢ GVPP can coordinate and optimize the output of electricity-to-gas and gas turbines
according to the gas-electricity price difference in different periods of the electricity
market and natural gas market and use the bidirectional conversion of gas-
electricity energy to form an electricity-gas-electricity cycle. It can not only take
advantage of the characteristics of VPP to realize the complementary utilization of
distributed energy but also improve the system’s clean energy absorption capacity
through PGST, reduce its own carbon emissions and reduce the volatility of net
output.

e The IGDT can be used to describe the impact of wind and solar uncertainty in
GVPP. Decision-makers can obtain the maximum tolerance for wind and solar
uncertainty by setting a reasonable expected target deviation coefficient. For
example, when the expected target deviation coefficient is 0.5, the corresponding
uncertainty degree is 0.142. In the worst scenario, the scheduling results obtained by
this method are in line with the actual scheduling experience, which reflects the
effectiveness of the method in this study.

» Carbon emissions trading can increase the operating space of P2G and reduce the
operating cost of GVPP. When the decision-maker expects that the target deviation
coefficient is set to 0.326, GVPP operation can reach the critical value of zero carbon
emissions, and GVPP can sell carbon emission allowances through the trading
market. When the carbon trading price is lower than 50 yuan/ton, the GVPP
scheduling cost decreases as the carbon trading price increases, and the degree of
uncertainty in the near-zero carbon scenario also decreases gradually, indicating
that carbon emissions trading has an important impact on the GVPP scheduling
plan.
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Note

1. National Development and Reform Commission and National Energy Administration. Notice on
Issuing the 13th Five-Year Plan for Energy Development [EB/OL]. www.nea.gov.cn/2017-01/17/
¢_135989417.htm, 2016-12-26/2020-04-02.
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